
International Journal of Computer Applications (0975 – 8887)

Volume 45– No.22, May 2012

31

Finding Fuzzy Reasoning Path on Fuzzy Deduction

Graph using Parallel CYK Algorithm on a PRAM model

Pragya Shukla

Institute of Engineering and
Technology, Devi Ahilya

Vishwavidyalaya, Indore (M.P.),
INDIA

 Sanjiv Tokekar
Institute of Engineering and

Technology, Devi Ahilya
Vishwavidyalaya, Indore (M.P.),

INDIA

Suresh Jain
KCB Technical Academy,

Indore (M.P.), INDIA

ABSTRACT

In this paper a new parallel version of finding the Fuzzy

Reasoning Path (FRP) using the knowledge representation

model, introduced by Chandwani & Chaudhari [1] known as

Fuzzy Deduction Graph (FDG) is presented. In an FDG, a

systematic method of finding the Fuzzy Reasoning Path (FRP)

already exists, which is based on Dijkstra‟s shortest path

framework [2]. Our FRP algorithm is conglomeration of CYK

algorithm of parsing and FRP algorithm for fuzzy reasoning

which generates the path with the greatest fuzzy value. In

FDG the weights of edges are real numbers in the fuzzy

interval [0-1]. The maximum of multiplication is obtained on

weights instead of minimum of summation of weights [1].

CYK algorithm employs a bottom up approach with the

principle of Dynamic Programming (DP) to determine the

FRP from source node to the destination node. The

concurrency and synchronization in finding FRP process are

inherently maintained through parallel PRAM model of

construct. We present a complete formulation along with

analysis of parallel algorithm for finding FRP.

General Terms

Algorithms, Fuzzy Logic and Parallel Processing.

Keywords

 Deduction Graph, Fuzzy Deduction Graphs, Rule-based

systems, Horn clauses, Fuzzy Reasoning Path, CYK-

Algorithm, Dynamic Programming, PRAM Model, WRAM

Model, Knowledge-base system.

1. INTRODUCTION
A parallel version of CYK- parsing algorithm for context –

free grammar is presented by Chandwani, Puranik and

Chaudhari[3, 4]. We present an algorithm which can store

FRP in indexed array structure requiring simple parallel

control constructs. We provide a detailed formulation and in-

depth analysis of finding FRP using CYK-algorithm on

parallel PRAM model of computation. In a rule-based expert

system in which the knowledge is composed of a rule-base [5,

6, 18] an FDG can be used for graphical representation. An

FDG is a graphically structured subset of a rule base R with

rules of fuzzy propositions [7]. It can be used to perform

automated fuzzy reasoning. A fuzzy reasoning path (FRP) can

be established to define the antecedent-consequent

relationship between source and goal propositions. One way

to establish FRP is through fuzzy logic. In fuzzy logic, FRP

defines an antecedent- consequent relationship of two

propositions that leads to the greatest fuzzy value of the

consequent proposition. The output of CYK algorithm is a

pyramid that can be used to find the FRP. CYK algorithm‟s

framework presented in this paper establishes the fuzzy

reasoning path in FDG such that starting with source node; the

goal node is reached with the greatest fuzzy value. The

weights of edges in an FDG are real numbers in the fuzzy

interval [0-1].The maximum of multiplication is obtained on

weights instead of minimum of summations of weights. In the

proposed PRAM formulation, the multiple entries are written

exclusively in a location by means of effective ordering in

different iterations. The analysis of algorithm illustrates that

our algorithm requires 2n-2 time steps using quadratic number

of processors. In particular, we show the number of the

processors required in each iteration of the algorithm.

The rest of paper is organized as follows: Section 2 and

Section 3 describe the fuzzy knowledge and reasoning and

gives definition of FDG. Section 4 gives concepts of parallel

CYK algorithm. Section 5 describes the operations on the

cells of pyramid for finding FRP and algorithm of sequential

CYK algorithm. Section 6 presents the proposed algorithm for

finding FRP using parallel CYK algorithm on a PRAM model

with example and its complexity issues for time and processor

requirements. The paper ends with discussion and conclusion

in Section 7.

2. FUZZY KNOWLEDGE AND

 REASONING
Lofti Zadeh proposed a mathematical way of looking at the

vagueness of the natural human language; he called his

approach fuzzy logic [8, 12]. The objective of fuzzy logic has

been to make computer think like human. One way to

represent fuzzy knowledge is through fuzzy propositions and

fuzzy production rules. A fuzzy production rule defines the

fuzzy relationship between antecedent and consequent

propositions. If the fuzzy value of antecedent proposition and

rule are known then fuzziness of consequent can be

determined in fuzzy logic. For example, let p and q be fuzzy

proposition in rule r: “IF p Then q” and let the fuzzy value of

p be denoted by f(p) and the fuzzy value associated with rule r

be denoted by C(r), then fuzziness of q is computed by (1).

Normally, the fuzzy value of a rule is specified by certainty

factor; i.e., how much certain the rule is applicable [9]

 f(q) = C(r)*f(p). (1)

3. FUZZY DEDUCTION GRAPH
An FDG is an extension of a Deduction Graph (DG) [10, 11,

16, and 17] by applying fuzzy concepts. It is a graphically

structured subset of a rule base R with fuzzy rules of fuzzy

propositions. A proposition in rule of R is defined to be

simple node in an FDG. A rule is represented by a full edge.

This full edge is labeled with weight equal to certainty factor

of the rule.

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.22, May 2012

32

A generalized FDG of Chandwani [4] is a 4-tuple FDG=<V,

E, f, C> where

V = {v1, v2,…, vm} is a set of nodes;

E = {e1, e2,…, en} is a set of directed edges;

f : V→ [0-1] is a function from nodes to the real values in the

fuzzy interval [0-1];

C: E→ [0-1] is a function from edges to the real values in the

fuzzy interval [0-1] such that

 f(v‟)=f(v)* C(e) (2)

where e = <v, v‟> is a directed edge in E from node v to node

v‟. Equation (2) indicates that the fuzzy value of a node, on

which an edge is incident, is multiplication of certainty factor

labeling the edge with the fuzzy value of node from which the

edge is emerging.

3.1 Example
We take an example of a production system describing the

relationships amongst fuzzy propositions and rules. Let the

FDG of the production system contain, V = {A, B, C, D, E, F}

and E = {r1, r2, r3, r4, r5, r6, r7, r8, r9} with the following

relationships between propositions:

r1: A→B (C=0.9); r2: B→C (C=0.95); r3: A→D(C=0.75); r4:

B→D (C=0.85); r5: B→E(C=0.7); r6: D→E(C=0.9); r7:

C→Z (C=0.75); r8: C→E(C=0.85); r9: E→Z(C=0.8);

An FDG for above rules is depicted in Fig 1.

Fig 1: An OR – Type FDG

4. CYK – ALGORITHM AND

 PARALLELISM
The Cocke-Younger-Kasami (CYK) algorithm is generally

used for recognition and parsing of context-free language.

This algorithm is simple and uses bottom-up approach that is

based on dynamic programming. Its simplicity is achieved

from the input grammar being in CNF. The algorithm creates

a recognition table that can be used to find the parse structure

of the input string. The recognition table is usually

represented in the form of an (n+1) × (n+1) upper triangular

matrix. The table can also be built up in the form of pyramid

of cells. In this paper we are using CYK algorithm for finding

fuzzy reasoning path from source node to the destination

node. A fuzzy reasoning path of length n can be finding out

by building a pyramid of size n with base consisting of n+1

cell and the top row containing the fuzzy reasoning path with

maximum fuzzy value. The elements of the pyramid are

denoted by Cell[i, j]. Cell[i, j] contains the partial path of

length i. The elements of the base are denoted by Cell[i,j] for

i=0 and 1≤ j ≤ n and the element of the top row is denoted by

Cell[n, 1]. Fig. 2 shows a pyramid structure of size n=4 and

indexing of elements. Cells contain partial paths and

multiplication is the basic operation performed on cells.

PRAM and WRAM models: A PRAM model of parallel

computation is a shared memory model which allows any

number of processors to read simultaneously from the same

memory location. It does not allow two processors to write

simultaneously into the same location. A model in which

many processors are allowed to write into the same location

simultaneously is known as WRAM model of parallel

computation.

In practice, a WRAM model is not used as there will be

conflicts due to concurrent writes in the same location.

WRAM model based algorithms are more of theoretical

interest [14]. A PRAM model is most often used in the design

of parallel algorithms and their practical implementations. The

parallelism in our algorithm is described in the following

statement [14]:

For all x in X in parallel do

instruction(x)

where x is an element of the set X and the statement

instruction(x) includes the assignment of processor to the

element x and other operations specified in instruction(x). The

time required by above statement in any algorithm is

independent of cardinality of X and taken as constant.

Fig 2: CYK – Pyramid of size n = 4.

5. FUZZY REASONING PATH WITH

CYK-ALGORITHM
On applying CYK algorithm on FDG we can obtained fuzzy

reasoning path with greatest fuzzy value. The algorithm starts

working as soon as the first node A of the graph is entered,

where A is a node representing the source proposition and Z is

a node representing the goal proposition. In other words, the

algorithm is required to prove the formula (Z←A) with the

greatest degree of truth value of goal node Z from FDG. It is

assumed here that there exists a path from the node A to the

node Z. Let G=<V, E, f, C> be a FDG and we want to find the

FRP between A and Z i.e., FRP(A, Z). We shall use pyramid

representation for our algorithm. Path consist of n nodes can

be searched by building a pyramid of size n. A pyramid of

size n has n rows indexed by i such that 1<i<n and (n-i+1)

column indexed by j such 1<j< (n-i+1) in each row i. The base

row of the pyramid consists of n columns and the top row

contains the paths from source to destination with greatest

FRP value. Let the pyramid be named as cell and let its

elements be denoted by Cell[i, j]. Content of each Cell[i, j] is

a set of partial paths to the goal node with its FRP value.

Initially we have source node with its fuzzy value f(A).

 i=4 [4, 1]

 i=3 [3, 1] [3, 2]

 i =2 [2, 1] [2, 3]

 i=0

 i=1 [1, 2] [1 3] [1, 1] [1, 4]

 [0, 2] [0, 3] [0, 4] [0, 5] [0, 1]

 [2, 2]

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.22, May 2012

33

5.1 Operations on the Cells of Pyramid
Two operations are performed on the content of pyramid‟s

cell[i,j]. They are as follows:

5.1.1 Operation for finding FRP
Suppose the content of Cell[i,j] is filled by the content of

Cell[X,Y] and Cell[M,N]. If Cell[X,Y] contain partial path pk

= ABC and Cell[M,N] contain partial path pk+1 = CD. Binary

operation ϴ over Cell[X,Y] and Cell[M,N] is as follows:

Cell[i,j] = Cell[X,Y] ϴ Cell[M,N] = pK = pk ϴ pk+1 = ABCD

5.1.2 Operation for finding fuzzy reasoning

value for FRP
Suppose the content of Cell[i,j] is filled by the content of

Cell[X,Y] and Cell[M,N]. Cell[X,Y] contain partial path pk

= ABC with fuzzy reasoning value f(pk) and Cell[M,N]

contain partial path pk+1 = CD with fuzzy reasoning value

f(pk+1), then the fuzzy reasoning value of partial path ABCD is

fK= f(pk)* f(pk+1), where * is multiplication operator is stored

in Cell[i,j]

The description of sequential algorithm is presented as

follows:

5.2 Algorithm 1
Sequential CKY algorithm for fuzzy reasoning path is as

follows:

Let G = <V, E, f, C> be a FDG, finding FRP can be done by

constructing a pyramid and filling up the contents in Cell[i,j]

through ϴ and * operation:

 Step 1. // Construct the bottom row from the FDG G //

If i=0 and j=1

Cell[i, j]:= insert the source node with its fuzzy value;

j = j+1;

if j>1 do

Until all the nodes and its adjacent nodes of the FDG are

stored in the base cell of the pyramid do

Cell[0,j]:=insert the adjacent nodes of the node stored in

Cell[0,j-1] with its certainty value;

 j:=j+1

Step 2 // Construct the upper rows using rule P→Q for length

i>1 //

 For j:= 1 to n-i+1 do

Cell[1,j]:= Insert the partial path and calculate its fuzzy value

from Cell[0,j] and Cell[0,j+1], if there is an edge from nodes

stored in Cell[0,j] to cell[0,j+1] in FDG.

For i:= 2 to n do

 For j:=1 to n-i+1 do

For m:= 1 to i-1 do

Cell[i,j]:=Cell[m,j] ϴ Cell[i-m,j+m]

 // Insert the partial path by applying operation 'ϴ' //

 f(pk)*f(pk+1)

// Calculate the fuzzy reasoning value of the partial path (path)

by applying operation * on path obtained by Cell[m,j] ϴ

Cell[i-m,j+m] //

Remove the duplicate paths from the Cell[i,j] if any;

If two or more paths reach a common node, delete all those

paths except the one that reaches the common node with the

greatest fuzzy value;

Step 3. // Examine the partial path whose last node is

destination node //

For i:= 1 to n do

Paths stored in cell[i,1] contain partial path with its fuzzy

reasoning value;

End of Algorithm 1.

Algorithm construct the pyramid and Cell[n,1] contains the

destination node with maximum fuzzy value. The FRP can be

obtained in linear time if each Cell[i, j] is associated with the

pointers of variables stored in the matching pair Cell[m, j] and

Cell[i-m, j+m] during the construction of the pyramid. The

time-complexity for finding fuzzy reasoning path is O(n3).

The space complexity of algorithm is O(n2), where n is the

number of level in the FDG

6. PROPOSED ALGORITHM

6.1 Framework
To establish the parallel framework to be adopted in a PRAM

model based algorithm, let us take possible entries of

Cell[4,1] of the pyramid of size n=4 from three different

ways, as shown in Fig. 3. The entries in the root element

Cell[4,1] are filled from the following different pairings:

Cell[3,1] and Cell[1,4];

Cell[2,1] and Cell[2,3];

Cell[1,1] and Cell[3,2];

Entries to Cell[4,1] can be filled only after the cells involved

in pairing have completely been constructed. By complete

construction we mean that no more partial paths will be

entered in it. For instance, Cell[3,1] must be completely

constructed from pairing of Cell[1,1] and Cell[2,2] as well as

from pairing of Cell[2,1] and Cell[1,3]. The entries in

Cell[4,1] shall be filled sequentially in three different

iterations. In general, Cell[i,j] is constructed by operations

from i-1 pairing in i-1 different iterations. Thus in the PRAM

model based algorithm, the merge operation will be done

sequentially in different iterations in the design of the

proposed algorithm, we shall consider the following points:

(i) No concurrent writes in a cell are allowed. The Operations

in any cell is done sequentially in different iterations

(ii) Read operation can be done simultaneously from the same

location by a number of processors.

(iii) In any iteration, the entries can be filled up in more than

one row.

(iv) A cell can be used for pairing in any iteration if it

has been constructed completely in any previous iteration.

Thus, the ordering of pairings will be decided by the complete

construction of cells.

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.22, May 2012

34

The entries in the different cells of rows and columns of the

pyramid can be filled up by employing the required number of

processors.

Fig 3: Three possible ways of constructing Cell[4,1] of pyramid of size n=4.

6.2 INFORMAL DESCRIPTION
Before we present the formal description of the algorithm, we

shall discuss it informally. Let us take a pyramid of size i=4.

First we take inputs in the base cell i=0 from FDG. In

Cell[0,1] source node and its fuzzy value is entered from

FDG, then the adjacent nodes of source node in entered in

Cell[0,2]. Similarly adjacent of Cell[0,i-1] is entered in

Cell[0,1]. All the nodes of FDG is entered in this way. After

the entry of all the adjacent nodes of FDG, we can start the

construction of upper row of the pyramid. We illustrate the

construction of upper row (i>1) of the pyramid, iteration by

iteration, as follows:

Iteration 1: In this iteration, the row i=1 can be filled up in

parallel by the entries in base cell of the pyramid. All cells in

this row will be filled up in time O(c) where c is constant

using n (=4) processors.

Iteration 2: The cells in row of length i=2 can be filled up in

parallel from pairing of the cells of the row i=1. For instance,

Cell[2,1] can be constructed by pairing of Cell[1,1] and

Cell[1,2] and so on. Construction of this row will require n-1,

i.e. 3 processors in constant time, O(c).

Iteration 3: In the previous iterations, the constructions of the

rows of length i=1 and i=2 were complete and these rows can

be used for construction of the cells in upper rows. In the third

iteration, Cell[3,1] in the row of length 3 can be filled up from

one of two different pairings, i.e. Cell[1,1] and Cell[2,2] or

Cell[2,1] and Cell[1,3]. The output obtained by operations on

both pairings cannot be written simultaneously to avoid

concurrent writes. Therefore, the output of first pairing is

filled in this iteration and the output from other pairing will be

filled in the next iteration. Cell[3,2] can also be filled up in a

similar way. The number of processor required in this

iteration will be 2.

Iteration 4: In this iteration, the second entry in the cells of the

third row can be computed. Cell[3, 1] will be constructed by

pairing of Cell[2,1] and Cell[1,3]. This entry was not filled in

the third iteration to avoid concurrent writes. First entry in

Cell[4,1] is made by pairing of Cell[2,1] and Cell[2,3]. The

number of processors required 2.

Iteration 5: In this iteration, the second entry in the cell of row

i= 4 can be filled by pairing of cells in the rows i=3 and i=1.

Cell[4,1] can be constructed from the from the pairing of

Cell[1,1] and Cell[3,2] using one processor.

Iteration 6: In this iteration, the cell in the row of length i=4

can be filled up. The construction of Cell[4,1] is completed in

this from pairing of Cell[3,1] and Cell[1,4].

Thus all cells of the pyramid of size n=4 can be filled up in 6

iterations.

Figure.4. shows the iterations required for constructing the

pyramid for size n=4 and n=5. The iterations are shown at

different rows.

Now we can generalize the relationship between iteration k

and row i. Table 1 shows different iteration required for

construction of cell of row i. Table 2 shows different rows

constructed in each iteration k.

6.3 FORMAL DESCRIPTION OF THE

 ALGORITHM 2

From the observation of the above algorithm reveals that

loops for index variables i and j in the algorithm can be

executed in parallel by employing more number of processors.

After inserting all the nodes in the base cell (i=0) of pyramid

in Step 1, the entries for the cell of row i=1 of the pyramid can

be filled in parallel by employing n processors. In step 2, the

cells in rows i>1 can be computed in parallel. For even i(i > 2)

the computation of entries in Cell[i,j] starts at iteration

number i-1 and finishes at 2i-2. No entry is computed during

iteration i. For odd i(i>1), the computation of entries in

Cell[i,j] starts at iteration i and finishes at 2i-2. For i (i>2), the

first entry starting at iteration i-1 can be delayed by one step

and made to start at iteration i. Thus, the computation of

entries in cells of even numbered rows can start at iteration i

and finish at iteration 2i-2

 [4, 1]

 [3, 1]

 [2, 1] [2, 2]

 [1, 1] [1, 2] [1, 3] [1, 4]

 [4, 1]

 [2, 1]

 [1, 1] [1 2]

 [2, 3]

 [1, 3] [1, 4]

 [4, 1]

 [3, 2]

 [2, 2] [2, 3]

 [1, 2] [1, 3] [1, 4] [1, 1]

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.22, May 2012

35

Table 1. Iteration required for construction of row in Algorithm 2

Row (i)
Iteration (k) required

1 1

2 2

3 3,4

4 4, 5, 6

5 5, 6, 7, 8

6 6, 7, 8, 9, 10

7 7, 8, 9, 10, 11

8 8, 9, 10, 11, 12, 13, 14

9 9, 10, 11, 12, 13, 14, 15, 16

10 10, 11, 12, 13, 14, 15, 16, 17, 18

.

.

.

.

.

.

odd i (i>1) i, i+1,..., 2i-2

even i (i>2) i, i+1,..., 2i-2

Table 2. Rows constructed in each iteration of Algorithm2.

Iteration No. (k) Rows (i) constructed

1 1

2 2

3 3

4 3, 4

5 4, 5

6 4, 5, 6

7 5, 6, 7

8 5, 6, 7, 8

9 6, 7, 8, 9

10 6, 7, 8, 9, 10

.

.

.

.

.

.

odd k (k>1) (k+3)/2 to k

even k (k>2) (k+2)/2 to k

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.22, May 2012

36

Fig 4 : Numbers beside the rows indicate the iterations required at each row of pyramids of size n=4 and n=5.

6.4 Algorithm 2
On-line Parallel algorithm for finding maximum FRP in FDG

using CKY-algorithm:
Let G=<V, E, f, C> be a FDG and let l be the maximum level

of the tree in G. Construct a pyramid of size l from parallel

construct of i and j as follows, where each Cell[i,j] contain

partial path and its fuzzy reasoning value.

Step 1. // Construct the bottom row (i=0) from the FDG G

using the rule P→Q //

 If i=0 and j=1 do

 Cell[0,1]:= insert the source node with its fuzzy value;

 If j > 2 and all the nodes and its adjacent nodes of the

FDG are stored in the base cells of the pyramid do

 Cell[0,j]:=insert the adjacent nodes of the node stored in

Cell[0,j-1];

 j:=j+1;

 EndIf;

 Step 2. // Construct the upper rows using rule P→Q for

length i>0 //

 n:= number of cells in the base row -1;

 for k:= 1 to 2n – 2 do

 begin

 if (k is odd) then

 p1:= (k+3) / 2

 else

 p2:= (k+2) / 2;

 if k > n then

 p2 := n

 else

 p2:= k;

 // p1 and p2 are lower and upper limits of row numbers in a

particular iteration //

 For i:= p1 to p2 in parallel do // parallel construction of

rows //

 For j:= 1 to n-i+1 in parallel do // parallel construction of

cells in a row //

 If k is even then

 Cell[i, j] := Cell[k/2, j] ϴ Cell[(i-k/2), (j + k/2)]

 // Insert the partial path by applying operation ϴ //

 f(pk)*f(pk+1)

 // Calculate the fuzzy reasoning value of the partial path

(path) by applying operation * on path obtained by

Cell[k/2, j] ϴ Cell[(i-k/2), (j + k/2)] //

 Else

 Cell[i, j] := Cell[i-(k+1)/2, j] ϴ Cell[(k+1)/2, j+i-(k+1)/2]

 // Insert the partial path by applying operation ϴ //

 f(pk)*f(pk+1)

 // Calculate the fuzzy reasoning value of the partial path

(path) by applying operation * on path obtained by Cell[i-

(k+1)/2, j] ϴ Cell[(k+1)/2, j+i-(k+1)/2] //

 Remove the duplicate paths from the Cell[i,j] if any;

 If two or more paths reach a common node, delete all

those paths except the one that reaches the common node

with the greatest fuzzy value;

 Step 3.

 For i:= 1 to n do

 Paths stored in cell[i,1] contain partial path with its fuzzy

reasoning value;

End of Algorithm 2.

6.5 TIME COMPLEXITY OF

 ALGORITHM

Step 1 of the algorithm takes n+1 time to enter the values

from FDG. In step 2, the loop of variable k is sequential and it

executes 2n-2 times. Other loops (for variables i and j)

execute in parallel and take c1 time, where c1 is a constant.

Thus, step 2 takes 2n-2 steps.

Therefore, the time complexity of Algorithm2 is given as

follows:

(n+1)+c1 12𝑛−2
𝑘=2 = n+1+c1 (2n-3) (3)

 The constant c1 depends upon the FDG. Thus the

time complexity of Algorithm is O(n), where n is the length of

the longest path in FDG G.

 [2, 2]

1

2

4, 5, 6

 5, 6, 7, 8

 [2 3]

 [5, 1]

 [4, 1] [4, 2]

 [3, 1] [3, 3]

 [2, 1] [2, 4]

 [1, 2] [1, 3] [1, 4] [1, 5] [1, 4]

 3, 2] 3, 4

 4, 5, 6

 2

 1

 3, 4

 [4, 1]

 [3, 1] [3, 2]

 [2, 1] [2, 2] [2, 3]

 [1, 1] [1, 2] [1, 3] [1, 4]

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.22, May 2012

37

Processor complexity of Algorithm We now show that

Algorithm 2 takes O(n2) processors to find the fuzzy

reasoning path of having n edges (length of path n). Step 1 of

the algorithm takes input from FDG by finding adjacent nodes

of the current node. It will take n iterations to enter all the

nodes and adjacent nodes in FDG using one processor. After

the entry of base row of the pyramid Step 2 of the algorithm

computes the entries in the cells of row i=1 using n

processors. In iteration k=2, n – 1 cells of row i=2 are

constructed. There will be n – 1 processor required to

construct the row i=2. Now in other iterations k>2, the

number of processors will depend upon the number of rows

being constructed. For instance, in the third iteration k = 3,

row i=3 is constructed, using n – 3 + 1 processors. The

number of processors required for constructing row i in any

iteration is n – i + 1. Thus in any iteration k≥3, the numbers of

processors required are given as follows

For odd k<n, N = (n − i + 1)k
i=(k+3)/2 (4)

For odd k>n, N = (n − i + 1n
i=(k+3)/2). (5)

For even k<n, N = (n − i + 1)k
i=(k+2)/2 . (6)

For even k>n, N = (n − i + 1)n
i=(k+2)/2 . (7)

Table 3 shows different rows i constructed and the number of

processors required in each iteration k for input size n> 3. The

number of processors given by (4) and (6) is higher than given

by (5) and (7) as the upper limit of i is restricted to n in (4)

and (6). We can generalize the result of the maximum

number in terms of n from the relationship between n and odd

k as given in (3). After applying algebraic manipulation, the

summation of the series in (3) can be obtained as follows:

N=1/2(n+1) (k) - 1/8(k) (3k+5) (8)

Since the value of k is constrained by 2n-2, the expression of

N in (7) is O(n2). Thus the processor complexity of Algorithm

2 is O(n2).

Table 3. No. of processors required in each iteration of Algorithm 2

 N

k i 3 4 5 6 7 8 9 10

1 1 3 4 5 6 7 8 9 10

2 2 2 3 4 5 6 7 8 9

3 3 2 2 3 4 5 6 7 8

4 3,4 1 3 5 7 9 11 13 15

5 4,5 1 3 5 7 9 11 13

6 4,5,6 1 3 6 9 12 15 18

7 5,6,7 1 3 6 9 12 15

8 5,6,7,8 1 3 6 10 14 18

9 6, 7, 8, 9 1 3 6 10 14

10 6,7,8,9,10 1 3 6 10 15

6.6 EXAMPLE
Now we can observe the applicability of finding FRP using

CYK algorithm with an example. We take an example of a

FDG shown in Figure 1.

Let A be the source node and Z be the goal node. We want to

establish the FRP between node A and node Z with the

greatest fuzzy value. The application of algorithm results in

the pyramid of Fig 5. We get the fuzzy reasoning path with

maximum fuzzy value as follows:

First it entered the source node A and its fuzzy value (0.9) in

the Cell[0,1] of the pyramid. Then it will check the adjacent

nodes of the source node and store it in Cell[0,2] . The

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.22, May 2012

38

adjacent node of the source node A is B and D, it will store

the node B and D in Cell[0, 2] of the pyramid. Similarly node

C, E and D are stored in Cell[0,3], node E, Z are stored in

Cell[0,4] and node Z is stored in Cell[0, 5]. In this way all the

nodes and its adjacent nodes are stored in the base row of the

pyramid. After the entry of FDG in the pyramid it will start

building of upper row of the pyramid. Following are the

iteration for building upper row and finding the paths and

partial path with its fuzzy reasoning value.

First Iteration: Algorithm executes two operations ϴ and * on

the content of cells. Using one processor it stores partial fuzzy

reasoning paths in Cell [1,1] by applying operation ϴ on Cell

[0,1] and Cell [0,2] and calculates the fuzzy value of all the

partial paths by applying operation *. Partial paths are AB,

AD and its fuzzy values are stored in Cell[1,1]. Its fuzzy value

is

f(AB) = f(A)*C(AB) = 0.9*0.9 = 0.81

f(AD) = f(A)*C(AD) 0.9*0.75 = 0.675

Using second processor, entries in Cell [1,2] is made from

Cell [0,2] and cell [0,3]. Entries are edges BC, BD, BE and

DE with its fuzzy value

C(BC) = 0.95, C(BD) = 0.85, C(BE) = 0.7, C(DE) = 0.9

Using third processor, entries in Cell [1,3] is made from Cell

[0,3] and Cell [0,4]. Entries are edges CE, DE, CZ, EZ with

its fuzzy value

C(CE)=0.85, C(DE)=0.9, C(CZ)=0.75, C(EZ)=0.8

Using Forth processor, Entries in Cell [1,4] is made with Cell

[0,4] and Cell [0,5]. Entry in Cell [1,4] is edge EZ with its

fuzzy value C(EZ)=0.8.

After this all entries in the row i=1 is completed using 4

processors.

Second Iteration: In this iteration construction of row i=2

starts and completed using three processor. Using First

processor, entries in Cell [2,1] is filled from entries in Cell

[1,1] and Cell [1,2]. Partial paths ABC, ABD, ABE, AND

ADE and fuzzy partial path with the following values

f(ABC)=f(AB)*C(BC)=0.81*0.95=0.7695

f(ABD)=f(AB)*C(BD)=0.81*0.85=0.6885

f(ABE)=f(AB)*C(BE)=0.81*0.7 =0.567

f(ADE)=f(AD)*C(DE)=0.675*0.9=0.6075

are stored in Cell[2,1] of the pyramid. Partial path ABE and

ADE reaches at the same node with different fuzzy value.

Partial path with greatest fuzzy value (ADE) is selected and

other paths are discarded according to the dynamic

programming principle. Partial path with greatest fuzzy value

is ABD; its label is set to one.

Using second processor entries in Cell [2,2] are made with

Cell [1,2] and Cell [1,3]. Partial paths BCE, BDE, BCZ, BEZ,

DEZ are entered in Cell[2,2]

C(BCE)=C(BC)*C(CE)=0.95*0.85=0.8075

C(BDE)=C(BD)*C(DE)=0.85*0.9=0.765

C(BCZ)=C(BC)*(CZ)=0.95*0.75=0.7125

C(BEZ)=C(BE)*C(EZ)=0.7*0.8=0.56

C(DEZ) =C(DE)*C(EZ)=0.9*0.8=0.72

Using third processor, entries in Cell [2,3] are filled with Cell

[1,3] and Cell [1,4]. Partial path CEZ and DEZ are stored with

its following fuzzy value:

C(CEZ)=C(CE)*C(EZ)=0.85*0.8=0.68

C(DEZ)=C(DE)*C(EZ)=0.9*0.8=0.72

Third Iteration: Construction of row i=3 is made in this

iteration using two processor. First entries in Cell [3,1] is

made with Cell [1,1] and Cell [2,2]. Following are the entries:

f(ABCE)=f(AB)*C(BCE)=0.81*0.8075=0.6541

f(ABCZ)=f(AB)*C(BCZ)= 0.81*0.7125=0.577125

f(ABDE)=f(AB)*C(BDE)= 0.81*0.765=0.6197

f(ABEZ)=f(AB)*C(BEZ)= 0.81*0.56=0.4536

f(ADEZ)=f(AD)*C(DEZ)= 0.675*0.72=0.486

f(ABCE)=f(ABC)*C(CE)=0.7695*0.85=0.6541

f(ABCZ)=f(ABC)*C(CZ)= 0.7695*0.75=0.5771

f(ABDE)=f(ABD)*C(DE)= 0.6885*0.9=0.6197

f(ADEZ)=f(ADE)*C(EZ)= 0.6075*0.8=0.486

First entry in cell[4,1] can also be made in this iteration from

Cell [2,1] and Cell [2,3]. Partial path ABCEZ and ABDEZ are

entered with the following entries:

f(ABCEZ) = f(ABC)*C(CEZ)=0.7695*0.68=0.52326

f(ABDEZ) = f(ABD)*C(DEZ)=0.6885*0.72=0.49572

No of processors required for this iteration is 3.

Fifth Iteration: This iteration fills second entry in Cell[4,1]

from Cell[1,1] and Cell[3,2]. Entries are partial paths ABCEZ

and ABDEZ with their following fuzzy values:

f(ABCEZ)= f(AB)*C(BCEZ)=0.81*0.646=0.52326

f(ABDEZ)=f(AB)*C(BDEZ)=0.81*0.612=0.49572

Sixth Iteration: This iteration fill third entry in Cell [4,1] from

Cell [3,1] and Cell [1,4]. Construction of row i= 4 is

completed in this iteration.

f(ABCEZ) = f(ABCE)*C(EZ)=0.6541*0.8=0.52326

Cell[i,1] contain the partial paths with their fuzzy values.

Cell[i,1] has the paths of length i. In the above example,

Cell[4,1] has two paths with path length four. The path

ABCEZ with maximum fuzzy value (0.52326) is selected.

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.22, May 2012

39

 3

ABCE0 .769*0.85=0.65

ABCZ 0.769*0.75=0.58

xABDE0.688*0.9=0.62

xADEZ 0.608*0.8=0.49

3

BCEZ0.95*0.85*0.8=0.

65

BDEZ0.85*0.9*0.8=0.6

2

 3, 4

ABCEZ 0.5233

xABDEZ 0.4957

2

ABC0.9*0.9*0.95=0.77

ABD0.9*0.9*0.85=0.69

xABE0.9*0.9*0.7=0.57

ADE0.9*0.75*0.9=0.61

 2

BCE0.95*0.85=0.8075

BDE0.85*0.9=0.765

BEZ0.7*0.8=0.56

DEZ0.9*0.8=0.72

 2

CEZ0.85*0.8=0.68

DEZ0.9*0.8=0.72

1

AB 0.9*0.9= 0.81

AD 0.9*0.75= 0.675

1

BC (0.95)

BD (0.85)

BE (0.75)

DE (0.9)

1

CE(0.85)

DE(0.9)

CZ(0.75)

EZ(0.8)

 1

 EZ = 0.8

A

0.9

 B/D

C/D/E

E/Z

 Z

Fig. 5 : Parallel construction of CYK – pyramid for finding FRP.

Fig 5: Processor architecture for pyramid (n=7).

P1,1

P1,6

P1,4

P1,2

P1,5

P1,7

P1,3

P2,1

P2,6

P2,4

P2,2

P2,5

P2,3

P3,1

P3,4 P3,2

P3,5

P3,3

P4,1

P4,4

P4,2 P4,3

P5,1

P5,2 P5,3

P6,1

P6,2

P7,1

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.22, May 2012

40

7. ALGORITHM WORKING ON A

MESH-CONNECTED ARCHITECTURE
The structure of pyramid constructed through our algorithm is

suitable for two dimensional mesh connected architecture.

Corresponding to each Cell[i,j], there is a processor Pi, j,

which computes the entries for Cell[i, j]. Fig. 6 shows the

processor interconnection structure for n=7.

For each entry cell[i,j] for i≥2 of the pyramid, the processor Pi,

j receives entries from processors Pi-1, j and Pi-1, j+1. Processor

Pi, j transmits the entries received from Pi-1, j to Pi+1, j and

entries received from Pi-1, j+1 to Pi+1, j-1. Each processor has got

two input ports and two output ports, except the processors at

boundaries of the pyramid. The order in which the entries are

received by the processor Pi, j, i ≥ 2 is given by the algorithm.

The number of entries received by the processor Pi, j is i-1.

Each processor is provided with a local memory in which the

row i and column j are stored. Since the number of entries

required by the processor Pi, j is i-1, the number of locations

required by the processor P i, j is also i-1 and the total memory

required will be O(n3). For instance, the processor P5, 2 will

have four locations to store the entries received in four

iterations 5, 6, 7, 8 from two lower processors i.e., P4, 2 and P6,

8. DISCUSSION AND CONCLUSION
We have presented a new parallel algorithm for finding fuzzy

reasoning path (FRP) in an OR-type FDG. The algorithm has

been formulated on an „indexed‟ PRAM model of

computation. An OR-type FDG is represented by nodes and

edges such that each node u is representative of a proposition

p and each directed edge <u, v> represents a rule with

antecedent proposition p corresponding to node u and

consequent proposition q corresponding to node v. The FRP is

a path that leads to the greatest fuzzy value to the goal node.

For finding maximum FRP multiplication is the basic

operation. The algorithm is based on dynamic programming

search technique, which reduces the size of search tree by

eliminating the redundant entries from the cell. Time

complexity of this algorithm is O(n) [1, 13 and 15], where n is

the length of longest path in the FDG. The number of

processors required in the algorithm is O(n2). The algorithm is

also suitable for mesh-connected architecture of processors.

9. REFERENCES
[1] M. Chandwani and N.S. Chaudhari, “Knowledge

representation using fuzzy deduction graphs,” IEEE

Trans. Syst., Man, Cybern., vol. 26, no. 6 pp. 848-854,

Dec. 1996

[2] C.L. Liu, “Elements of Discrete Mathematics”, Third

Edition, McGraw Hill Internationa Editions, 1985.

[3] M. Chandwani, M. Puranik and N.S. Chaudhari, “On

CKY-Parsing of Context-Free Grammar in Parallel,”

IEEE region 10 Conference, Tencon, Australia, pp. 141-

145, November 1992.

[4] M. Chandwani, N.S. Chaudhari, “Formulation and

analysis of parallel context-free recognition and parsing

on PARAM model,” Elsevier Science, parallel

Computing 22, 1996, 845-868.

[5] F. Hayes-Roth, “Rule-based Systems”, Commun. ACM.

vol. 28, no. 9, pp. 921-932, Sept. 1985.

[6] Hisao Ishibuchi,Takashi Yamamoto, “Rule Weight

Specification in Fuzzy Rule-Based Classification

Systems,” IEEE Trans. Fuzzy Syst.,vol. 13,No. 4 pp.428-

443,Aug. 2005.

[7] Elaine Rich,Kevin Knight, “Artificial Intelligence”,

Second Edition, Tata McGraw-Hill Editions, 1991.

[8] Ahmad M. Ibrahim, Introduction to Applied Fuzzy

Electronics, Prentice-Hall of India, 1999.

[9] L.Zadeh, “Fuzzy logic,” IEEE Comp. Mag., vol. 21, no.

4, pp. 83-93, Apr. 1988.

[10] C.C. Yang, “Deduction graph: An algorithm and

Application,” IEEE Trans. Software Eng., vol. 15, no. 1,

pp. 60-67, Jan. 1989

[11] C.C. Yang, J.J. Chen, and H. L. Chau, “Algorithms for

constructing minimal deduction graphs,” IEEE Trans.

Software Eng., vol. 15, no. 6, pp. 760-771, June 1989.

[12] A. Kandel, Fuzzy Mathematical Techniques with

Applications. Reading, MA:Addison-Wesley,1986.

[13] Corman, Leiserson, Rivest, Stein, “Introduction to

Algorithms”, Second Edition, PHI Pub., 2006.

[14] A. Gibbons and W. Rytter, Efficient Parallel

Algorithms,Cambridge University Press, Cambridge,

UK, 1988.

[15] Thomas A. Sdkamp, “An Introduction to the Theory of

Computer Science, Languages and Machines,” Third

Edition,Pearson Education, 2006.

[16] P. Shukla, M. Chandwani, “Taxonomy of Fuzzy

Deduction Graph,” International Journal of Computer

and Electronics Engineering (IJCEE), Vol. 3, no.1, Page

99-115, 2010.

[17] S. M. Chen,“Representing knowledge using fuzzy

deduction graphs based on fuzzy numbers, ” Proceedings

of the 2003 Joint Conference on AI, Fuzzy System, and

Grey System, Taipai, Taiwan, Republic of China, Dec.

2003.

[18] Z. H. Tan, “ Fuzzy Metagraph and Its Combination with

the indexing Approach in Rule-based Systems," IEEE

Transaction knowledge and Data Engineering, vol.

18,no. 6, pp. 829-841, June, 2006.

