
International Journal of Computer Applications (0975 – 8887) 

Volume 45– No.3, May 2012 

29 

An Algorithm to Count onto Functions 

 
Rinku Kumar 

M.M.UNIVERSITY 
Mullana, Haryana 

India 

Rakesh Kamboj 
M.M. University 

Mullana, Haryana 
India 

Chetan Pahwa 
M.M. University 

Mullana, Haryana 
India 

 

 

 

ABSTRACT 

This paper proposes an algorithm to derive a general formula 

to count the total number of onto functions feasible from a set 

A with cardinality n to a set B with cardinality m. Let f:A→B 

is a function such that │A│=n and │B│=m, where A and B 

are finite and non-empty sets,  n and m are finite integer 

values. To count the total number of onto functions feasible 

till now we have to design all of the feasible mappings in an 

onto manner, this paper will help in counting the same 

without designing all possible mappings and will provide the 

direct count on onto functions using the formula derived in it. 

General Terms 

Onto Function counting Algorithm. 

Keywords 
Function, Onto, Cardinality [3], Mappings, transformations, 

Stirling number [6]. 

1. INTRODUCTION 

The concept of a function is extremely important in 

mathematics and computer science. For example, in discrete 

mathematics functions are used in the definition of such 

discrete structures as sequences and strings. Functions are also 

used to represent how long it takes a computer to solve 

problems of a given size. Many computer programs and 

subroutines are designed to calculate values of functions.  

In many instances we assign to each element of a set a 

particular element of a second set For example, suppose that 

each student in a discrete mathematics class is assigned a 

letter grade from the set {A, B, C, D}, and suppose the grades 

are A for ST1, B for ST2, C for ST3, A for ST4, C for ST5. 

This assignment of grades is shown below: 

          

   ST1          A 

ST2            B 

     ST3          C 

 ST4          D 

 ST5 

  

Figure 1: Assignment of grades to students 

Here  

f(ST1)=A, f(ST2)=B, f(ST3)=C, f(ST4)=A, f(ST5)=C 

Definition: Let A and B be two nonempty sets. A function f 

from A to B is an assignment of exactly one element of B to 

each element of A. We write f (a) = b if b is the unique 

element of B assigned by the function f to the element a of A. 

If f is a function from A to B, we write 

f: A→B. In general f (a) =b,  a A, b  

Functions are sometimes called mappings or transformations 

[2] also. 

  

Figure 2: Function f maps A to B 

There are number of functions feasible which can be applied 

to different realistic situations based on the criteria used for 

mapping the objects to other objects. Some of the types of 

function mostly used in computing systems are into, onto, 

one-one, bijective and the inverse functions. We are hereby 

specifying a method to count all of the object mapping 

available in an onto manner. 

2. RELATED WORK 
Onto functions are used mostly in situations where we have to 

map all of the  available objects of a set to objects in other 

sets, like in job assignment to processors we have to assign 

each and every job to one of the processor if the number of 

processors is less than the number of jobs available then no 

assignment is feasible in an onto manner since we have to 

assign more than one jobs to single processor to allocate 

processor to each and every job but a single processor can 

execute one job at a time,  so we must have number of 

processors  to be at least equal to the number of jobs. 

2.1 Onto Function 
Here every element of set B is assigned to at least one of the 

element of set A. 

A function f from A to B is called onto, or surjective [2], if 

and only if for every element b  B there is an element a  A 

with f (a) = b. A function f is called a surjection if it is onto. 

Let A and B are two finite sets with cardinality n and 2 

respectively i.e. │A│=n and │ B │=2, where n is a finite 

integer number and f be a function from set A to B i.e. 
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Suppose TNOF be the total number of onto functions feasible 

from A to B, so our aim is to calculate the integer value 

TNOF. 

 

For function f: A→B to be onto, the inequality │A│≥2 must 

hold, since no onto function can be designed from a set with 

cardinality less than 2 where 2 is the cardinality of set B. 

 

Case 1: if │A│=│B│=2 

 A= {a, b} and B= {1, 2) 

Following onto functions can be designed 

 

 

 

 

 
 

 

 

 

Figure 3: onto function 

 

 

 

 

 

 

  Figure 4: onto function 

Besides these two functions any other onto functions can’t 

be designed on the given sets, so for case 1  

 

TNOF=2 

 

Case2: if │A│=3 and │B│=2 

Let A= {a, b, c} B= {1, 2} 

Here onto functions can be designed as given below: 

 

 

 

 

 

 

   

  Figure 5: onto function 

 

 

 

 

 

 

   

  Figure 6: onto function 

 

 

 

 

 

 

   

  Figure 7: onto function 

 

 

 

 

 

 

   

 

  Figure 8: onto function 

 

 

 

 

 

   

  Figure 9: onto function 

 

 

 

 

 

   

 

Figure 10: onto function 

 

So, TNOF=6. 

 

similarly, we can find onto functions feasible between two 

finite and non-empty sets by designing all of the feasible 

mappings in an onto manner defined above, this method is 

simple enough if the values of n and m are small what if 

values of n and m are much large, then it is not feasible to 

map all such mappings by hand, so we propose an algorithm 

to find all such feasible functions i.e. to count total number of 

onto functions feasible. 
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3. PROPOSED ALGORITHM 
Because it is not feasible all the time to perform all such 

mappings and count them to calculate the count for feasible 

onto functions, following algorithm is proposed to count 

TNOF. 

3.1 ALGORITHM STEPS 

Let   such that │A│=n and │B│=m 

 

Check whether 

1.  , if yes then no onto function can be 

designed. 

2.  Elseif  

 then onto function is feasible and 

TNOF is calculated as  

 

 1st element of A can be mapped to m 

elements of B 

 2nd element of A can be mapped to m-1 

elements of B 

 3rd element of A can be mapped to m-3 

elements of B, and so on 

So total number of feasible mappings is 

                …........... (1) 

Hence , so,  onto functions can be 

designed form A to B 

3. Else if  

  , then we have to map n elements of A to m 

elements of B,  

 Create partition of set A into m blocks, 

and consider each block as a single 

element in A. 

 Now the problem will be simple to map m 

blocks of A to m elements of B such that 

all elements in a single block will be 

assigned the same element from set B  

 

 So TNOF= …………………………................. (2) 

 

Where P is the no of ways of partitioning ( i.e. total number of 

feasible partitioning) of A into m non-empty blocks. 

P can be calculated by simply using Stirling number of second 

kind, i.e. Number of ways of partitioning of A with n elements 

into m nonempty blocks are given by 

 ,  

Where S is Stirling number of second kind such that 

… (3) 

4. So total number of onto functions are: 

 

  ............ (4) 

Hence the value of TNOF will give the count for all feasible 

onto functions from A to B. 

4. RESULT DISCUSSION 
Here we show some of the calculated values form the 

proposed algorithm and compare them with the actual feasible 

mappings. 

Let  

 Such that │A│=n and │B│=m such that 

  

Case 1: let n=m=2 

Feasible mappings or onto functions are shown in figure3 and 

figure 4, i.e. TNOF=2 

Now using equation (4) for above used values of n and m, we 

have 

 

 

So the result matches with actual mappings. 

Note: Since if n=m then 2nd part of calculation i.e.  =1, 

so,  

Case 2: if n>m,  

 Let n=3, m=2, form actual mapping created in section 2 and 

we have TNOF=6. Now using equation 4 we have : 
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Similarly Let n=4 m=3, we have 

 

 

So using the above algorithm we can easily find the total 

number of onto functions from A to B, without performing 

actual mappings between these two sets. TNOF will infer the 

actual mappings feasible in onto manner i.e. total number of 

onto functions feasible. Based on the above algorithm we are 

hereby giving TNOF values for some values of n and m. 

Table 1: TNOF values for function,   such that 

│A│=n and │B│=m 

This proposed algorithm works well for finite and not null 

Values of n and m, also the results are verified with actual 

Mappings and their count. Now for any combination of n and 

m we can easily state that how many onto functions are 

feasible from A to B. 

5. CONCLUSION 
This paper proposed an algorithm to count the total number of 

onto functions feasible form a set A with n elements to a set B 

with m elements. So now we do not have to perform all 

mappings and then count them, simply put the values for n 

and m in equation 4 and we will get the count required. The 

proposed algorithm is valid for all finite and non-empty 

values of n and m, this can be used in any scenario of 

association of objects. 
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m 

n 

 

1 2 3 4 5 

1 1 0 0 0 0 

2 1 2 0 0 0 

3 1 6 6 0 0 

4 1 14 36 24 0 

5 1 30 150 240 120 
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