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ABSTRACT 

This paper presents a hybrid approach to decision-making, 

capable of calibrating a trade-off between accuracy and 

response time by using multiple decision-making techniques 

to reach a solution of a decision problem. Each device 

employed by the decision-making system should also be able 

to learn from solutions suggested by other devices. This can 

be achieved by applying adaptive techniques, which make 

possible to change each device’s behavior according to the 

input received. This process happens autonomously, without 

human interference. 
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1. INTRODUCTION 
Decision-making is a reactive process, in which an action 

should be taken as a response to some external event, often 

determined by combining a set of criteria – also known as 

attributes [1]. Choosing the best alternative from a finite set of 

possible scenarios is a matter of gauging the possibilities and 

checking which ones are more attractive in a particular 

condition – commonly referred to as instance.  

Decision-making problems are often found in a wide variety 

of fields, ranging from economics to medicine. Examples can 

be easily found even in everyday life – such as the choice of 

clothes according to the weather, or deciding what to cook for 

lunch, according to one’s own preferences.  

One way to evaluate the performance of a decision-making 

method is by measuring its hit rate and the time needed to 

reach a satisfactory decision. Typically, hit rate and speed 

have an inverse relationship: spending more time analyzing a 

problem tends to yield higher hit rates. Yet, if the error cost is 

low, applying methods that sacrifice hit rate to achieve faster 

decisions may be a better choice.  This relationship is shown 

in Fig 1. 

Animals have shown to be able to perform a trade-off between 

speed and accuracy in order to maximize their gains [2]. Most 

of the computational decision-making methods, however, do 

not calibrate this trade-off, since they always use the same 

decision algorithm regardless of time or hit rate constraints.  

The software architecture proposed in this paper represents a 

contribution towards a decision-model capable of calibrating a 

Speed-Accuracy Trade-off (SAT) by using different decision 

making methods according to their hit rate and response time. 

Fig 1: Typical relationship between speed and accuracy 

for most decision tasks [2]. Easier tasks – illustrated by the 

left curve – can be solved with high accuracy while 

retaining low response times. 

2. CONCEPTS 

2.1 Decision Support System 
The concept of Decision Support System first appeared in the 

1970s as a computational artifact that aids decisional tasks [3], 

being originally employed by business organizations to 

achieve better strategic decisions. 

Although there is no definitive model, most decision support 

systems combine a knowledge-based system with a decision 

model and a user interface, allowing the decision-maker to 

quickly compile useful information out of raw data [4].  

Learning through training data is a classical method to build 

the system’s initial knowledge. Typically, learning is divided 

into two categories: eager learning and lazy learning: eager 

methods create a condensed representation during a learning 

phase by inferring abstractions from the training data, while 

lazy ones avoid abstracting until needed at runtime [5].  

The structure of decision support systems has significantly 

evolved since its original concept, mostly because of the 

advent of computer intelligence, which increased their 

capabilities even further [3][6]. Their scope has also 

broadened, due to their inclusion in a wider range of fields, 

such as medical diagnosis and management.  

One fundamental problem faced by decision support systems 

is maintainability: in order to work properly, their decision 

model and corresponding knowledge must be kept updated to 

minimize their miss rate. Particularly, concepts may change 

over time – an effect known as concept-drift [7]. If ignored, 

the system’s accuracy will degenerate as concepts change. 

Classical decision models, however, are immutable and need 

to be completely rebuilt from scratch to keep them up to date.  

Evolutionary and adaptive systems – capable of acquiring new 

information without rebuilding the decision model from 

scratch and adapting themselves to their environment – are 

taken as a next step for decision support systems [8].  
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2.2 Rule-Driven Adaptive Devices 
An adaptive device can be described as the union of usual 

devices – such as finite automata, grammars, decision trees 

and decision tables – and an adaptive mechanism, capable of 

changing the device’s behavior at runtime [9]. The device is 

often referred to as a subjacent device, while the action that 

modifies the device’s behavior is called adaptive action.  

As an example, the addition of an adaptive layer to a finite 

automaton may enable it to add and remove transitions, and 

generate new states as well. In fact, such automata are Turing-

equivalent [10].  

 

Fig 2: Structure for an adaptive device, composed of a 

rule-driven device and an external adaptive mechanism. 

According to Neto [11], a rule-driven device (ND) is 

described as ND = (C, NR, S, c0, A, NA), where:  

 C is a set of possible configurations for ND, while 

c0∈C is the initial configuration. 

 S is a finite set of possible events that are valid 

input stimuli for ND. The null element ε is valid as 

well. 

 A ⊆ C is the subset of accepting configurations. 

 NA is a finite set of all possible symbols to be 

output by ND in response to the application of the 

rules in NR. Such output symbol may be interpreted 

as a procedure call, by mapping it into an action to 

be executed upon the application of a rule 

 NR ⊆ C ×S ×C ×NA is a set of rules defining ND. 

The application of a rule r ∈ NR, denoted as r = (ci, 

s, cj, z), changes the current configuration ci into cj 

in response to a stimulus s ∈ S. As response, it 

outputs z ∈ NA. 

An adaptive device AD, then, is described as ADk = (NDk, 

AM), where:  

 k ≥ 0 is a counter that is incremented by 1 whenever 

an adaptive action is taken. 

 NDk is the subjacent device after the execution of k 

adaptive actions. By this definition, ND0 is the 

initial subjacent device. ADk evolves to ADk+1 by 

executing an adaptive action. The evolved device 

will have a new set of rules NRk+1, consisting of an 

edited version of the previous NRk, 

 AM is the adaptive mechanism responsible for 

executing adaptive actions. 

Expanding the previous definition into ADk = (Ck, ARk, S, ck, 

A, NA, BA, AA): 

 Ck is a set of possible configurations for ADk, while 

ck∈Ck is the initial configuration at step k. At k=0, 

this set is the same as the one defined for ND. 

 S, A and NA retain their former meanings. 

 BA and AA are sets of adaptive actions that should 

happen, respectively, before and after applying a 

rule. Both should contain the null action, which 

does not trigger any adaptive action (ε ∈ BA ∩ AA). 

 The set of rules of an adaptive device has been 

renamed to ARk ⊆ BA×C ×S ×C ×NA ×AA. Adaptive 

rules have the form ark = (ba, ci, s, cj, z, aa). When 

applied, this rule initially executes the adaptive 

action ba ∈ BA. Then, the subjacent non-adaptive 

rule in form of (ci, s, cj, z) is executed. Finally, it 

executes the adaptive action aa ∈ AA. In the case 

that aa = ba = ε, the rule is essentially non-adaptive.  

Algorithm 1 sketches the overall operation of an adaptive 

device AD.  It is, basically, a loop that iterates over the 

elements of an input stream w, extracting its input symbols 

scurrent, one at a time, and using each of them to find and 

execute a set of matching rules CRT. Matching rules are ones 

whose configuration ci and input symbol s match the device’s 

current configuration ccurrent and the input symbol scurrent 

respectively. This search scheme is outlined in Algorithm 2. 

Formally, the set of matching rules is defined as CRT = {ar ∈ 

ART | ar = (ba, ci, s, cj, z, aa), ci = ccurrent, s ∈ {scurrent, ε}; ci,cj ∈ 

CT; ba ∈ BA; aa ∈ AA, z ∈ NA}. 

Algorithm 1 runRuleDrivenDevice(AD, w, out) 

 Input 
AD: Device to be executed 

w: Input stream of symbols s ∈ S 

Output 

out: Output stream of symbols z ∈NA 

1. set AD.ccurrent  c0 

2. for each scurrent in w do 

3. consumed  false 

4. while not consumed do 

5. CRT  searchRules(AD, scurrent) 

6. if CRT = ∅ then 

7. reject w 

8. else if | CRT | = 1 then 

9. ar  single element of CRT 

10. consumed  executeD(AD, ar, out) 

11. else 

12. consumed  executeND(AD, CRT , out) 

13. end if 

14. end while 

15. end for 

16. if AD.ccurrent ∈ AD.A then 

17. accept w 

18. else 

19. reject w 

20. end if 

 

The execution of CRT depends on its own cardinality. If the 

search yields only one rule (i.e., |CRT | = 1), it can be 

deterministically applied, consuming the input symbol read, 

writing z to the output stream and updating the device’s 

current configuration to cj. If the rule specifies non-empty 

adaptive actions ba and/or aa, they should be executed as 

well. However, the execution is aborted if ba eliminates the 

current rule from ARk – in this case, the device should find 

another set of matching rules to execute. This operation is 

described in Algorithm 3. 
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Algorithm 2 searchRules(AD, s) 

 Input 
AD: Device to be executed 

s: Symbol s ∈ S read from the input stream 

Output 

Set of matching rules CRT  

1. CRT  { } 

2. for each ar = (ba, ci, s, cj, z, aa) ∈ AD.ART  do 

3. if (ar.ci, ar.s,) = (AD.ccurrent , s) then 

4. add ar to CRT 

5. end if 

6. end for 

7. return CRT 

 

Algorithm 3 executeD(AD, ar, out) 

 Input 
AD: Rule-Driven Adaptive Device to be executed 

ar: Rule to be executed 

Output 

out: Output stream of symbols z ∈ NA 

1. if ar.ba ≠ ε then 

2. adapt(AD, ar.ba) 

3. end if 

4. if ar  AD ∉AR then 

5. return false 

6. end if 

7. AD.ccurrent  ar.cj 

8. append ar.z to out 

9. if ar.aa ≠ ε then 

10. adapt(AD, ar.aa) 

11. end if 

12. return true 

 

However, if |CRT | = m ≥ 1, multiple rules are equally allowed 

to be executed. In this case, they should be non-

deterministically applied to the current configuration – which 

is usually simulated in non-parallel environments by using 

some backtracking strategy. This featured is performed by the 

executeND function in Algorithm 1.  

Note: the execution of non-deterministic scenarios is voided in 

this work, by keeping it purely deterministic. Case studies for 

particular adaptive devices, such as non-determinism in 

decision-trees, have been addressed in previous works 

[12][13]. 

Finally, if |CRT | = 0, then no rule can be applied to the current 

configuration using s. In this case, the input stream w is 

rejected. 

Once all symbols have been consumed, the input stream w is 

accepted if the ending configuration is member of A – i.e., 

ccurrent ∈ A – otherwise, w is rejected 

2.3 Extended Adaptive Decision Tables 
Decision table is a popular rule-driven device employed to 

solve decision-making problems. Typically, decision tables 

make use of a set of rules represented by a condition and a 

corresponding action to be taken when the condition applies 

to the problem being solved. Conditions usually have binary 

entries as valid values, although it is possible to extend this 

concept to an arbitrary number of discrete values – tables 

employing this kind of condition are known as extended entry 

decision-tables. 

Classical decision tables have static rules, which are all 

predefined and cannot change throughout the device’s 

operation. Moreover, the set of rules itself is immutable, and 

do not support the inclusion or exclusion of rules.  

Adaptive Decision Tables (ADT), according to the definition 

given in Section 2.2, join a classical decision table and an 

adaptive layer, which contains a set of actions to be taken 

before and after a rule is applied. Each action is formed by a 

list of elementary actions of type query, insertion and 

exclusion, responsible for each basic change to be made to the 

set of rules. 

 

Fig 3: Scheme of an Extended Adaptive Decision Table 

and its auxiliary method, as seen in [14]. 

Tchemra has further expanded ADT’s adaptive capability by 

adding auxiliary functions that are called when no matching 

rules can be found [14]. This way, rather the rejecting an 

input, the device will try to create a new matching rule for the 

current situation, allowing it to proceed. The resulting 

formalism has been named Extended Adaptive Decision Table 

(EADT).   

Creation of new rules is achieved by means of a second 

device – named auxiliary method – to return a solution, which 

is incrementally added to the set of existing rules. One 

possibility studied in [14] was Analytic Hierarchy Process 

(AHP), which solves the problem by comparing alternatives 

through a score matrix, which describes the performance of all 

alternatives according to each criterion. 

It’s worth noting that EADT, although focused on the decision 

table itself, represents a hybrid approach to decision making 

by using different kinds of devices to solve a decision 

problem. This constitutes an important contribution, since this 

scheme allows incremental learning, which keeps the primary 

device – the decision table – updated with the help of another 

device to solve problems out of scope of the primary one. 

This concept can be extended to the general adaptive device 

by replacing line 7 of Algorithm 1 with the following pseudo-

code: 

…  

7. adaptFM(device, s) 

...  
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where adaptFM(device, s) is the auxiliary function that should 

call the secondary device, and create a new rule based on its 

response.  

3. HYBRID DECISION-MAKING 

3.1 Definitions 
According to the definition used in most Instance-Based 

Learning methods, the term instance means a set a set of 

values, which describes the problem to be solved. Each value 

represents the state of a single criterion to be measured. 

Internally, each instance k is represented as an m-dimensional 

vector xk, where the i-th component represents the value of the 

i-th criterion. 

 kmkikkk xxxxx ,...,,...,, 21  (1) 

For continuous criteria, values must be numeric, while 

nominal categories make use of literal names as values – out 

of a finite set of allowed names.  

Then, using this definition, a decision-making device must be 

able to analyze an input instance xk and solve it by outputting 

an alternative yk.  

 kk xsolvey   (2) 

3.2 Proposition  
Based on the premise that perceptually easier tasks can be 

quickly solved without having to sacrifice significant amounts 

of accuracy, a hybrid decision-making environment may be 

able to reduce time consumption by assigning easier problems 

to faster devices – which are supposed to be less accurate – 

while using slower devices to solve harder problems. 

 

Fig 4: Generalization of EADT’s hybrid decision-making 

process to any kind of devices. 

For this purpose, EADT’s hybrid approach is extended to 

make it possible to use other kinds of devices rather than the 

original ones (decision tables and AHP). Those devices 

should be sorted by their response time – the faster ones 

should be placed first. When solving a problem, this hybrid 

environment assigns it to the first device in the queue – the 

faster one. If the device is able to solve it, the decision should 

be outputted, otherwise, the problem is assigned to the 

auxiliary device. Once a decision is made, it is propagated to 

both devices, which, in turn, can incorporate the new 

knowledge to assist future decisions. This process is shown in 

Fig 4. 

For rule-driven devices such as decision tables and decision 

trees, solving a problem means that there is some rule that 

applies to it. However, methods such as Naive Bayes and k-

Nearest Neighbor are based on probabilities rather than rules, 

making it hard to identify whether a proper solution has been 

achieved or not. 

For probabilistic-based methods, one possible way to 

determine whether a solution is acceptable or not is by 

analyzing the class distribution – i.e., the probability of each 

alternative being a solution – and accept the most probable 

alternative i, as long its probability pi is over a certain 

threshold. 

  threshpppaccept n  ,...,,max 21
 (3) 

Taking condition (3), the decision-making device’s operation 

is described in Algorithm 4, where p is the class distribution, 

pi is the highest probability found, and ai is its corresponding 

alternative. The first call to this function must have k=0.  

Algorithm 4 makeDecision(D, k, x, y, t, P) 

 Input 
D: List of devices to be executed 

k: Index of the device to be executed now 

x: Input instance 

t: Threshold for accepting the solution 

Output 

y: Output alternative 

P: Class probability for each device 

1. p  D[k].getProbabilities(x) 

2. append p to P 

3. pi  max(p) 

4. if (pi > t) then 

5. y  ai 

6. else if (k+1 < D.length) then  

7. makeDecision(D, k+1, x, y, t, P) 

8. else 

9. makeDecisionLast(D, x, y, P) 

10. end if 

 

Algorithm 5 makeDecisionLast(D, x, y, P) 

 Input 
D: List of devices to be executed 

x: Input instance 

Output 

y: Output alternative 

P: Class probability for each device 

1. p  D[D.lastElement].getProbabilities(x) 

2. i  index of max(p) 

3. y  ai 

 

Additionally, the function getProbabilities should be 

implemented according to the devices being used. Lines 3 and 

4 show the condition represented by equation (3).  

A strategy must be chosen when no device can solve the 

problem. The simplest one is to just return a void solution. If 

the problem demands a non-void solution, arbitrary actions 

could be chosen, such as returning the latest device’s decision, 

or choosing by vote among all devices. That action is 

performed by the makeDecisionLast function at line 9. As an 

example, in order to return the latest device’s decision, this 
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function can be implemented by Algorithm 5. This is the 

strategy applied in this work. 

Finally, the decision outputted by Algorithm 4 should be 

propagated to all devices, allowing them to learn one from 

another. This is illustrated in Algorithm 6. The learn function 

is device-dependent, and should be implemented accordingly. 

Algorithm 6 learningPhase(D, x, y) 

 Input 
D: List of devices to be executed 

x: Input instance 

y: Solution given by makeDecision() 

1. for each d in D do 

2. d.learn(x, y) 

3. end for 

 

4. EXPERIMENTAL SYSTEM 
The presented decision-making environment was tested by 

creating a sample system, composed of two decision-making 

devices, the first one being a Naive Bayes classifier– i.e., the 

fastest one. Problems whose solution do not satisfy equation 

(3) will, then, be solved by the second device, a k-Nearest 

Neighbor classifier – which, being instance-based, is 

considerably slower, especially for large datasets. 

Their integration of those classifiers within the proposed 

decision-making environment is described below. 

4.1 Naive Bayes 
Naive Bayes is a simple classifier which assumes that each 

criterion have an independent contribution to the probability 

of each possible solution to a problem.  According to the 

Bayes' Theorem, the probability of an instance xa to have 

alternative c as solution is given by: 

 
 

   



m

i

ai

a

a cxpcp
xZ

xcp
1

|
1

|  (4) 

where p(c) is a priori probability of c being a solution to any 

instance, while p(xai|c) is the probability of the i-th criterion 

having xai as value when c is a correct solution. This equation 

should apply for each alternative – the resulting set of 

probabilities should be returned by the getProbabilities 

function in Algorithm 5. 

The value Z refers to the evidence, which normalizes the 

probability: 

      
 











n

j

m

i

jaija cxpcpxZ
1 1

|  (5) 

The p(c) value can be estimated by checking the probability of 

alternative c being a solution to any instance. Then: 

 
  

  



 








n

j

s

i

ji

s

i

i

cxfI

cxfI

cp

1 1

1  
(6) 

where I(z) is the indicator function, returning 1 if the 

condition z is true, otherwise, returning 0. The function f(x) 

returns the alternative of the instance x – this information is 

usually stored in a database. As for p(xai|c), it can be estimated 

in a similar fashion, by counting how many times the value xai 

appears when alternative c is a solution: 

 

    

  












s

j

j

s

j

aijij

ai

cxfI

xxIcxfI

cxp

1

1
|

 
(7) 

However, in order to work properly, the instances’ values 

must be discrete, while previous definitions state that values 

may be continuous, numeric values. This is usually solved by 

discretizing numeric values into discrete ones using some 

particular scheme. For this work, we’ll use Equal Width 

Discretization with 100 steps of equal width, as defined in 

[15]. 

Finally, it’s worth noting that, although the previous equations 

depend on an iteration of all instances, their calculation can be 

done more efficiently by storing the values for the sums of: 

    



s

j

j cxfIcs
1

 (8) 

and: 

      



s

j

jij vxIcxfIvics
1

.,  (9) 

for each alternative c, criterion i and a possible value v.  

During the learning stage described in Algorithm 6, Bayes can 

incorporate new knowledge by storing a new instance xh and 

its corresponding alternative y=f(xh) in a database, and then, 

updating sums (8) and (9). 

This process, however, assumes that f(xh) has not been set 

beforehand. A strategy should be adopted if the device 

receives an instance with a previously set alternative: 

 One possibility is to ignore the new information 

altogether, keeping the current f(xh); 

 Another one is to overwrite the previous alternative. 

The sums should be updated by removing the 

previous contributions of f(xh) from the sums and 

adding the new ones. 

This problem is further explored in sections 5 and 6. 

4.2 k-Nearest Neighbor  
The k-Nearest Neighbor – commonly referred as k-NN – is a 

popular instance-based classifier that estimates a classification 

of a new instance by searching for similar instances, and uses 

the k-nearest ones to vote the new instance’s solution. The 

original k-NN is defined as in [16]: 

 



k

i

i
ccc

new cxfIy
n '1}...{

)(argmax
1

 (10) 

where f(xi) is the alternative of a nearby instance xi. A 

common extension to this definition is the addition of a 

weighting function based on the similarity between the new 

instance and the nearest ones – closer instances should receive 

higher weight: 

  ),()(argmax
1}...{ 1

inew

k

i

i
ccc

new xxwcxfIy
n

 


 (11) 

where w(xnew, xi) is the weighting function. Then, the 

probability of alternative c being a solution to xa is: 

     aat

k

i

ia xZxxwcxfIxcp ),()(|
1




 (12) 

where Z(xa) is the normalization factor: 



International Journal of Computer Applications (0975 – 8887) 

Volume 45– No.3, May 2012 

43 

   
 


n

j

at

k

i

jia xxwcxfIxZ
1 1

),()(  (13) 

For the weighting function, one possibility is to use Shepard’s 

method [17]: 

p

ba

ba
xxd

xxw
),(

1
),(   (14) 

where P is a positive scale value – in this work, P=2 – while 

d(xa, xb) is a distance function that calculates the difference 

between two instances by checking the individual differences 

between their criteria’s values – the difference in the j-th 

criterion is denoted by dj(xa, xb), which should return values in 

the 0…1 range for normalization purposes. 

m

xxd

xxd

m

j

j



1

2

21

21

),(

),(  
(15) 

For numeric criteria, the difference is the usual Euclidean one, 

although normalized by dj max, which is the maximum 

difference possible for such criterion. 

max2121 ),( jjjj dxxxxd   (16) 

For nominal, discrete values, however, the concept of distance 

becomes less clear. A simple, fast solution is the Overlap 

Metric (OM) [18]:  

),(),( 2121 jjj xxxxd   (17) 

where δ(x1j, x2j) is a function that returns 0 if x1j = x2j, 

returning 1 otherwise. Another option is the Value Difference 

Metric (VDM) [18], which uses additional information about 

how the values are related to the alternatives. Its definition is: 





C

c

jjj xcPxcPxxd
1

2121 )|()|(),(  (18) 

where P(c | xij) is the probability of the instance xi having c as 

alternative, given that its j-th criterion has the value xij. This is 

estimated by counting how many times each alternative 

appears when an instance has the xij value when compared to 

the others. Albeit slower, VDM allows for an overall better hit 

rate. 

For the learning phase, since k-NN does not store any 

abstraction out of the raw data, just storing the values x and 

their corresponding f(x) in a typical database is enough. The 

need of a strategy for cases of overwriting older data – 

discussed at the end of section 4.1 – still stands, though. 

Finally, it’s important to note that the k-NN’s response time 

greatly depends on the search method – this study makes use 

of a linear search. For practical purposes, however, making 

use of a spatial indexed search is preferable. 

5. RESULTS  

5.1 Speed-Accuracy Trade-Off 
The experimental system was tested through datasets provided 

by the UCI Machine Learning Repository [19]. In order to 

check how the threshold in (3) affects the hit rate and 

response time, each dataset has been tested with thresholds 

ranging from 0.3 to 1.0, in steps of 0.02. At each step, 50 

consecutives tests have been run, using 70% of the data for 

training, while using the remaining 30% as input to measure 

the hit rate. If neither devices are able to return an alternative 

that satisfies (3), the last device’s decision – the k-NN`s – will 

prevail, as described in Algorithm 6. 

The k-NN algorithm has been set to use a fixed k=10, while 

using Shepard`s method to calculates weights, using P=2. 

Differences between numeric values were calculated using 

(16), while using VDM for nominal ones, as shown in (18). 

For the learning phase, there’s the need of some strategy to 

apply when the learn function receives an already known 

instance, but initialized with another alternative – as explained 

in section 4.1. Assuming that the initial training data is more 

likely to be error-free, the first strategy will be applied, so 

new solutions – more prone to errors – will not overwrite 

older ones.  

While slower, k-NN attains higher hit rates than Bayes on 

most of the datasets tested – as shown in Fig 5. On average, 

the difference was 7%. Statlog is the only dataset whose k-

NN’s hit rate was lower than Bayes’ (a difference of 0.65%).  

The impact of the threshold on the hit rate and response time 

is displayed in Fig 6. The response time, as expected, 

increases as the threshold increases, since this means more 

problems are being solved by k-NN. The response time’s 

order of magnitude is heavily influenced by the dataset’s size, 

since k-NN becomes slower as the dataset grows bigger – 

Nursery has almost 13000 instances, while the Blood 

Transfusion has only 748. 

Note: some datasets show no changes until threshold is over 

0.5. That happens on datasets with just two alternatives – in 

this case, the most likely alternative’s score is never below 

0.5. 
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Fig 5: Hit rate for 9 UCI Datasets, using Naive-Bayes and 

k-Nearest Neighbor. 

However, the behavior of the hit rate varies among datasets. 

Generally, the hit rate increases rather proportionally to the 

response time, making it possible to adjust the trade-off 

between speed and hit rate by moving the threshold – e.g., if it 

was required to solve the Pima Indians Diabetes in an average 

of 0.2ms per problem, choosing a threshold of 0.7 would 

maximize the hit rate under this constraint.  

Additionally, the hit rate for certain datasets – such as Car 

Evaluation – saturates before reaching the maximum 

threshold value. This means that it is possible to solve them 

optimally by using the saturation point as a threshold – the hit 

rate would still be almost as high as k-NN’s, although with a 

lower response time. 
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Fig 6: Effects of the threshold on the hit rate and the response time. 
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Finally, since k-NN had a worse performance than Bayes for 

the Statlog dataset, there was no advantage in using this 

hybrid approach, since shifting more problems to k-NN 

actually made the system less accurate and more time-

consuming. 

5.2 Comparison to Greedy Solving  
In order to check the gains of using the experimental hybrid 

system when compared to a greedy approach, we have 

implemented a simple system that solves as many problems 

with k-NN as possible. However, once the average response 

time goes over a certain time threshold, it starts to use Bayes 

until the average drops below the threshold, then switching 

back to k-NN. The final average should be close to the time 

threshold established. Such system, differently from the 

experimental one, has no criteria for choosing which device 

should be used. 
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Fig 7: Comparison between our system and a greedy one. 

The accuracy of this greedy system was measured using a 

time threshold equal to the average response time from the 

previous experiment at threshold 0.6 – e.g., for the Nursery 

and Yeast datasets, the time thresholds were 50ms and 1ms 

respectively. 

When compared to this greedy system, the accuracy obtained 

with the experimental one – with threshold=0.6 – was, on 

average, 2% higher, beating it in 8 out of 9 datasets. The gap 

was larger on datasets whose difference in accuracy between 

k-NN and Bayes was larger, such as Car Evaluation and Tic-

Tac-Toe. 

6. CONCLUSION AND FUTURE WORK 
This work introduced a hybrid decision-making method that 

operates with the help of adaptive techniques. The proposed 

system allows calibrating the trade-off between hit rate and 

response time by choosing an appropriate threshold.  

Additionally, it was shown that it is possible to achieve a hit 

rate close to the most accurate device’s own hit rate, although 

consuming just part of its original response time. 

One aspect to be explored further is the strategy to adopt 

when the information to be learnt conflicts with previously 

known stored ones – as described in section 4.1. Rather than 

just ignoring the new information or completely overwriting 

the older one, one possibility to be studied is the use of 

characteristic functions rather than indicators functions [20]. 

That would allow an instance to have multiple solutions with 

different degrees of strength. Rather than handling the crisp 

f(x) function, the learn function would pamper a membership 

function, making it more flexible to changes. 

Another aspect to be explored is the generalization of the 

hybrid approach shown in Fig 4 to an arbitrary number of 

devices, and checking which benefits a system would get 

when using multiple devices rather than just two. 
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