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ABSTRACT 

In this paper a new parallel version of finding the Fuzzy 

Reasoning Path (FRP) using the knowledge representation 

model, introduced by Chandwani & Chaudhari [1] known as 

Fuzzy Deduction Graph (FDG) is presented. In an FDG, a 

systematic method of finding the Fuzzy Reasoning Path (FRP) 

already exists, which is based on Dijkstra‟s shortest path 

framework [2]. Our FRP algorithm is conglomeration of CYK 

algorithm of parsing and FRP algorithm for fuzzy reasoning 

which generates the path with the greatest fuzzy value. In 

FDG the weights of edges are real numbers in the fuzzy 

interval [0-1]. The maximum of multiplication is obtained on 

weights instead of minimum of summation of weights [1].  

CYK algorithm employs a bottom up approach with the 

principle of Dynamic Programming (DP) to determine the 

FRP from source node to the destination node. The 

concurrency and synchronization in finding FRP process are 

inherently maintained through parallel PRAM model of 

construct. We present a complete formulation along with 

analysis of parallel algorithm for finding FRP. 
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1. INTRODUCTION 
A parallel version of CYK- parsing algorithm for context –

free grammar is presented by Chandwani, Puranik and 

Chaudhari[3, 4]. We present an algorithm which can store 

FRP in indexed array structure requiring simple parallel 

control constructs. We provide a detailed formulation and in-

depth analysis of finding FRP using CYK-algorithm on 

parallel PRAM model of computation. In a rule-based expert 

system in which the knowledge is composed of a rule-base [5, 

6, 18] an FDG can be used for graphical representation. An 

FDG is a graphically structured subset of a rule base R with 

rules of fuzzy propositions [7]. It can be used to perform 

automated fuzzy reasoning. A fuzzy reasoning path (FRP) can 

be established to define the antecedent-consequent 

relationship between source and goal propositions. One way 

to establish FRP is through fuzzy logic. In fuzzy logic, FRP 

defines an antecedent- consequent relationship of two 

propositions that leads to the greatest fuzzy value of the 

consequent proposition. The output of CYK algorithm is a 

pyramid that can be used to find the FRP. CYK algorithm‟s 

framework presented in this paper establishes the fuzzy 

reasoning path in FDG such that starting with source node; the 

goal node is reached with the greatest fuzzy value. The 

weights of edges in an FDG are real numbers in the fuzzy 

interval [0-1].The maximum of multiplication is obtained on 

weights instead of minimum of summations of weights. In the 

proposed PRAM formulation, the multiple entries are written 

exclusively in a location by means of effective ordering in 

different iterations. The analysis of algorithm illustrates that 

our algorithm requires 2n-2 time steps using quadratic number 

of processors. In particular, we show the number of the 

processors required in each iteration of the algorithm.  

The rest of paper is organized as follows: Section 2 and 

Section 3 describe the fuzzy knowledge and reasoning and 

gives definition of FDG. Section 4 gives concepts of parallel 

CYK algorithm. Section 5 describes the operations on the 

cells of pyramid for finding FRP and algorithm of sequential 

CYK algorithm. Section 6 presents the proposed algorithm for 

finding FRP using parallel CYK algorithm on a PRAM model 

with example and its complexity issues for time and processor 

requirements. The paper ends with discussion and conclusion 

in Section 7. 

2. FUZZY KNOWLEDGE AND   

      REASONING  
Lofti Zadeh proposed a mathematical way of looking at the 

vagueness of the natural human language; he called his 

approach fuzzy logic [8, 12]. The objective of fuzzy logic has 

been to make computer think like human. One way to 

represent fuzzy knowledge is through fuzzy propositions and 

fuzzy production rules. A fuzzy production rule defines the 

fuzzy relationship between antecedent and consequent 

propositions. If the fuzzy value of antecedent proposition and 

rule are known then fuzziness of consequent can be 

determined in fuzzy logic. For example, let p and q be fuzzy 

proposition in rule r: “IF p Then q” and let the fuzzy value of 

p be denoted by f(p) and the fuzzy value associated with rule r 

be denoted by C( r), then fuzziness of q is computed by (1). 

Normally, the fuzzy value of a rule is specified by certainty 

factor; i.e., how much certain the rule is applicable [9] 

        f(q) = C(r)*f(p).                                              (1) 

3. FUZZY DEDUCTION GRAPH  
An FDG is an extension of a Deduction Graph (DG) [10, 11, 

16, and 17] by applying fuzzy concepts. It is a graphically 

structured subset of a rule base R with fuzzy rules of fuzzy 

propositions. A proposition in rule of R is defined to be 

simple node in an FDG. A rule is represented by a full edge. 

This full edge is labeled with weight equal to certainty factor 

of the rule. 
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A generalized FDG of Chandwani [4] is a 4-tuple FDG=<V, 

E, f, C> where 

V = {v1, v2,…, vm} is a set of nodes; 

E = {e1, e2,…, en} is a set of directed edges; 

f : V→ [0-1] is a function from nodes to the real values in the 

fuzzy interval [0-1]; 

C: E→ [0-1] is a function from edges to the real values in the 

fuzzy interval [0-1] such that 

      f(v‟)=f(v)* C(e)     (2)                         

    

where e = <v, v‟> is a directed edge in E from node v to node 

v‟. Equation (2) indicates that the fuzzy value of a node, on 

which an edge is incident, is multiplication of certainty factor 

labeling the edge with the fuzzy value of node from which the 

edge is emerging.  

3.1 Example 
We take an example of a production system describing the 

relationships amongst fuzzy propositions and rules. Let the 

FDG of the production system contain, V = {A, B, C, D, E, F} 

and E = {r1, r2, r3, r4, r5, r6, r7, r8, r9} with the following 

relationships between propositions: 

r1: A→B (C=0.9); r2: B→C (C=0.95); r3: A→D(C=0.75); r4: 

B→D (C=0.85); r5: B→E(C=0.7); r6: D→E(C=0.9); r7: 

C→Z (C=0.75); r8: C→E(C=0.85); r9: E→Z(C=0.8); 

An FDG for above rules is depicted in Fig 1. 

 

 

Fig 1: An OR – Type FDG  

4. CYK – ALGORITHM AND  

       PARALLELISM  
The Cocke-Younger-Kasami (CYK) algorithm is generally 

used for recognition and parsing of context-free language. 

This algorithm is simple and uses bottom-up approach that is 

based on dynamic programming. Its simplicity is achieved 

from the input grammar being in CNF. The algorithm creates 

a recognition table that can be used to find the parse structure 

of the input string. The recognition table is usually 

represented in the form of an (n+1) × (n+1) upper triangular 

matrix. The table can also be built up in the form of pyramid 

of cells.  In this paper we are using CYK algorithm for finding 

fuzzy reasoning path from source node to the destination 

node. A fuzzy reasoning path of length n can be finding out 

by building a pyramid of size n with base consisting of n+1 

cell and the top row containing the fuzzy reasoning path with 

maximum fuzzy value. The elements of the pyramid are 

denoted by Cell[i, j]. Cell[i, j] contains the partial path of 

length i. The elements of the base are denoted by Cell[i,j] for 

i=0 and 1≤ j ≤ n and the element of the top row is denoted by 

Cell[n, 1]. Fig. 2 shows a pyramid structure of size n=4 and 

indexing of elements. Cells contain partial paths and 

multiplication is the basic operation performed on cells.   

PRAM and WRAM models: A PRAM model of parallel 

computation is a shared memory model which allows any 

number of processors to read simultaneously from the same 

memory location. It does not allow two processors to write 

simultaneously into the same location. A model in which 

many processors are allowed to write into the same location 

simultaneously is known as WRAM model of parallel 

computation. 

In practice, a WRAM model is not used as there will be 

conflicts due to concurrent writes in the same location. 

WRAM model based algorithms are more of theoretical 

interest [14]. A PRAM model is most often used in the design 

of parallel algorithms and their practical implementations. The 

parallelism in our algorithm is described in the following 

statement [14]: 

For all x in X in parallel do  

instruction(x) 

where x is an element of the set X and the statement 

instruction(x) includes the assignment of processor to the 

element x and other operations specified in instruction(x). The 

time required by above statement in any algorithm is 

independent of cardinality of X and taken as constant. 

 

 

 

 

 

 

 

Fig 2: CYK – Pyramid of size n = 4. 

5. FUZZY REASONING PATH WITH           

CYK-ALGORITHM 
On applying CYK algorithm on FDG we can obtained fuzzy 

reasoning path with greatest fuzzy value. The algorithm starts 

working as soon as the first node A of the graph is entered, 

where A is a node representing the source proposition and Z is 

a node representing the goal proposition. In other words, the 

algorithm is required to prove the formula (Z←A) with the 

greatest degree of truth value of goal node Z from FDG. It is 

assumed here that there exists a path from the node A to the 

node Z. Let G=<V, E, f, C> be a FDG and we want to find the 

FRP between A and Z i.e., FRP(A, Z). We shall use pyramid 

representation for our algorithm. Path consist of n nodes can 

be searched by building a pyramid of size n. A pyramid of 

size n has n rows indexed by i such that 1<i<n and (n-i+1) 

column indexed by j such 1<j< (n-i+1) in each row i. The base 

row of the pyramid consists of n columns and the top row 

contains the paths from source to destination with greatest 

FRP value. Let the pyramid be named as cell and let its 

elements be denoted by Cell[i, j]. Content of each Cell[i, j] is 

a set of partial paths to the goal node with its FRP value. 

Initially we have source node with its fuzzy value f(A).  

 i=4    [4, 1] 

 i=3     [3, 1]     [3, 2] 

 i =2    [2, 1]    [2, 3] 

 i=0 

 i=1    [1, 2]    [1 3]    [1, 1]    [1, 4] 

   [0, 2]    [0, 3]    [0, 4]    [0, 5]    [0, 1] 

  [2, 2] 
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5.1 Operations on the Cells of Pyramid 
Two operations are performed on the content of pyramid‟s 

cell[i,j]. They are as follows:  

5.1.1  Operation for finding FRP 
Suppose the content of Cell[i,j] is filled by the content of 

Cell[X,Y] and Cell[M,N]. If Cell[X,Y] contain partial path  pk 

= ABC and Cell[M,N] contain partial path pk+1 = CD. Binary 

operation ϴ over Cell[X,Y] and Cell[M,N]  is as follows:  

Cell[i,j] =  Cell[X,Y] ϴ Cell[M,N] = pK = pk ϴ pk+1 = ABCD 

5.1.2  Operation for finding   fuzzy reasoning 

value for FRP 
Suppose the content of Cell[i,j] is filled by the content of 

Cell[X,Y] and Cell[M,N]. Cell[X,Y] contain partial path      pk 

= ABC with fuzzy reasoning value f(pk) and Cell[M,N] 

contain partial path pk+1 = CD with fuzzy reasoning value 

f(pk+1), then the fuzzy reasoning value of partial path ABCD is 

fK= f(pk)* f(pk+1), where * is multiplication operator is stored 

in Cell[i,j] 

The description of sequential algorithm is presented as 

follows:  

5.2 Algorithm 1 
Sequential CKY algorithm for fuzzy reasoning path is as 

follows:  

Let G = <V, E, f, C> be a FDG, finding FRP can be done by 

constructing a pyramid and filling up the contents in Cell[i,j] 

through  ϴ and * operation: 

 Step 1.  // Construct the bottom row from the FDG G // 

If i=0 and j=1 

Cell[i, j]:= insert the source node with its fuzzy value; 

j = j+1; 

if j>1 do 

Until all the nodes and its adjacent nodes of the FDG are 

stored in the base cell of the pyramid do 

Cell[0,j]:=insert the adjacent nodes of the node stored in 

Cell[0,j-1] with its certainty value; 

   j:=j+1 

Step 2  // Construct the upper rows using rule P→Q for length 

i>1 // 

 For j:= 1 to n-i+1 do 

Cell[1,j]:= Insert the partial path and calculate its fuzzy value 

from  Cell[0,j] and Cell[0,j+1], if there is an edge from nodes 

stored in Cell[0,j] to cell[0,j+1] in FDG. 

For i:= 2 to n do 

   For j:=1 to n-i+1 do 

For m:= 1 to i-1 do 

Cell[i,j]:=Cell[m,j] ϴ Cell[i-m,j+m]                                                          

 // Insert the partial path by applying operation 'ϴ' // 

        f(pk)*f(pk+1)   

// Calculate the fuzzy reasoning value of the partial path (path) 

by applying operation * on path obtained by Cell[m,j] ϴ 

Cell[i-m,j+m] // 

Remove the duplicate paths from the Cell[i,j] if any; 

If two or more paths reach a common node, delete all those 

paths except the one that reaches the common node with the 

greatest fuzzy value; 

Step 3. // Examine the partial path whose last node is 

destination node // 

For i:= 1 to n do 

Paths stored in cell[i,1] contain partial path with its fuzzy 

reasoning value; 

End of Algorithm 1. 

Algorithm construct the pyramid and Cell[n,1] contains the 

destination node with maximum fuzzy value. The FRP can be 

obtained in linear time if each Cell[i, j] is associated with the 

pointers of variables stored in the matching pair Cell[m, j] and 

Cell[i-m, j+m] during the construction of the pyramid. The 

time-complexity for finding fuzzy reasoning path is O(n3).  

The space complexity of algorithm is O(n2), where n is the 

number of level in the FDG 

6. PROPOSED ALGORITHM  

6.1 Framework  
To establish the parallel framework to be adopted in a PRAM 

model based algorithm, let us take possible entries of 

Cell[4,1] of the pyramid of size n=4 from three different 

ways, as shown in Fig. 3. The entries in the root element 

Cell[4,1] are filled from the following different pairings: 

Cell[3,1] and Cell[1,4]; 

Cell[2,1] and Cell[2,3]; 

Cell[1,1] and Cell[3,2]; 

Entries to Cell[4,1] can be filled only after the cells involved 

in pairing have completely been constructed. By complete 

construction we mean that no more partial paths will be 

entered in it. For instance, Cell[3,1] must be completely 

constructed from pairing of Cell[1,1] and Cell[2,2] as well as 

from pairing of Cell[2,1] and Cell[1,3]. The entries in 

Cell[4,1] shall be filled sequentially  in three different 

iterations. In general, Cell[i,j] is constructed by operations 

from i-1 pairing in i-1 different iterations. Thus in the PRAM 

model based algorithm, the merge operation will be done 

sequentially in different iterations in the design of the 

proposed algorithm, we shall consider the following points: 

(i) No concurrent writes in a cell are allowed. The Operations 

in any cell is done sequentially in different iterations 

(ii) Read operation can be done simultaneously from the same 

location by a number of processors. 

(iii) In any iteration, the entries can be filled up in more than 

one row. 

(iv) A cell can be used for pairing in any iteration if it 

has been constructed completely in any previous iteration. 

Thus, the ordering of pairings will be decided by the complete 

construction of cells. 
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The entries in the different cells of rows and columns of the 

pyramid can be filled up by employing the required number of 

processors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3: Three possible ways of constructing Cell[4,1] of pyramid of size n=4. 

6.2 INFORMAL DESCRIPTION   
Before we present the formal description of the algorithm, we 

shall discuss it informally. Let us take a pyramid of size i=4. 

First we take inputs in the base cell i=0 from FDG. In 

Cell[0,1] source node and its fuzzy value is entered from 

FDG, then the adjacent nodes of source node in entered in 

Cell[0,2]. Similarly adjacent of Cell[0,i-1] is entered in 

Cell[0,1]. All the nodes of FDG is entered in this way. After 

the entry of all the adjacent nodes of FDG, we can start the 

construction of upper row of the pyramid. We illustrate the 

construction of upper row (i>1) of the pyramid, iteration by 

iteration, as follows: 

Iteration 1: In this iteration, the row i=1 can be filled up in 

parallel by the entries in base cell of the pyramid. All cells in 

this row will be filled up in time O(c) where c is constant 

using n (=4) processors. 

Iteration 2: The cells in row of length i=2 can be filled up in 

parallel from pairing of the cells of the row i=1. For instance, 

Cell[2,1] can be constructed by pairing of Cell[1,1] and 

Cell[1,2] and so on. Construction of this row will require n-1, 

i.e. 3 processors in constant time, O(c). 

Iteration 3: In the previous iterations, the constructions of the 

rows of length i=1 and i=2 were complete and these rows can 

be used for construction of the cells in upper rows. In the third 

iteration, Cell[3,1] in the row of length 3 can be filled up from 

one of two different pairings, i.e. Cell[1,1] and Cell[2,2] or 

Cell[2,1] and Cell[1,3]. The output obtained by operations on 

both pairings cannot be written simultaneously to avoid 

concurrent writes. Therefore, the output of first pairing is 

filled in this iteration and the output from other pairing will be 

filled in the next iteration. Cell[3,2] can also be filled up in a 

similar way.  The number of processor required in this 

iteration will be 2.  

Iteration 4: In this iteration, the second entry in the cells of the 

third row can be computed. Cell[3, 1] will be constructed by 

pairing of Cell[2,1] and Cell[1,3]. This entry was not filled in 

the third iteration to avoid concurrent writes. First entry in 

Cell[4,1] is made by pairing of Cell[2,1] and Cell[2,3]. The 

number of processors required 2. 

Iteration 5: In this iteration, the second entry in the cell of row 

i= 4 can be filled by pairing of cells in the rows i=3 and i=1. 

Cell[4,1] can be constructed from the from the pairing of 

Cell[1,1] and Cell[3,2] using one processor.  

Iteration 6: In this iteration, the cell in the row of length i=4 

can be filled up. The construction of Cell[4,1] is completed in 

this from pairing of Cell[3,1] and Cell[1,4]. 

Thus all cells of the pyramid of size n=4 can be filled up in 6 

iterations. 

Figure.4. shows the iterations required for constructing the 

pyramid for size n=4 and n=5. The iterations are shown at 

different rows. 

Now we can generalize the relationship between iteration k 

and row i. Table 1 shows different iteration required for 

construction of cell of row i. Table 2 shows different rows 

constructed in each iteration k.  

6.3 FORMAL DESCRIPTION OF THE  

        ALGORITHM 2 

From the observation of the above algorithm reveals that 

loops for index variables i and j in the algorithm can be 

executed in parallel by employing more number of processors. 

After inserting all the nodes in the base cell (i=0) of pyramid 

in Step 1, the entries for the cell of row i=1 of the pyramid can 

be filled in parallel by employing n processors. In step 2, the 

cells in rows i>1 can be computed in parallel. For even i(i > 2) 

the computation of entries in Cell[i,j] starts at iteration 

number i-1 and finishes at 2i-2. No entry is computed during 

iteration i. For odd i(i>1), the computation of entries in 

Cell[i,j] starts at iteration i and finishes at 2i-2. For i (i>2), the 

first entry starting at iteration i-1 can be delayed by one step 

and made to start at iteration i. Thus, the computation of 

entries in cells of even numbered rows can start at iteration i 

and finish at iteration 2i-2 

 

    [4, 1] 

   [3, 1] 

    [2, 1]     [2, 2] 

   [1, 1]    [1, 2]    [1, 3]   [1, 4] 

    [4, 1] 

   [2, 1] 

    [1, 1]     [1 2] 

   [2, 3] 

    [1, 3]     [1, 4] 

    [4, 1] 

   [3, 2] 

    [2, 2]     [2, 3] 

   [1, 2]    [1, 3]    [1, 4]   [1, 1] 
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Table 1. Iteration required for construction of row in Algorithm 2 

Row (i) 
Iteration (k) required 

 

1 1 

2 2 

3 3,4 

4 4, 5, 6 

5 5, 6, 7, 8 

6 6, 7, 8, 9, 10  

7 7, 8, 9, 10, 11 

8 8, 9, 10, 11, 12, 13, 14 

9 9, 10, 11, 12, 13, 14, 15, 16 

10 10, 11, 12, 13, 14, 15, 16, 17, 18 

. 

. 

. 

 

. 

. 

. 

odd i (i>1) i, i+1,..., 2i-2 

even i (i>2) i, i+1,..., 2i-2 

 

Table 2. Rows constructed in each iteration of Algorithm2.                            

Iteration No. (k) Rows (i) constructed 

1 1 

2 2 

3 3 

4 3, 4 

5 4, 5 

6 4, 5, 6 

7 5, 6, 7 

8 5, 6, 7, 8 

9 6, 7, 8, 9 

10 6, 7, 8, 9, 10 

. 

. 

. 

. 

. 

. 

odd k (k>1) (k+3)/2  to k 

even k (k>2) (k+2)/2  to k 
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Fig  4 :  Numbers beside the rows indicate the iterations required at each row of pyramids of size n=4 and n=5. 

 

6.4 Algorithm 2 
On-line Parallel algorithm for finding maximum FRP in FDG 

using CKY-algorithm: 
Let G=<V, E, f, C> be a FDG and let l be the maximum level 

of the tree in G.  Construct a pyramid of size l from parallel 

construct of i and j as follows, where each Cell[i,j] contain 

partial path and its fuzzy reasoning value.   

Step 1. // Construct the bottom row (i=0) from the FDG G 

using the rule P→Q // 

 If  i=0 and j=1 do 

 Cell[0,1]:= insert the source node with its fuzzy value; 

 If j > 2 and all the nodes and its adjacent nodes of the 

FDG are stored in the base cells of the pyramid do 

 Cell[0,j]:=insert the adjacent nodes of the node stored in 

Cell[0,j-1]; 

 j:=j+1; 

 EndIf; 

 Step 2. // Construct the upper rows using rule P→Q for 

length i>0 // 

 n:= number of cells in the base row -1; 

 for k:= 1 to 2n – 2 do 

 begin  

 if ( k is odd ) then 

 p1:= (k+3) / 2 

 else  

 p2:= (k+2) / 2; 

 if k > n then 

 p2 := n 

 else 

 p2:= k; 

 // p1 and p2 are lower and upper limits of row numbers in a 

particular iteration // 

 For i:= p1 to p2  in parallel do      // parallel construction of 

rows // 

 For j:= 1 to n-i+1 in parallel do // parallel construction of 

cells in a row // 

 If  k is even then  

 Cell[i, j] :=   Cell[k/2, j] ϴ Cell[(i-k/2), (j + k/2)]  

 // Insert the partial path by applying operation ϴ  // 

 f(pk)*f(pk+1)  

 // Calculate the fuzzy reasoning value of the partial path 

(path) by applying operation * on path obtained by 

Cell[k/2, j] ϴ  Cell[(i-k/2), (j + k/2)] // 

 Else  

 Cell[i, j] :=  Cell[i-(k+1)/2, j] ϴ  Cell[(k+1)/2, j+i-(k+1)/2] 

 // Insert the partial path by applying operation ϴ // 

 f(pk)*f(pk+1) 

 // Calculate the fuzzy reasoning value of the partial path 

(path) by applying operation * on path obtained by Cell[i-

(k+1)/2, j] ϴ Cell[(k+1)/2, j+i-(k+1)/2] // 

 Remove the duplicate paths from the Cell[i,j] if any; 

 If two or more paths reach a common node, delete all 

those paths except the one that reaches the common node 

with the greatest fuzzy value; 

 Step 3. 

 For i:= 1 to n do 

 Paths stored in cell[i,1] contain partial path with its fuzzy 

reasoning value; 

End of Algorithm 2. 

6.5 TIME COMPLEXITY OF    

       ALGORITHM  

Step 1 of the algorithm takes n+1 time to enter the values 

from FDG. In step 2, the loop of variable k is sequential and it 

executes 2n-2 times. Other loops (for variables i and j) 

execute in parallel and take c1 time, where c1 is a constant. 

Thus, step 2 takes 2n-2 steps. 

Therefore, the time complexity of Algorithm2 is given as 

follows: 

(n+1)+c1  12𝑛−2
𝑘=2 = n+1+c1 (2n-3)                  (3) 

 The constant c1 depends upon the FDG. Thus the 

time complexity of Algorithm is O(n), where n is the length of 

the longest path in FDG G. 

   [2, 2] 

1 

2 

4, 5, 6 

 5, 6, 7, 8 

   [2 3] 

   [5, 1] 

    [4, 1]     [4, 2] 

   [3, 1]    [3, 3] 

   [2, 1]    [2, 4] 

   [1, 2]    [1, 3]    [1, 4]    [1, 5]    [1, 4] 

   3, 2] 3, 4 

 4, 5, 6 

 2 

 1 

 3, 4 

   [4, 1] 

    [3, 1]     [3, 2] 

   [2, 1]    [2, 2]    [2, 3] 

   [1, 1]    [1, 2]    [1, 3]    [1, 4] 
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Processor complexity of Algorithm We now show that 

Algorithm 2 takes O(n2) processors to find the fuzzy 

reasoning path of having n edges (length of path n). Step 1 of 

the algorithm takes input from FDG by finding adjacent nodes 

of the current node. It will take n iterations to enter all the 

nodes and adjacent nodes in FDG using one processor. After 

the entry of base row of the pyramid Step 2 of the algorithm 

computes the entries in the cells of row i=1 using n 

processors. In iteration k=2, n – 1 cells of row i=2 are 

constructed. There will be n – 1 processor required to 

construct the row i=2. Now in other iterations k>2, the 

number of processors will depend upon the number of rows 

being constructed. For instance, in the third iteration k = 3, 

row i=3 is constructed, using n – 3 + 1 processors. The 

number of processors required for constructing row i in any 

iteration is n – i + 1. Thus in any iteration k≥3, the numbers of 

processors required are given as follows 

For odd k<n, N =  (n − i + 1)k
i=(k+3)/2                  (4) 

For odd k>n, N = (n − i + 1n
i=(k+3)/2 ).                 (5) 

For even k<n, N = (n − i + 1)k
i=(k+2)/2 .               (6)       

For even k>n, N = (n − i + 1)n
i=(k+2)/2 .               (7) 

Table 3 shows different rows i constructed and the number of 

processors required in each iteration k for input size n> 3. The 

number of processors given by (4) and (6) is higher than given 

by (5) and (7) as the upper limit of i is restricted to n in (4) 

and (6).  We can generalize the result of the maximum 

number in terms of n from the relationship between n and odd 

k as given in (3). After applying algebraic manipulation, the 

summation of the series in (3) can be obtained as follows: 

N=1/2(n+1) (k) - 1/8(k) (3k+5)                              (8) 

Since the value of k is constrained by 2n-2, the expression of 

N in (7) is O(n2). Thus the processor complexity of Algorithm 

2 is O(n2).  

 

Table 3. No. of processors required in each iteration of Algorithm 2 

 

                                    N 

k                i 3 4 5 6 7 8 9 10 

1 1 3 4 5 6 7 8 9 10 

2 2 2 3 4 5 6 7 8 9 

3 3 2 2 3 4 5 6 7 8 

4 3,4 1 3 5 7 9 11 13 15 

5 4,5  1 3 5 7 9 11 13 

6 4,5,6  1 3 6 9 12 15 18 

7 5,6,7   1 3 6 9 12 15 

8 5,6,7,8   1 3 6 10 14 18 

9 6, 7, 8, 9    1 3 6 10 14 

10 6,7,8,9,10    1 3 6 10 15 

 

 

 

 

 

 

 

6.6 EXAMPLE 
Now we can observe the applicability of finding FRP using 

CYK algorithm with an example. We take an example of a 

FDG shown in Figure 1.  

Let A be the source node and Z be the goal node. We want to 

establish the FRP between node A and node Z with the 

greatest fuzzy value. The application of algorithm results in 

the pyramid of Fig 5. We get the fuzzy reasoning path with 

maximum fuzzy value as follows: 

First it entered the source node A and its fuzzy value (0.9) in 

the Cell[0,1] of the pyramid. Then it will check the adjacent 

nodes of the source node and store it in Cell[0,2] . The 
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adjacent node of the source node A is B and D, it will store 

the node B and D in Cell[0, 2] of the pyramid. Similarly node 

C, E and D are stored in Cell[0,3], node E, Z are stored in 

Cell[0,4] and node Z is stored in Cell[0, 5]. In this way all the 

nodes and its adjacent nodes are stored in the base row of the 

pyramid. After the entry of FDG in the pyramid it will start 

building of upper row of the pyramid. Following are the 

iteration for building upper row and finding the paths and 

partial path with its fuzzy reasoning value.  

First Iteration: Algorithm executes two operations ϴ and * on 

the content of cells. Using one processor it stores partial fuzzy 

reasoning paths in Cell [1,1]  by applying operation ϴ on Cell 

[0,1] and Cell [0,2] and calculates the fuzzy value of all the 

partial paths by applying operation *. Partial paths are AB, 

AD and its fuzzy values are stored in Cell[1,1]. Its fuzzy value 

is 

f(AB) = f(A)*C(AB) = 0.9*0.9 = 0.81 

f(AD) = f(A)*C(AD) 0.9*0.75 = 0.675 

Using second processor, entries in Cell [1,2]  is made from 

Cell [0,2] and cell [0,3]. Entries are edges BC, BD, BE and 

DE with its fuzzy value 

C(BC) = 0.95, C(BD) = 0.85, C(BE) = 0.7, C(DE) = 0.9 

Using third processor, entries in Cell [1,3] is made from Cell 

[0,3] and Cell [0,4]. Entries are edges CE, DE, CZ, EZ with 

its fuzzy value  

C(CE)=0.85, C(DE)=0.9, C(CZ)=0.75, C(EZ)=0.8 

Using Forth processor, Entries in Cell [1,4] is made with Cell 

[0,4] and Cell [0,5]. Entry in Cell [1,4] is edge EZ with its 

fuzzy value  C(EZ)=0.8.  

After this all entries in the row i=1 is completed using 4 

processors. 

Second Iteration: In this iteration construction of row i=2 

starts and completed using three processor. Using First 

processor, entries in Cell [2,1] is filled from entries in Cell 

[1,1] and Cell [1,2]. Partial paths ABC, ABD, ABE, AND 

ADE and fuzzy partial path with the following values 

f(ABC)=f(AB)*C(BC)=0.81*0.95=0.7695 

f(ABD)=f(AB)*C(BD)=0.81*0.85=0.6885 

f(ABE)=f(AB)*C(BE)=0.81*0.7 =0.567 

f(ADE)=f(AD)*C(DE)=0.675*0.9=0.6075 

are stored in Cell[2,1] of the pyramid. Partial path ABE and 

ADE reaches at the same node with different fuzzy value. 

Partial path with greatest fuzzy value (ADE) is selected and 

other paths are discarded according to the dynamic 

programming principle. Partial path with greatest fuzzy value 

is ABD; its label is set to one. 

Using second processor entries in Cell [2,2] are made with 

Cell [1,2] and Cell [1,3]. Partial paths BCE, BDE, BCZ, BEZ, 

DEZ are entered in Cell[2,2] 

C(BCE)=C(BC)*C(CE)=0.95*0.85=0.8075 

C(BDE)=C(BD)*C(DE)=0.85*0.9=0.765 

C(BCZ)=C(BC)*(CZ)=0.95*0.75=0.7125 

C(BEZ)=C(BE)*C(EZ)=0.7*0.8=0.56 

C(DEZ) =C(DE)*C(EZ)=0.9*0.8=0.72 

Using third processor, entries in Cell [2,3] are filled with Cell 

[1,3] and Cell [1,4]. Partial path CEZ and DEZ are stored with 

its following fuzzy value: 

C(CEZ)=C(CE)*C(EZ)=0.85*0.8=0.68 

C(DEZ)=C(DE)*C(EZ)=0.9*0.8=0.72 

Third Iteration: Construction of row i=3 is made in this 

iteration using two processor. First entries in Cell [3,1] is 

made with Cell [1,1] and Cell [2,2]. Following are the entries: 

f(ABCE)=f(AB)*C(BCE)=0.81*0.8075=0.6541       

f(ABCZ)=f(AB)*C(BCZ)= 0.81*0.7125=0.577125 

f(ABDE)=f(AB)*C(BDE)= 0.81*0.765=0.6197 

f(ABEZ)=f(AB)*C(BEZ)= 0.81*0.56=0.4536 

f(ADEZ)=f(AD)*C(DEZ)= 0.675*0.72=0.486  

f(ABCE)=f(ABC)*C(CE)=0.7695*0.85=0.6541 

f(ABCZ)=f(ABC)*C(CZ)= 0.7695*0.75=0.5771 

f(ABDE)=f(ABD)*C(DE)= 0.6885*0.9=0.6197 

f(ADEZ)=f(ADE)*C(EZ)= 0.6075*0.8=0.486 

First entry in cell[4,1] can also be made in this iteration from 

Cell [2,1] and Cell [2,3]. Partial path ABCEZ and ABDEZ are 

entered with the following entries: 

f(ABCEZ) = f(ABC)*C(CEZ)=0.7695*0.68=0.52326 

f(ABDEZ) = f(ABD)*C(DEZ)=0.6885*0.72=0.49572 

No of processors required for this iteration is 3. 

Fifth Iteration: This iteration fills second entry in Cell[4,1] 

from Cell[1,1] and Cell[3,2]. Entries are partial paths ABCEZ 

and ABDEZ with their following fuzzy values: 

f(ABCEZ)= f(AB)*C(BCEZ)=0.81*0.646=0.52326 

f(ABDEZ)=f(AB)*C(BDEZ)=0.81*0.612=0.49572 

Sixth Iteration: This iteration fill third entry in Cell [4,1] from 

Cell [3,1] and Cell [1,4]. Construction of row i= 4 is 

completed in this iteration. 

f(ABCEZ) = f(ABCE)*C(EZ)=0.6541*0.8=0.52326  

Cell[i,1] contain  the partial paths  with their fuzzy values. 

Cell[i,1] has the paths of length i. In the above example, 

Cell[4,1] has  two paths with  path length four. The path 

ABCEZ with maximum fuzzy value (0.52326) is selected.
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                                      3 

ABCE0 .769*0.85=0.65 

ABCZ 0.769*0.75=0.58 

xABDE0.688*0.9=0.62 

xADEZ 0.608*0.8=0.49 

 

3 

BCEZ0.95*0.85*0.8=0.

65 

BDEZ0.85*0.9*0.8=0.6

2 

                                      3, 4 

ABCEZ    0.5233 

xABDEZ    0.4957 

2 

ABC0.9*0.9*0.95=0.77 

ABD0.9*0.9*0.85=0.69 

xABE0.9*0.9*0.7=0.57 

ADE0.9*0.75*0.9=0.61 

 2                                            

BCE0.95*0.85=0.8075 

BDE0.85*0.9=0.765 

BEZ0.7*0.8=0.56 

DEZ0.9*0.8=0.72 

 

                                           2 

CEZ0.85*0.8=0.68 

DEZ0.9*0.8=0.72 

1 

AB 0.9*0.9= 0.81 

AD 0.9*0.75= 0.675 

1 

BC      (0.95) 

BD      (0.85) 

BE       (0.75) 

DE       (0.9) 

 

1 

CE(0.85) 

DE(0.9) 

CZ(0.75) 

EZ(0.8) 
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Fig. 5 :  Parallel construction of CYK – pyramid for finding FRP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5: Processor architecture for pyramid (n=7). 

P1,1 

 

P1,6 

 

P1,4 

 

P1,2 

 

P1,5 

 

P1,7 

 

P1,3 

 

P2,1 

 

P2,6 

 

P2,4 

 

P2,2 

 

P2,5 

 

P2,3 

 

P3,1 

 

P3,4 P3,2 

 

P3,5 

 

P3,3 

 

P4,1 

 

P4,4 

 

P4,2 P4,3 

 

P5,1 

 

P5,2 P5,3 

P6,1 

 

P6,2 

 

P7,1 



International Journal of Computer Applications (0975 – 8887) 

Volume 45– No.22, May 2012 

40 

7. ALGORITHM WORKING ON A 

MESH-CONNECTED ARCHITECTURE 
The structure of pyramid constructed through our algorithm is 

suitable for two dimensional mesh connected architecture. 

Corresponding to each Cell[i,j], there is a processor Pi, j,  

which computes the entries for Cell[i, j]. Fig. 6 shows the 

processor interconnection structure for n=7.  

For each entry cell[i,j] for i≥2 of the pyramid, the processor Pi, 

j receives entries from processors Pi-1, j and Pi-1, j+1. Processor 

Pi, j transmits the entries received from Pi-1, j to Pi+1, j and 

entries received from Pi-1, j+1 to Pi+1, j-1. Each processor has got 

two input ports and two output ports, except the processors at 

boundaries of the pyramid. The order in which the entries are 

received by the processor Pi, j, i ≥ 2 is given by the algorithm. 

The number of entries received by the processor Pi, j is i-1. 

Each processor is provided with a local memory in which the 

row i and column j are stored. Since the number of entries 

required by the processor Pi, j is i-1, the number of locations 

required by the processor P i, j is also i-1 and the total memory 

required will be O(n3). For instance, the processor P5, 2 will 

have four locations to store the entries received in four 

iterations 5, 6, 7, 8 from two lower processors i.e., P4, 2 and P6,  

8. DISCUSSION AND CONCLUSION 
We have presented a new parallel algorithm for finding fuzzy 

reasoning path (FRP) in an OR-type FDG. The algorithm has 

been formulated on an „indexed‟ PRAM model of 

computation. An OR-type FDG is represented by nodes and 

edges such that each node u is representative of a proposition 

p and each directed edge <u, v> represents a rule with 

antecedent proposition p corresponding to node u and 

consequent proposition q corresponding to node v. The FRP is 

a path that leads to the greatest fuzzy value to the goal node. 

For finding maximum FRP multiplication is the basic 

operation. The algorithm is based on dynamic programming 

search technique, which reduces the size of search tree by 

eliminating the redundant entries from the cell. Time 

complexity of this algorithm is O(n) [1, 13 and 15], where n is 

the length of  longest path in the FDG. The number of 

processors required in the algorithm is O(n2). The algorithm is 

also suitable for mesh-connected architecture of processors. 
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