
International Journal of Computer Applications (0975 – 8887)

Volume 45– No.3, May 2012

38

Hybrid Decision-Making using Adaptive Technology

Rodrigo Suzuki Okada

Escola Politécnica
University of São Paulo

São Paulo, Brazil.

João José Neto
Escola Politécnica

University of São Paulo
São Paulo, Brazil.

ABSTRACT

This paper presents a hybrid approach to decision-making,

capable of calibrating a trade-off between accuracy and

response time by using multiple decision-making techniques

to reach a solution of a decision problem. Each device

employed by the decision-making system should also be able

to learn from solutions suggested by other devices. This can

be achieved by applying adaptive techniques, which make

possible to change each device’s behavior according to the

input received. This process happens autonomously, without

human interference.

General Terms

Decision Supporting Systems, adaptive technology, hybrid

systems.

Keywords

Decision-making, adaptive device, case-based reasoning,

Naive Bayes, k-Nearest Neighbors, decision table.

1. INTRODUCTION
Decision-making is a reactive process, in which an action

should be taken as a response to some external event, often

determined by combining a set of criteria – also known as

attributes [1]. Choosing the best alternative from a finite set of

possible scenarios is a matter of gauging the possibilities and

checking which ones are more attractive in a particular

condition – commonly referred to as instance.

Decision-making problems are often found in a wide variety

of fields, ranging from economics to medicine. Examples can

be easily found even in everyday life – such as the choice of

clothes according to the weather, or deciding what to cook for

lunch, according to one’s own preferences.

One way to evaluate the performance of a decision-making

method is by measuring its hit rate and the time needed to

reach a satisfactory decision. Typically, hit rate and speed

have an inverse relationship: spending more time analyzing a

problem tends to yield higher hit rates. Yet, if the error cost is

low, applying methods that sacrifice hit rate to achieve faster

decisions may be a better choice. This relationship is shown

in Fig 1.

Animals have shown to be able to perform a trade-off between

speed and accuracy in order to maximize their gains [2]. Most

of the computational decision-making methods, however, do

not calibrate this trade-off, since they always use the same

decision algorithm regardless of time or hit rate constraints.

The software architecture proposed in this paper represents a

contribution towards a decision-model capable of calibrating a

Speed-Accuracy Trade-off (SAT) by using different decision

making methods according to their hit rate and response time.

Fig 1: Typical relationship between speed and accuracy

for most decision tasks [2]. Easier tasks – illustrated by the

left curve – can be solved with high accuracy while

retaining low response times.

2. CONCEPTS

2.1 Decision Support System
The concept of Decision Support System first appeared in the

1970s as a computational artifact that aids decisional tasks [3],

being originally employed by business organizations to

achieve better strategic decisions.

Although there is no definitive model, most decision support

systems combine a knowledge-based system with a decision

model and a user interface, allowing the decision-maker to

quickly compile useful information out of raw data [4].

Learning through training data is a classical method to build

the system’s initial knowledge. Typically, learning is divided

into two categories: eager learning and lazy learning: eager

methods create a condensed representation during a learning

phase by inferring abstractions from the training data, while

lazy ones avoid abstracting until needed at runtime [5].

The structure of decision support systems has significantly

evolved since its original concept, mostly because of the

advent of computer intelligence, which increased their

capabilities even further [3][6]. Their scope has also

broadened, due to their inclusion in a wider range of fields,

such as medical diagnosis and management.

One fundamental problem faced by decision support systems

is maintainability: in order to work properly, their decision

model and corresponding knowledge must be kept updated to

minimize their miss rate. Particularly, concepts may change

over time – an effect known as concept-drift [7]. If ignored,

the system’s accuracy will degenerate as concepts change.

Classical decision models, however, are immutable and need

to be completely rebuilt from scratch to keep them up to date.

Evolutionary and adaptive systems – capable of acquiring new

information without rebuilding the decision model from

scratch and adapting themselves to their environment – are

taken as a next step for decision support systems [8].

Response Time

A
cc

u
ra

cy

Low High

High

Low A
cc

u
ra

cy
 C

o
st

Speed

Gain

A
cc

u
ra

cy
 G

ai
n

 Speed Cost

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.3, May 2012

39

2.2 Rule-Driven Adaptive Devices
An adaptive device can be described as the union of usual

devices – such as finite automata, grammars, decision trees

and decision tables – and an adaptive mechanism, capable of

changing the device’s behavior at runtime [9]. The device is

often referred to as a subjacent device, while the action that

modifies the device’s behavior is called adaptive action.

As an example, the addition of an adaptive layer to a finite

automaton may enable it to add and remove transitions, and

generate new states as well. In fact, such automata are Turing-

equivalent [10].

Fig 2: Structure for an adaptive device, composed of a

rule-driven device and an external adaptive mechanism.

According to Neto [11], a rule-driven device (ND) is

described as ND = (C, NR, S, c0, A, NA), where:

 C is a set of possible configurations for ND, while

c0∈C is the initial configuration.

 S is a finite set of possible events that are valid

input stimuli for ND. The null element ε is valid as

well.

 A ⊆ C is the subset of accepting configurations.

 NA is a finite set of all possible symbols to be

output by ND in response to the application of the

rules in NR. Such output symbol may be interpreted

as a procedure call, by mapping it into an action to

be executed upon the application of a rule

 NR ⊆ C ×S ×C ×NA is a set of rules defining ND.

The application of a rule r ∈ NR, denoted as r = (ci,

s, cj, z), changes the current configuration ci into cj

in response to a stimulus s ∈ S. As response, it

outputs z ∈ NA.

An adaptive device AD, then, is described as ADk = (NDk,

AM), where:

 k ≥ 0 is a counter that is incremented by 1 whenever

an adaptive action is taken.

 NDk is the subjacent device after the execution of k

adaptive actions. By this definition, ND0 is the

initial subjacent device. ADk evolves to ADk+1 by

executing an adaptive action. The evolved device

will have a new set of rules NRk+1, consisting of an

edited version of the previous NRk,

 AM is the adaptive mechanism responsible for

executing adaptive actions.

Expanding the previous definition into ADk = (Ck, ARk, S, ck,

A, NA, BA, AA):

 Ck is a set of possible configurations for ADk, while

ck∈Ck is the initial configuration at step k. At k=0,

this set is the same as the one defined for ND.

 S, A and NA retain their former meanings.

 BA and AA are sets of adaptive actions that should

happen, respectively, before and after applying a

rule. Both should contain the null action, which

does not trigger any adaptive action (ε ∈ BA ∩ AA).

 The set of rules of an adaptive device has been

renamed to ARk ⊆ BA×C ×S ×C ×NA ×AA. Adaptive

rules have the form ark = (ba, ci, s, cj, z, aa). When

applied, this rule initially executes the adaptive

action ba ∈ BA. Then, the subjacent non-adaptive

rule in form of (ci, s, cj, z) is executed. Finally, it

executes the adaptive action aa ∈ AA. In the case

that aa = ba = ε, the rule is essentially non-adaptive.

Algorithm 1 sketches the overall operation of an adaptive

device AD. It is, basically, a loop that iterates over the

elements of an input stream w, extracting its input symbols

scurrent, one at a time, and using each of them to find and

execute a set of matching rules CRT. Matching rules are ones

whose configuration ci and input symbol s match the device’s

current configuration ccurrent and the input symbol scurrent

respectively. This search scheme is outlined in Algorithm 2.

Formally, the set of matching rules is defined as CRT = {ar ∈

ART | ar = (ba, ci, s, cj, z, aa), ci = ccurrent, s ∈ {scurrent, ε}; ci,cj ∈

CT; ba ∈ BA; aa ∈ AA, z ∈ NA}.

Algorithm 1 runRuleDrivenDevice(AD, w, out)

 Input
AD: Device to be executed

w: Input stream of symbols s ∈ S

Output

out: Output stream of symbols z ∈NA

1. set AD.ccurrent c0

2. for each scurrent in w do

3. consumed false

4. while not consumed do

5. CRT searchRules(AD, scurrent)

6. if CRT = ∅ then

7. reject w

8. else if | CRT | = 1 then

9. ar single element of CRT

10. consumed executeD(AD, ar, out)

11. else

12. consumed executeND(AD, CRT , out)

13. end if

14. end while

15. end for

16. if AD.ccurrent ∈ AD.A then

17. accept w

18. else

19. reject w

20. end if

The execution of CRT depends on its own cardinality. If the

search yields only one rule (i.e., |CRT | = 1), it can be

deterministically applied, consuming the input symbol read,

writing z to the output stream and updating the device’s

current configuration to cj. If the rule specifies non-empty

adaptive actions ba and/or aa, they should be executed as

well. However, the execution is aborted if ba eliminates the

current rule from ARk – in this case, the device should find

another set of matching rules to execute. This operation is

described in Algorithm 3.

Core

Adaptive

Layer

Device

Adaptive

Device

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.3, May 2012

40

Algorithm 2 searchRules(AD, s)

 Input
AD: Device to be executed

s: Symbol s ∈ S read from the input stream

Output

Set of matching rules CRT

1. CRT { }

2. for each ar = (ba, ci, s, cj, z, aa) ∈ AD.ART do

3. if (ar.ci, ar.s,) = (AD.ccurrent , s) then

4. add ar to CRT

5. end if

6. end for

7. return CRT

Algorithm 3 executeD(AD, ar, out)

 Input
AD: Rule-Driven Adaptive Device to be executed

ar: Rule to be executed

Output

out: Output stream of symbols z ∈ NA

1. if ar.ba ≠ ε then

2. adapt(AD, ar.ba)

3. end if

4. if ar AD ∉AR then

5. return false

6. end if

7. AD.ccurrent ar.cj

8. append ar.z to out

9. if ar.aa ≠ ε then

10. adapt(AD, ar.aa)

11. end if

12. return true

However, if |CRT | = m ≥ 1, multiple rules are equally allowed

to be executed. In this case, they should be non-

deterministically applied to the current configuration – which

is usually simulated in non-parallel environments by using

some backtracking strategy. This featured is performed by the

executeND function in Algorithm 1.

Note: the execution of non-deterministic scenarios is voided in

this work, by keeping it purely deterministic. Case studies for

particular adaptive devices, such as non-determinism in

decision-trees, have been addressed in previous works

[12][13].

Finally, if |CRT | = 0, then no rule can be applied to the current

configuration using s. In this case, the input stream w is

rejected.

Once all symbols have been consumed, the input stream w is

accepted if the ending configuration is member of A – i.e.,

ccurrent ∈ A – otherwise, w is rejected

2.3 Extended Adaptive Decision Tables
Decision table is a popular rule-driven device employed to

solve decision-making problems. Typically, decision tables

make use of a set of rules represented by a condition and a

corresponding action to be taken when the condition applies

to the problem being solved. Conditions usually have binary

entries as valid values, although it is possible to extend this

concept to an arbitrary number of discrete values – tables

employing this kind of condition are known as extended entry

decision-tables.

Classical decision tables have static rules, which are all

predefined and cannot change throughout the device’s

operation. Moreover, the set of rules itself is immutable, and

do not support the inclusion or exclusion of rules.

Adaptive Decision Tables (ADT), according to the definition

given in Section 2.2, join a classical decision table and an

adaptive layer, which contains a set of actions to be taken

before and after a rule is applied. Each action is formed by a

list of elementary actions of type query, insertion and

exclusion, responsible for each basic change to be made to the

set of rules.

Fig 3: Scheme of an Extended Adaptive Decision Table

and its auxiliary method, as seen in [14].

Tchemra has further expanded ADT’s adaptive capability by

adding auxiliary functions that are called when no matching

rules can be found [14]. This way, rather the rejecting an

input, the device will try to create a new matching rule for the

current situation, allowing it to proceed. The resulting

formalism has been named Extended Adaptive Decision Table

(EADT).

Creation of new rules is achieved by means of a second

device – named auxiliary method – to return a solution, which

is incrementally added to the set of existing rules. One

possibility studied in [14] was Analytic Hierarchy Process

(AHP), which solves the problem by comparing alternatives

through a score matrix, which describes the performance of all

alternatives according to each criterion.

It’s worth noting that EADT, although focused on the decision

table itself, represents a hybrid approach to decision making

by using different kinds of devices to solve a decision

problem. This constitutes an important contribution, since this

scheme allows incremental learning, which keeps the primary

device – the decision table – updated with the help of another

device to solve problems out of scope of the primary one.

This concept can be extended to the general adaptive device

by replacing line 7 of Algorithm 1 with the following pseudo-

code:

…

7. adaptFM(device, s)

...

Call Auxiliary Method

Decision Table

Adaptive

Functions

Auxiliary

Functions

AHP (Analytic Hierarchy

Process)

Decision Problem

Solution

No rule found Execute adaptive

function

Adapt

rules

Adaptive

Layer

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.3, May 2012

41

where adaptFM(device, s) is the auxiliary function that should

call the secondary device, and create a new rule based on its

response.

3. HYBRID DECISION-MAKING

3.1 Definitions
According to the definition used in most Instance-Based

Learning methods, the term instance means a set a set of

values, which describes the problem to be solved. Each value

represents the state of a single criterion to be measured.

Internally, each instance k is represented as an m-dimensional

vector xk, where the i-th component represents the value of the

i-th criterion.

 kmkikkk xxxxx ,...,,...,, 21 (1)

For continuous criteria, values must be numeric, while

nominal categories make use of literal names as values – out

of a finite set of allowed names.

Then, using this definition, a decision-making device must be

able to analyze an input instance xk and solve it by outputting

an alternative yk.

 kk xsolvey (2)

3.2 Proposition
Based on the premise that perceptually easier tasks can be

quickly solved without having to sacrifice significant amounts

of accuracy, a hybrid decision-making environment may be

able to reduce time consumption by assigning easier problems

to faster devices – which are supposed to be less accurate –

while using slower devices to solve harder problems.

Fig 4: Generalization of EADT’s hybrid decision-making

process to any kind of devices.

For this purpose, EADT’s hybrid approach is extended to

make it possible to use other kinds of devices rather than the

original ones (decision tables and AHP). Those devices

should be sorted by their response time – the faster ones

should be placed first. When solving a problem, this hybrid

environment assigns it to the first device in the queue – the

faster one. If the device is able to solve it, the decision should

be outputted, otherwise, the problem is assigned to the

auxiliary device. Once a decision is made, it is propagated to

both devices, which, in turn, can incorporate the new

knowledge to assist future decisions. This process is shown in

Fig 4.

For rule-driven devices such as decision tables and decision

trees, solving a problem means that there is some rule that

applies to it. However, methods such as Naive Bayes and k-

Nearest Neighbor are based on probabilities rather than rules,

making it hard to identify whether a proper solution has been

achieved or not.

For probabilistic-based methods, one possible way to

determine whether a solution is acceptable or not is by

analyzing the class distribution – i.e., the probability of each

alternative being a solution – and accept the most probable

alternative i, as long its probability pi is over a certain

threshold.

 threshpppaccept n ,...,,max 21
 (3)

Taking condition (3), the decision-making device’s operation

is described in Algorithm 4, where p is the class distribution,

pi is the highest probability found, and ai is its corresponding

alternative. The first call to this function must have k=0.

Algorithm 4 makeDecision(D, k, x, y, t, P)

 Input
D: List of devices to be executed

k: Index of the device to be executed now

x: Input instance

t: Threshold for accepting the solution

Output

y: Output alternative

P: Class probability for each device

1. p D[k].getProbabilities(x)

2. append p to P

3. pi max(p)

4. if (pi > t) then

5. y ai

6. else if (k+1 < D.length) then

7. makeDecision(D, k+1, x, y, t, P)

8. else

9. makeDecisionLast(D, x, y, P)

10. end if

Algorithm 5 makeDecisionLast(D, x, y, P)

 Input
D: List of devices to be executed

x: Input instance

Output

y: Output alternative

P: Class probability for each device

1. p D[D.lastElement].getProbabilities(x)

2. i index of max(p)

3. y ai

Additionally, the function getProbabilities should be

implemented according to the devices being used. Lines 3 and

4 show the condition represented by equation (3).

A strategy must be chosen when no device can solve the

problem. The simplest one is to just return a void solution. If

the problem demands a non-void solution, arbitrary actions

could be chosen, such as returning the latest device’s decision,

or choosing by vote among all devices. That action is

performed by the makeDecisionLast function at line 9. As an

example, in order to return the latest device’s decision, this

2. Pass the problem to

next device if the current

one is unable to solve it

Primary Device

Adaptive Layer

Decision Problem

Solution

Auxiliary Device

1. Problem is sent to the

first device

4. Solution is propagated to the devices, so

they can learn from the others

3. One of the

devices outputs

a decision

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.3, May 2012

42

function can be implemented by Algorithm 5. This is the

strategy applied in this work.

Finally, the decision outputted by Algorithm 4 should be

propagated to all devices, allowing them to learn one from

another. This is illustrated in Algorithm 6. The learn function

is device-dependent, and should be implemented accordingly.

Algorithm 6 learningPhase(D, x, y)

 Input
D: List of devices to be executed

x: Input instance

y: Solution given by makeDecision()

1. for each d in D do

2. d.learn(x, y)

3. end for

4. EXPERIMENTAL SYSTEM
The presented decision-making environment was tested by

creating a sample system, composed of two decision-making

devices, the first one being a Naive Bayes classifier– i.e., the

fastest one. Problems whose solution do not satisfy equation

(3) will, then, be solved by the second device, a k-Nearest

Neighbor classifier – which, being instance-based, is

considerably slower, especially for large datasets.

Their integration of those classifiers within the proposed

decision-making environment is described below.

4.1 Naive Bayes
Naive Bayes is a simple classifier which assumes that each

criterion have an independent contribution to the probability

of each possible solution to a problem. According to the

Bayes' Theorem, the probability of an instance xa to have

alternative c as solution is given by:

m

i

ai

a

a cxpcp
xZ

xcp
1

|
1

| (4)

where p(c) is a priori probability of c being a solution to any

instance, while p(xai|c) is the probability of the i-th criterion

having xai as value when c is a correct solution. This equation

should apply for each alternative – the resulting set of

probabilities should be returned by the getProbabilities

function in Algorithm 5.

The value Z refers to the evidence, which normalizes the

probability:

n

j

m

i

jaija cxpcpxZ
1 1

| (5)

The p(c) value can be estimated by checking the probability of

alternative c being a solution to any instance. Then:

n

j

s

i

ji

s

i

i

cxfI

cxfI

cp

1 1

1
(6)

where I(z) is the indicator function, returning 1 if the

condition z is true, otherwise, returning 0. The function f(x)

returns the alternative of the instance x – this information is

usually stored in a database. As for p(xai|c), it can be estimated

in a similar fashion, by counting how many times the value xai

appears when alternative c is a solution:

s

j

j

s

j

aijij

ai

cxfI

xxIcxfI

cxp

1

1
|

(7)

However, in order to work properly, the instances’ values

must be discrete, while previous definitions state that values

may be continuous, numeric values. This is usually solved by

discretizing numeric values into discrete ones using some

particular scheme. For this work, we’ll use Equal Width

Discretization with 100 steps of equal width, as defined in

[15].

Finally, it’s worth noting that, although the previous equations

depend on an iteration of all instances, their calculation can be

done more efficiently by storing the values for the sums of:

s

j

j cxfIcs
1

 (8)

and:

s

j

jij vxIcxfIvics
1

., (9)

for each alternative c, criterion i and a possible value v.

During the learning stage described in Algorithm 6, Bayes can

incorporate new knowledge by storing a new instance xh and

its corresponding alternative y=f(xh) in a database, and then,

updating sums (8) and (9).

This process, however, assumes that f(xh) has not been set

beforehand. A strategy should be adopted if the device

receives an instance with a previously set alternative:

 One possibility is to ignore the new information

altogether, keeping the current f(xh);

 Another one is to overwrite the previous alternative.

The sums should be updated by removing the

previous contributions of f(xh) from the sums and

adding the new ones.

This problem is further explored in sections 5 and 6.

4.2 k-Nearest Neighbor
The k-Nearest Neighbor – commonly referred as k-NN – is a

popular instance-based classifier that estimates a classification

of a new instance by searching for similar instances, and uses

the k-nearest ones to vote the new instance’s solution. The

original k-NN is defined as in [16]:

k

i

i
ccc

new cxfIy
n '1}...{

)(argmax
1

 (10)

where f(xi) is the alternative of a nearby instance xi. A

common extension to this definition is the addition of a

weighting function based on the similarity between the new

instance and the nearest ones – closer instances should receive

higher weight:

),()(argmax
1}...{ 1

inew

k

i

i
ccc

new xxwcxfIy
n

 (11)

where w(xnew, xi) is the weighting function. Then, the

probability of alternative c being a solution to xa is:

 aat

k

i

ia xZxxwcxfIxcp),()(|
1

 (12)

where Z(xa) is the normalization factor:

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.3, May 2012

43

n

j

at

k

i

jia xxwcxfIxZ
1 1

),()((13)

For the weighting function, one possibility is to use Shepard’s

method [17]:

p

ba

ba
xxd

xxw
),(

1
),((14)

where P is a positive scale value – in this work, P=2 – while

d(xa, xb) is a distance function that calculates the difference

between two instances by checking the individual differences

between their criteria’s values – the difference in the j-th

criterion is denoted by dj(xa, xb), which should return values in

the 0…1 range for normalization purposes.

m

xxd

xxd

m

j

j

1

2

21

21

),(

),(
(15)

For numeric criteria, the difference is the usual Euclidean one,

although normalized by dj max, which is the maximum

difference possible for such criterion.

max2121),(jjjj dxxxxd (16)

For nominal, discrete values, however, the concept of distance

becomes less clear. A simple, fast solution is the Overlap

Metric (OM) [18]:

),(),(2121 jjj xxxxd (17)

where δ(x1j, x2j) is a function that returns 0 if x1j = x2j,

returning 1 otherwise. Another option is the Value Difference

Metric (VDM) [18], which uses additional information about

how the values are related to the alternatives. Its definition is:

C

c

jjj xcPxcPxxd
1

2121)|()|(),((18)

where P(c | xij) is the probability of the instance xi having c as

alternative, given that its j-th criterion has the value xij. This is

estimated by counting how many times each alternative

appears when an instance has the xij value when compared to

the others. Albeit slower, VDM allows for an overall better hit

rate.

For the learning phase, since k-NN does not store any

abstraction out of the raw data, just storing the values x and

their corresponding f(x) in a typical database is enough. The

need of a strategy for cases of overwriting older data –

discussed at the end of section 4.1 – still stands, though.

Finally, it’s important to note that the k-NN’s response time

greatly depends on the search method – this study makes use

of a linear search. For practical purposes, however, making

use of a spatial indexed search is preferable.

5. RESULTS

5.1 Speed-Accuracy Trade-Off
The experimental system was tested through datasets provided

by the UCI Machine Learning Repository [19]. In order to

check how the threshold in (3) affects the hit rate and

response time, each dataset has been tested with thresholds

ranging from 0.3 to 1.0, in steps of 0.02. At each step, 50

consecutives tests have been run, using 70% of the data for

training, while using the remaining 30% as input to measure

the hit rate. If neither devices are able to return an alternative

that satisfies (3), the last device’s decision – the k-NN`s – will

prevail, as described in Algorithm 6.

The k-NN algorithm has been set to use a fixed k=10, while

using Shepard`s method to calculates weights, using P=2.

Differences between numeric values were calculated using

(16), while using VDM for nominal ones, as shown in (18).

For the learning phase, there’s the need of some strategy to

apply when the learn function receives an already known

instance, but initialized with another alternative – as explained

in section 4.1. Assuming that the initial training data is more

likely to be error-free, the first strategy will be applied, so

new solutions – more prone to errors – will not overwrite

older ones.

While slower, k-NN attains higher hit rates than Bayes on

most of the datasets tested – as shown in Fig 5. On average,

the difference was 7%. Statlog is the only dataset whose k-

NN’s hit rate was lower than Bayes’ (a difference of 0.65%).

The impact of the threshold on the hit rate and response time

is displayed in Fig 6. The response time, as expected,

increases as the threshold increases, since this means more

problems are being solved by k-NN. The response time’s

order of magnitude is heavily influenced by the dataset’s size,

since k-NN becomes slower as the dataset grows bigger –

Nursery has almost 13000 instances, while the Blood

Transfusion has only 748.

Note: some datasets show no changes until threshold is over

0.5. That happens on datasets with just two alternatives – in

this case, the most likely alternative’s score is never below

0.5.

0%

20%

40%

60%

80%

100%
Yeast

Tic-Tac-Toe

Statlog

Pima
Indians

Diabetes

Page
Blocks

Nursery

Credit

Car
Evaluation

Blood
Transfusion

Hit Rate / Dataset

Bayes

k-NN

Fig 5: Hit rate for 9 UCI Datasets, using Naive-Bayes and

k-Nearest Neighbor.

However, the behavior of the hit rate varies among datasets.

Generally, the hit rate increases rather proportionally to the

response time, making it possible to adjust the trade-off

between speed and hit rate by moving the threshold – e.g., if it

was required to solve the Pima Indians Diabetes in an average

of 0.2ms per problem, choosing a threshold of 0.7 would

maximize the hit rate under this constraint.

Additionally, the hit rate for certain datasets – such as Car

Evaluation – saturates before reaching the maximum

threshold value. This means that it is possible to solve them

optimally by using the saturation point as a threshold – the hit

rate would still be almost as high as k-NN’s, although with a

lower response time.

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.3, May 2012

44

Fig 6: Effects of the threshold on the hit rate and the response time.

65%

67%

69%

71%

73%

75%

0

0,1

0,2

0,3

0,4

0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

H
it

 R
a

te

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

)

Threshold

Blood Transfusion

60%

70%

80%

90%

100%

0,00

2,00

4,00

6,00

8,00

10,00

12,00

0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

H
it

 R
a

te

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

)

Threshold

Car Evaluation

80%

82%

84%

86%

0,00

2,00

4,00

6,00

8,00

0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

H
it

 R
a

te

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

)

Threshold

Credit

90%

92%

94%

96%

98%

100%

0

50

100

150

0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

H
it

 R
a

te

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

)

Threshold

Nursery

90%

92%

94%

96%

98%

100%

0,00

2,00

4,00

6,00

8,00

0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

H
ir

 R
a

te

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

)

Threshold

Page Blocks

65%

67%

69%

71%

73%

75%

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

H
it

 R
a

te

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

)

Threshold

Pima Indians Diabetes

60%

70%

80%

90%

100%

0,00

5,00

10,00

15,00

20,00

25,00

0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

H
it

 R
a

te

R
e

p
s

o
n

s
e

 T
im

e
 (

m
s

)

Threshold

Statlog

60%

70%

80%

90%

100%

0,00

1,00

2,00

3,00

4,00

5,00

6,00

0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

H
it

 R
a

te

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

)

Threshold

Tic-Tac-Toe

50%

52%

54%

56%

58%

60%

0,00

0,50

1,00

1,50

0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

H
it

 R
a

te

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

)

Threshold

Yeast

Response Time (ms) Accuracy

Finally, since k-NN had a worse performance than Bayes for

the Statlog dataset, there was no advantage in using this

hybrid approach, since shifting more problems to k-NN

actually made the system less accurate and more time-

consuming.

5.2 Comparison to Greedy Solving
In order to check the gains of using the experimental hybrid

system when compared to a greedy approach, we have

implemented a simple system that solves as many problems

with k-NN as possible. However, once the average response

time goes over a certain time threshold, it starts to use Bayes

until the average drops below the threshold, then switching

back to k-NN. The final average should be close to the time

threshold established. Such system, differently from the

experimental one, has no criteria for choosing which device

should be used.

50% 60% 70% 80% 90% 100%

Blood Transfusion

Car Evaluation

Credit

Nuersery

Page Blocks

Pima Indians Diabetes

Statlog

Tic-Tac-Toe

Yeast

Accuracy / Dataset

Greedy Hierarchical

Fig 7: Comparison between our system and a greedy one.

The accuracy of this greedy system was measured using a

time threshold equal to the average response time from the

previous experiment at threshold 0.6 – e.g., for the Nursery

and Yeast datasets, the time thresholds were 50ms and 1ms

respectively.

When compared to this greedy system, the accuracy obtained

with the experimental one – with threshold=0.6 – was, on

average, 2% higher, beating it in 8 out of 9 datasets. The gap

was larger on datasets whose difference in accuracy between

k-NN and Bayes was larger, such as Car Evaluation and Tic-

Tac-Toe.

6. CONCLUSION AND FUTURE WORK
This work introduced a hybrid decision-making method that

operates with the help of adaptive techniques. The proposed

system allows calibrating the trade-off between hit rate and

response time by choosing an appropriate threshold.

Additionally, it was shown that it is possible to achieve a hit

rate close to the most accurate device’s own hit rate, although

consuming just part of its original response time.

One aspect to be explored further is the strategy to adopt

when the information to be learnt conflicts with previously

known stored ones – as described in section 4.1. Rather than

just ignoring the new information or completely overwriting

the older one, one possibility to be studied is the use of

characteristic functions rather than indicators functions [20].

That would allow an instance to have multiple solutions with

different degrees of strength. Rather than handling the crisp

f(x) function, the learn function would pamper a membership

function, making it more flexible to changes.

Another aspect to be explored is the generalization of the

hybrid approach shown in Fig 4 to an arbitrary number of

devices, and checking which benefits a system would get

when using multiple devices rather than just two.

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.3, May 2012

45

7. REFERENCES
[1] Crozier, R. and Ranyard, R. 1997. Cognitive process

models and explanations of decision making. In Decision

Making, Cognitive Models and Explanations, 5-20.

[2] Chittka, L., Skorupski, P. and Raine, N. E. 2009. Speed-

Accuracy Tradeoffs in Animal Decision Making. Trends

in Ecology & Evolution, Vol.24, No.7, 400–407.

[3] Sol, H. G., Takkenberg, C. A. T. and Robbé, P. F. V.

1985. Expert Systems and Artificial Intelligence in

Decision Support Systems. In Proceedings of the Second

Mini Euroconference. 17-20.

[4] Sprague, R. H. and Carlson, E. D. 1982. Building

Effective Decision Support Systems. Englewood Cliffs:

Prentice Hall Professional Technical Reference. 30-32.

[5] Hendrickx, I. and Bosch, A. 2005. Hybrid Algorithms

with Instant-Based Classification. In Machine learning -

ECML 2005, 158-169.

[6] Bui, T. and Lee, J. 2003. An Agent-Based Framework

for Building Decision Support Systems. Decision

Support Systems, Vol.25, No.3, 225-237.

[7] Kuncheva, L. I. 2009. Using Control Charts for

Detecting Concept Change in Streaming Data. Technical

Report. Bangor University.

[8] Arnott, D. 2004. Decision Support Systems Evolution:

Framework, Case Study and Research Agenda. European

Journal of Information Systems, Vol.13, No.4, 247-259.

[9] Pistori, H. 2003. Tecnologia Adaptativa em Engenharia

de Computação: Estado da Arte e Aplicações. Doctoral

Thesis. EPUSP (in Portuguese).

[10] Rocha, R. L. A. and Neto, J. J. 2000. Autômato

adaptativo, limites e complexidade em comparação com

máquina de Turing. In Proceedings of the second

Congress of Logic Applied to Technology – LAPTEC

2000. 33-48 (in Portuguese).

[11] Neto, J. J. 2002. Adaptive Rule-Driven Devices -

General Formulation and Case Study. Lecture Notes in

Computer Science, Vol.2494. 466-470.

[12] Castro Jr., A. A., Neto, J. J. and Pistori, H. 2007.

Determinismo em Autômatos de Estados Finitos

Adaptativos. Revista IEEE América Latina, Vol.5, No.7,

515-521 (in Portuguese).

[13] Pistori, H., Neto, J. J. and Pereira, M. C. Adaptive Non-

Deterministic Decision Trees: General Formulation and

Case Study. INFOCOMP Journal of Computer Science,

2006, in press (in Portuguese).

[14] Tchemra, A. H. 2009. Tabela de Decisão Adaptativa na

Tomada de Decisão Multicritério. Doctoral Thesis.

EPUSP (in Portuguese).

[15] Yang, Y. and Webb, G. I. 2002. A Comparative Study of

Discretization Methods for Naive-Bayes Classifiers. In

Proceedings of PKAW 2002: The 2002 Pacific Rim

Knowledge Acquisition Workshop. 159-173.

[16] Liu, W. and Chawla, S. 2011. Class Confidence

Weighted kNN Algorithms for Imbalanced Data Sets. In

Proceedings of the 15th Pacific-Asia Conference on

Advances in Knowledge Discovery and Data Mining.

345-356.

[17] Shepard, D. 1968. A Two-Dimensional Interpolation

Function for Irregularly-Spaced Data. In Proceedings of

the 1968 ACM National Conference. 517-524.

[18] Li, C. and Li, H. 2010. A Survey of Distance Metrics for

Nominal Attributes. Journal of Software, Vol.5, No.11,

1262-1269.

[19] Frank, A. and Asuncion, A. 2010. UCI Machine

Learning Repository. Irvine, CA: University of

California, School of Information and Computer Science.

http://archive.ics.uci.edu/ml.

[20] Keller, J. M., Gray, M. R. and Givens, Jr., J. A. 1985. A

Fuzzy K-Nearest Neighbor Algorithm. IEEE

Transactions on Systems, Man, and Cybernetics, Vol.15,

No.4, 580-585.

