
International Journal of Computer Applications (0975 – 8887)

Volume 45– No.3, May 2012

29

An Algorithm to Count onto Functions

Rinku Kumar

M.M.UNIVERSITY
Mullana, Haryana

India

Rakesh Kamboj
M.M. University

Mullana, Haryana
India

Chetan Pahwa
M.M. University

Mullana, Haryana
India

ABSTRACT

This paper proposes an algorithm to derive a general formula

to count the total number of onto functions feasible from a set

A with cardinality n to a set B with cardinality m. Let f:A→B

is a function such that │A│=n and │B│=m, where A and B

are finite and non-empty sets, n and m are finite integer

values. To count the total number of onto functions feasible

till now we have to design all of the feasible mappings in an

onto manner, this paper will help in counting the same

without designing all possible mappings and will provide the

direct count on onto functions using the formula derived in it.

General Terms

Onto Function counting Algorithm.

Keywords
Function, Onto, Cardinality [3], Mappings, transformations,

Stirling number [6].

1. INTRODUCTION

The concept of a function is extremely important in

mathematics and computer science. For example, in discrete

mathematics functions are used in the definition of such

discrete structures as sequences and strings. Functions are also

used to represent how long it takes a computer to solve

problems of a given size. Many computer programs and

subroutines are designed to calculate values of functions.

In many instances we assign to each element of a set a

particular element of a second set For example, suppose that

each student in a discrete mathematics class is assigned a

letter grade from the set {A, B, C, D}, and suppose the grades

are A for ST1, B for ST2, C for ST3, A for ST4, C for ST5.

This assignment of grades is shown below:

 ST1 A

ST2 B

 ST3 C

 ST4 D

 ST5

Figure 1: Assignment of grades to students

Here

f(ST1)=A, f(ST2)=B, f(ST3)=C, f(ST4)=A, f(ST5)=C

Definition: Let A and B be two nonempty sets. A function f

from A to B is an assignment of exactly one element of B to

each element of A. We write f (a) = b if b is the unique

element of B assigned by the function f to the element a of A.

If f is a function from A to B, we write

f: A→B. In general f (a) =b, a A, b

Functions are sometimes called mappings or transformations

[2] also.

Figure 2: Function f maps A to B

There are number of functions feasible which can be applied

to different realistic situations based on the criteria used for

mapping the objects to other objects. Some of the types of

function mostly used in computing systems are into, onto,

one-one, bijective and the inverse functions. We are hereby

specifying a method to count all of the object mapping

available in an onto manner.

2. RELATED WORK
Onto functions are used mostly in situations where we have to

map all of the available objects of a set to objects in other

sets, like in job assignment to processors we have to assign

each and every job to one of the processor if the number of

processors is less than the number of jobs available then no

assignment is feasible in an onto manner since we have to

assign more than one jobs to single processor to allocate

processor to each and every job but a single processor can

execute one job at a time, so we must have number of

processors to be at least equal to the number of jobs.

2.1 Onto Function
Here every element of set B is assigned to at least one of the

element of set A.

A function f from A to B is called onto, or surjective [2], if

and only if for every element b B there is an element a A

with f (a) = b. A function f is called a surjection if it is onto.

Let A and B are two finite sets with cardinality n and 2

respectively i.e. │A│=n and │ B │=2, where n is a finite

integer number and f be a function from set A to B i.e.

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.3, May 2012

30

Suppose TNOF be the total number of onto functions feasible

from A to B, so our aim is to calculate the integer value

TNOF.

For function f: A→B to be onto, the inequality │A│≥2 must

hold, since no onto function can be designed from a set with

cardinality less than 2 where 2 is the cardinality of set B.

Case 1: if │A│=│B│=2

 A= {a, b} and B= {1, 2)

Following onto functions can be designed

Figure 3: onto function

 Figure 4: onto function

Besides these two functions any other onto functions can’t

be designed on the given sets, so for case 1

TNOF=2

Case2: if │A│=3 and │B│=2

Let A= {a, b, c} B= {1, 2}

Here onto functions can be designed as given below:

 Figure 5: onto function

 Figure 6: onto function

 Figure 7: onto function

 Figure 8: onto function

 Figure 9: onto function

Figure 10: onto function

So, TNOF=6.

similarly, we can find onto functions feasible between two

finite and non-empty sets by designing all of the feasible

mappings in an onto manner defined above, this method is

simple enough if the values of n and m are small what if

values of n and m are much large, then it is not feasible to

map all such mappings by hand, so we propose an algorithm

to find all such feasible functions i.e. to count total number of

onto functions feasible.

a

b

b

 1

 2

 2

a

b

b

 1

 2

 2

 1

 2

 2

a

b

c

b

c

 1

 2

 2

a

b

c

b

c

 1

 2

 2

a

b

c

c

 1

 2

 2

a

b

c

c

 1

 2

 2

a

b

c

c

 1

 2

 2

a

b

c

c

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.3, May 2012

31

3. PROPOSED ALGORITHM
Because it is not feasible all the time to perform all such

mappings and count them to calculate the count for feasible

onto functions, following algorithm is proposed to count

TNOF.

3.1 ALGORITHM STEPS

Let such that │A│=n and │B│=m

Check whether

1. , if yes then no onto function can be

designed.

2. Elseif

 then onto function is feasible and

TNOF is calculated as

 1st element of A can be mapped to m

elements of B

 2nd element of A can be mapped to m-1

elements of B

 3rd element of A can be mapped to m-3

elements of B, and so on

So total number of feasible mappings is

 …........... (1)

Hence , so, onto functions can be

designed form A to B

3. Else if

 , then we have to map n elements of A to m

elements of B,

 Create partition of set A into m blocks,

and consider each block as a single

element in A.

 Now the problem will be simple to map m

blocks of A to m elements of B such that

all elements in a single block will be

assigned the same element from set B

 So TNOF= …………………………................. (2)

Where P is the no of ways of partitioning (i.e. total number of

feasible partitioning) of A into m non-empty blocks.

P can be calculated by simply using Stirling number of second

kind, i.e. Number of ways of partitioning of A with n elements

into m nonempty blocks are given by

 ,

Where S is Stirling number of second kind such that

… (3)

4. So total number of onto functions are:

 (4)

Hence the value of TNOF will give the count for all feasible

onto functions from A to B.

4. RESULT DISCUSSION
Here we show some of the calculated values form the

proposed algorithm and compare them with the actual feasible

mappings.

Let

 Such that │A│=n and │B│=m such that

Case 1: let n=m=2

Feasible mappings or onto functions are shown in figure3 and

figure 4, i.e. TNOF=2

Now using equation (4) for above used values of n and m, we

have

So the result matches with actual mappings.

Note: Since if n=m then 2nd part of calculation i.e. =1,

so,

Case 2: if n>m,

 Let n=3, m=2, form actual mapping created in section 2 and

we have TNOF=6. Now using equation 4 we have :

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.3, May 2012

32

Similarly Let n=4 m=3, we have

So using the above algorithm we can easily find the total

number of onto functions from A to B, without performing

actual mappings between these two sets. TNOF will infer the

actual mappings feasible in onto manner i.e. total number of

onto functions feasible. Based on the above algorithm we are

hereby giving TNOF values for some values of n and m.

Table 1: TNOF values for function, such that

│A│=n and │B│=m

This proposed algorithm works well for finite and not null

Values of n and m, also the results are verified with actual

Mappings and their count. Now for any combination of n and

m we can easily state that how many onto functions are

feasible from A to B.

5. CONCLUSION
This paper proposed an algorithm to count the total number of

onto functions feasible form a set A with n elements to a set B

with m elements. So now we do not have to perform all

mappings and then count them, simply put the values for n

and m in equation 4 and we will get the count required. The

proposed algorithm is valid for all finite and non-empty

values of n and m, this can be used in any scenario of

association of objects.

6. REFERENCES
[1] Rinku Kumar, Rakesh Kamboj, Chetan Pahwa

Functions Feasibility Analysis: Based on Cardinality of

Sets”, volume 2, issue 3(Mar. 2012), IJARCSSE.

[2] K. Rosen, Discrete Mathematics and its Applications

(6th ed), New York: McGraw-Hill, 2007.

[3] L. Gerstein, Discrete Mathematics and Algebraic

Structures, New York: Freeman and Co., 1987.

[4] C L Liu, D P Mohapatra, Elements of Discrete

Mathematics, TMH, 2008.

[5] Richard Johnsonbaugh, Discrete Mathematics, Prentice

Hall, 2008

[6] Ronald L. Graham, Donald E. Knuth, Oren Patashnik

(1988) Concrete Mathematics, Addison–Wesley,

Reading MA. ISBN 0-201-14236-8, p. 244

m

n

1 2 3 4 5

1 1 0 0 0 0

2 1 2 0 0 0

3 1 6 6 0 0

4 1 14 36 24 0

5 1 30 150 240 120

http://en.wikipedia.org/wiki/Concrete_Mathematics
http://en.wikipedia.org/wiki/Special:BookSources/0201142368

