
International Journal of Computer Applications (0975 – 8887)

Volume 45– No.2, May 2012

50

Path Planning for Robotic Boats in a Rescue System

S. M. Masudur Rahman , Al-Arif , A. H. M. Iftekhar Ferdous, Mohammad Sohrab Hasan
Nizami

Department of Electrical and Electronic Engineering (EEE)
Islamic University of Technology (IUT)

Board Bazar, Gazipur – 1704, Dhaka, Bangladesh

ABSTRACT

Water is life. There is no denying. But water is also a source

of many disasters and dangers. There are a lot of rivers, canals

and waterways in South Asian countries. In some cases water

transports are the only mode of transportation for movement

and trade. Many natural and man-made causes like flood,

cyclone, tsunamis, jacking, looting; sometimes, people get

stuck in a water surrounded environment. So it an unavoidable

issue to rescue the people when they fall in such situation.

Two kinds of automated rescue mission can be possible in

those cases, one is air-borne and another one is water-borne.

Water vehicles shows better efficacy instead of air vehicle for

developing countries in terms of economy and complexities.

Therefore here in this paper, a basic principle and methods

towards an automated water-borne rescue system is outlined.

The architectures of distributed system along with multi-

logics are presented. The proposed system is actually

comprised of Artificial Intelligence (AI) and Mobile Robotics.

The proposed system is then investigated by all available path

finding algorithms, to find a most suitable which can conduct

rescue operation for different map systems with better

efficiency and better economy.

General Terms

Artificial Intelligence (AI), Rescue Systems, Algorithms.

Keywords

Robotic rescue system, Path planning algorithms, graph-

search algorithm, breadth-first algorithm, A* (astar)

algorithm; dijsktra algorithm.

1. INTRODUCTION
South Asian countries (Bangladesh, Pakistan, India etc) are

full of rivers. The major means of communication of those

countries are rivers and canals. Therefore, big/small boat is an

important mode for transportation. Sometimes, for man-made

invention (hijacking a ship/loot of wealth etc.) and mechanical

failures fall the passengers in a danger situation. Also many

natural disasters like flood, cyclones and tsunami force people

to get stuck in water surrounded situation. Hence, it is an

unavoidable issue to rescue the people from danger. Two

types of approaches are generally applied for this type of

rescue campaign: one is air vehicles: another is water

(automatic boat). Aircraft is too expensive to bear a better

service for the developing countries. Therefore, water vehicles

shows better efficacy in the view of economic tolerance.

With the advent of wireless technology and technique from

applied engineering has changed the way to save the

endangered people. To deal with an un-named rescue system

concerns with many items and technical disciplines. For

dealing with so many items within a limited time, a whole

system activity is distributed over times, and for speeding-up

of such activities leads the challenges (integration etc.) in

applied engineering. The activity involves what is the relative

co-ordination and communication of a team member with the

others, and how the data of generalized vehicles are created

and dealt with. This paper presents towards a real prototype of

a rescue system. We used artificial intelligence (AI) and the

concept of mobile robots to represents the proposed approach.

AI is the most effective issue in our paper. Mobile robots are

the principle working medium here as they perform all the

necessary physical works. So the main theme is that we tried

to implement the whole system using Artificial Intelligence

(AI) through mobile robot. Many of the available path

planning algorithms are used to check the systems response to

different rescue modes. Finally, a perfect algorithm is chosen

for each type of rescue mode.

2. BACKGROUND
Artificial intelligence (AI) can be defined as “the study and

design of intelligent agents”, where an intelligent agent is a

system that perceives its environment and takes actions which

maximizes its chances of success. Intelligent agents which

may be a device or vehicle or robot, must be able of set

destinations and achieve them. They need a way to understand

the situation from available information and be able to make

choices that maximizes the utility of the available choices.

Robotics is very closely related with AI. Intelligence is a must

thing for a robot to be able to handle certain tasks like

navigation and motion planning. Different artificial

intelligence (AI) techniques can be used to provide the robots

with this kind of intelligence and flexibility. Those techniques

belong to three areas of artificial intelligence:

i) Learning

ii) Reasoning and

iii) Problem solving

Among many diverse learning algorithms, inductive learning

is most widely used in robotics, in which the robots learn from

pre-selected examples. In our case we have used some similar

maps and rescue modes as pre-selected examples. Then

among all path planning algorithms the most efficient one for

each mode of operation was chosen to be used in real case

scenario.

In past many researcher have shown tremendous amount

determination in the similar fields, which were very help for

us. A sensor based intelligent autonomous control method is

proposed for tele-operated robotic system. A number of

sensors are used in the system to obtain the environmental

information and that input is then used into different level

autonomous controller to fulfill the primary target [1-4]. A

sensor based network system for a rescue robot working under

a similar disaster situation is also presented in a work [5].

Here a network system is proposed and an algorithm for a

rescue robot to obtain its position under collapsed area is also

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.2, May 2012

51

considered which in our case will be a water surrounded area.

A lot of other works are going on about different algorithms

that we are going to compare here. Dijkstra algorithm is a

very commonly used algorithm. Researchers are working

around the world to improve this algorithm more and more

[6], [7], [8]. A-Star (A*) Algorithm is also very useful for

search and rescue operations [9]. Works are going on around

the world to make an efficient hardware engine for this

algorithm [10] and to use this algorithm in hazardous

environment [11]. A very important work [12] compared

dijkstra and A* algorithm in a grid based map which will be

our primary tool to find the most suitable algorithm for our

case.

Apart from those works, many researchers have also shown

tremendous improvement in the field of mobile robots, path

planning algorithms and rescue robotics. A 3D active sensing

mechanism is used in [13] to operate search and rescue

mission in urban areas. They used a sensory system that

provides high resolution 2-D and 3-D information of a

cluttered scene that can be used by a robot operator for real-

time viewing as well as to develop a 3-D map of the disaster

scene.

In [14] a new and innovative type of incremental multi-scale

search algorithm is demonstrated for path planning in a

dynamic way with low worst-case complexities. This

incremental multi-scale algorithm leads to an improvement

both in terms of robustness and computational complexity–in

the worst case–when compared to the classical algorithms.

Recently in [15] they propose another fast path algorithm for

finding the best shortest paths in the road network. There they

tried to minimize costs between the origin and destination

nodes just like our case. The proposed algorithm was

compared with the dijkstra algorithm in order to find the best

and shortest paths using a sample of Tehran city road

network. In our case we will discuss all available algorithms

including dijkstra to do the same in water affected area for

rescue operation.

3. THE PROPOSED RESCUE SYSTEM
Three rescue boats (RB) are initially considered to rescue the

victim from the Endangered boat (EB) to a safe place.

Whenever EB finds a problem, it sends a signal to the Base

station (BS). BS receives EB’s location and it knows where

actually the RB’s are, because RB’s are connected to each

other and to the BS via computer network.

Fig 1: Proposed System

Whenever BS receives a signal from any EB, it finds out

which RB is the nearest to that EB and sends signal to that RB

to perform rescue operation and hence that RB reach to that

EB and rescue the victims. The main reasons of finding the

nearest one are:

i) To reduce the cost

ii) To minimize the rescue period and

iii) To keep other RB free so that they can perform

another operation if needed.

4. PATH FINDING
Path finding problem is the fundamental problem for mobile

robots i.e. the RB. The graph search algorithms are the most

known solutions for this problem. The most known algorithms

for the shortest path problem are:

i) The graph search algorithm

ii) Breadth-first algorithm

iii) Dijkstra algorithm and

iv) A* (A Star) algorithm

So far most of the related studies are focused on one of these

algorithms and for urban based map. In this paper, these

algorithms are summarized and simulated. Depending on our

case various advantages and disadvantages are defined. Some

assumptions are taken into account before the simulation. The

map we have used is divided into same size square cells. The

ability of traversing is accepted as 900 and 4-adjacent

traversable neighbor’s is considered for simplicity. 4- and 8-

adjacency definition can be shown in Fig. 2 and Fig. 3

respectively.

Fig 2: 4-adjacency

Fig 3: 8-adjacency

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.2, May 2012

52

4.1 The Graph Search Algorithm
The graph search algorithms are very old and primitive. These

algorithms are basically based on node-edge notation but this

notation lacks when a modern system like GPS gets an image

frame, converts it to a map matrix and uses this map matrix as

the grid based map. In these situations using matrix notation

gives the advantage of simplicity and comprehension. But in

our particular case this type of algorithm is of lesser use.

4.2 The Breadth-First Algorithm
Unlike the graph search algorithm the breadth-first algorithm

works with the method branching from the starting cell to the

neighbor cells (just traversable cells), (un-traversable cells

and cells out of boundaries are discarded) until the destination

cell is found [16, 17]. This kind of algorithm can be very

useful in water affected area scenario.

Fig 4: Breadth-first algorithm

To realize simulation of this algorithm we must define some

arrays. Here we added all traversable neighbor cells to an

array named NEIGHBOURS. So that means NEIGHBOURS

is the array of neighbor cells which must be investigated in

order to find the destination cell. All NEIGHBOURS

elements are checked if one is the destination cell or not. Then

NEIGHBOURS arrays include new neighbor cells, which

actually are the neighbors of the old listed cells and this

procedure goes on until the destination cell is finally added to

the NEIGHBOURS. The cost of the starting cell is zero. The

cost of each neighbor cell is +defined constant cost of the cell

which added it to the NEIGHBOURS. Here the constant cost

is taken as one. The costs of the cells are stored in COST

matrix with the same dimensions of the map. Then after

adding the new neighbor cells, old checked cells are pulled

out of NEIGHBOURS. This prevents checking the checked

cells again. When the destination cell is added to the

NEIGHBOURS, to find the shortest path you just follow from

the destination cell to the starting cell step by step by the

decreasing cost of the cells from the cost-matrix if the

NEIGHBOURS is empty anytime, this means there is no

possible paths.

4.2.1 Summary of breadth-first algorithm
The total procedure of the breadth-first algorithm can be

summarized as follows:

i) Define the starting and destination cells

ii) Load the map matrix

iii) Add the starting cell to NEIGHBOURS

iv) Add the neighbor cells to NEIGHBOURS

v) If NEIGHBOURS is empty, no possible path

vi) If destination cell is added to NEIGHBOURS,

define the PATH using map matrix. Else compute

the cost of neighbor cells

vii) Pull out the checked cells from NEIGHBOURS

viii) Go to step iv.

4.2.2 Advantages of breadth-first algorithm
The breadth-first algorithm is simple to implement. It doesn’t

require too much matrix operations and also doesn’t need to

use the location of the destination cell (an advantage if the

location of the destination isn’t defined). This algorithm is

quite good for our water surrounded case scenario.

4.2.3 Disadvantages of breadth-first algorithm
Although the breadth-first is good enough to be used in our

proposed system but still it have two major drawbacks:

i) One has to search all the available traversable cells

until the destination cell is found. So in large maps

or in real case scenario it needs very large

computational space.

ii) It is impossible to define cells with different costs.

4.3 The Dijkstra Algorithm
This algorithm is almost similar to the breadth-first algorithm

but it overcomes a major disadvantage of previous algorithm.

It can do the computation of different cost cells. That means it

can not only find the shortest path but also the lowest cost

path. In this algorithm, again the array of the all neighbor cell

NEIGHBOURS exists. Here at starting the neighbors of the

starting cell are added to the NEIGHBOURS. Then the costs

of the neighbors are calculated. These costs are the costs of

moving from starting cell to neighbor cells. Neighbor cells are

checked according to their calculated costs. When a cell with

the lowest cost is found the neighbors of this cell is added to

NEIGHBOURS. That means the lowest cost becomes the

comparison criterion. For these new cells the cost from

starting cell to these cells are calculated and again the

neighbors of the lowest cost cell is added to the

 NEIGHBOURS. This procedure goes on until the destination

cell is added to the NEIGHBOURS. When the destination cell

is added to the NEIGHBOURS, following the parents of the

cells from the destination cell to the starting cell gives the

shortest and the lowest cost path. If the NEIGHBOURS is

empty anytime, it means that there are no possible paths.

4.3.1 Summary of dijkstra algorithm
The total procedure of the breadth-first algorithm can be

summarized as follows:

i) Define the starting and destination cells

ii) Load map matrix

iii) Add the starting cell to NEIGHBOURS

iv) Add the neighbor cells to NEIGHBOURS compute

the costs, record their parent cell to PARENTS

v) If NEIGHBOURS is empty, no possible path

vi) If destination cell is added to NEIGHBOURS define

the PATH using PARENTS matrix. Else go on

vii) If neighbor cell is added NEIGHBOURS before

find its new cost and compare to its old cost. If it is

lower, update the cost and PARENTS matrix

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.2, May 2012

53

viii) Pull out the checked cells from NEIGHBOURS

ix) Go to step iv.

4.3.2 Advantages of dijkstra algorithm

The lowest cost criterion and the ability of computing

different cost cells makes this algorithm very efficient in large

and different cost terrain maps. These two properties are very

crucial for our proposed system. As the proposed system has

to navigate through water-borne disaster affected areas, the

ability to compute different cost cell makes it a natural choice.

4.3.3 Disadvantages of dijkstra algorithm
Although his lowest cost criterion obtains the shortest path but

it has two problems:

i) NEIGHBOURS array has to be sorted according to

the costs and the new neighbor cells have to be

located in the right place in the NEIGHBOURS.

And in order to locate the new cells and in order to

find the shortest and the lowest cost path the parents

of the neighbor cells have to be stored in PARENTS

array.

ii) And yet again if the cost of the neighbor cell is

lower than its parent cell the neighbor becomes the

parent and the costs have to be re-computed.

4.4 A* (A Star) Algorithm
This is the most common and efficient used algorithm in

shortest path finding problems.

Fig 5: A* Algorithm

For this new algorithm we need to define two list arrays:

i) NEIGHBOURS

ii) CHECKED CELLS

NEIGHBOURS array does the same work and where

CHECKED CELLS array holds the cells that have already

been checked. Again as previous algorithms first the

neighbors of the starting cell are added to the NEIGHBOURS.

And like dijkstra these cells are checked according to their

costs. But this time two cost functions exist.

i) S = cost of moving from the starting cell to the

current cell

ii) D = cost of moving from the current cell to the

destination cell

Cost at any point n, C(n)=S(n) + D(n).

The cost function S can be calculated but the cost function D

can just be estimated. That’s why this cost function is called

heuristic cost function. There are several methods for this

estimation. As for our case i.e. 4-adjacent traversable cells

Manhattan method is the most used method.

D(currentcell)=|currentX-destinationX|+|currentY-destinationY|

This method directs the search to the destination cell. The

total cost function C = S + D is the comparison criterion for

the cells. NEIGHBOURS has to be sorted and in addition as

the comparison criterion the C cost array has to be sorted. The

parents of the neighbor cells are stored in PARENTS array.

Again in this algorithm if the cell exists in NEIGHBOURS its

new cost must be compared to the old cost. If it is lower the

cell becomes the parent and S and C costs must be re-

calculated. The checked cells are placed in the CHECKED

CELLS. Again after the destination cell is added to

NEIGHBOURS, following the parent cells gives the shortest

path. Just like the previous cases if the NEIGHBOURS is

empty at anytime, it means that there is no possible path [12].

4.4.1 Summary of A* algorithm
The algorithm can be summarized as follows:

i) Define the starting and destination cell

ii) Load the map matrix

iii) Add the starting cell to NEIGHBOURS

iv) Add the staring cell to CHECKED CELLS

v) Add the neighbor cells to NEIGHBOURS: - If

traversable; - If not in NEIGHBOURS before; - If

not in CHECKED CELLS; With the order compute

S, D and C cost function values. Record the parent

to PARENTS matrix. Locate the C cost function

value in the right place- If in NEIGHBOURS

before; Compute the S cost function value. If it is

better than the old value, chance the parent with this

parent in PARENTS matrix. Update S and C cost

functions

vi) If NEIGHBOURS is empty, no possible path

vii) If the destination cell is added to NEIGHBOURS

define the PATH using PARENTS matrix

viii) Find the lowest cost neighbor cell. Add it to

CHECKED CELLS and continue the search on this

cell

ix) Pull out the checked cells from NEIGHBOURS. Go

to step v.

4.4.2 Advantages of A* algorithm
This algorithm is the most efficient algorithm because it uses

both the shortest path information from starting cell and the

shortest path information to the destination cell.

4.4.3 Disadvantages of A* algorithm
This algorithm cannot be used if the location of the

destination cell is not unknown.

5. MULTI-DESTINATION CELLS
All of above algorithms are described for cases like one

starting cell - one destination cell. But in practical cases of a

rescue mission one starting cell-multiple destination cells

without the importance of destination cells order are most

likely. A single RB may have to perform rescue of more than

one EB. There is no order between the EB’s. In such cases all

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.2, May 2012

54

possible paths have to be calculated. First n! Paths between

the points (n = number of destination points, |AB1|, |AB2 |,

|AB3| , |B1B2| , |B1B3| , |B2B3|) have to calculated and then

the shortest path from starting point to multi-destination

points (all points have to be visited once) have to calculated.

Fig 6: One starting - multi-destination points (S: starting

point , G1-G2-G3 : destination points)

This is a most known problem Traveling Salesman Problem

(TSP) in graph theory [18, 19]. As like a traveler salesman has

to visit a number of towns once and has to turn back to the

starting town. The number of entire paths that has to be

calculated is (n-1)!/2 (n: number of destination points+1).

This number is 3 for 3 destination points but for 10

destination points this number becomes 18,14,400. Total

computation time for this number is not acceptable and some

techniques are used to decrease the number of computation.

This subject is not destination of our paper and some useful

resources can be found in [18, 19].

6. Result and Simulation
All the simulation works are mainly divided into two groups.

i) One starting cell - One destination cell

ii) One starting cell - multiple destination cells

At first the algorithms are compared for one starting-one

destination cells. As mentioned before, the breadth-first

algorithm is lack of computing different cost cells. So two

types of maps are used for this group. One that only has same

cost cells (Breadth-first, Dijkstra and A*) and another one for

different cost cells (Dijkstra , A*).

Fig 7: Same cost cell-map and path found by breadth-first

algorithm

Fig 8: Same cost cell-map and path found by dijkstra

algorithm

Fig 9: Same cost cell-map and path found by A* algorithm

Table-1 lists the comparison of algorithms for CPU time, the

sum of the cells, the cells visited, and the path cells. It can

be seen that although the Breadth-first algorithm visits more

cells, its CPU time is better than Dijkstra and A*.

The cause of this efficiency is the simplicity. Dijkstra and A*

algorithm need a lot of matrix operations and in a map with

same cost cells, the costs of the cells must be updated very

frequently.

Table 1. Comparison of algorithms for same cost cell-map

Algorithm CPU Time (s)
Sum of the

cells visited

Sum of the

path cells

Breadth-First 1.078 43002 506

Dijkstra 2.625 43004 506

A* 2.297 25134 506

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.2, May 2012

55

Fig 10: Different cost cell-map and found path by dijkstra

Fig 11: Different cost cell-map and found path by A*

Fig. 10 and Fig. 11 show the maps with different cost cells

and the paths for the algorithms. We kept the dimensions

similar to the same cost map. The starting cell is at (3, 3) and

destination cell is at (255, 255). This map is manually created

and different shades of grey define different costs. Finally the

black curve shows the path found.

Table-2 lists the comparison of algorithms for CPU time, sum

of the cells, the cells visited, the path cells and cost sum of the

path cells. It can be seen from the table that A* algorithm

doesn’t give the shortest and the lowest cost path. The quality

of A* algorithm depends on the quality of the heuristic cost

function D. If D is close to the true cost of the remaining path,

A* algorithm guarantees finding the shortest and lowest cost

path. In other condition A* gives no guarantee but it is still

efficient.

Table 2. Comparison of algorithms for different cost-cell

map

Algorithm
CPU Time

(s)
Sum of the

cells visited

Sum of the

path cells

Cost sum

of the

path cells

Dijkstra 2.097 35280 537 6970

A* 1.718 26990 545 7000

From the tabular data shown in table 2 we can see that the

cost sum of the path cells found by A* is 0.4% higher than

Dijkstra’s but it is 21.9% faster and it needs 30.7% less

memory according to the sum of the cells visited.

In the second group algorithms are compared for one

starting-multi destination cells. Here the map with different

cost cells is used. Three destination cells are defined on the

map. The coordinates of starting cell and destination cells

are given below.

A: (3,3) B1: (120,5) B2: (190,140) B3: (70,185)

Fig 12: Maps and path for multi destination with dijkstra

Fig 13: Maps and path for multi destination with A*

Fig. 12 and Fig. 13 show the maps and the found path for

dijkstra and A* algorithms. Table 3 lists the comparison of

algorithms for different start-destination points , CPU times ,

sum of the path cells cost sum of the path cells and selected

path ,total CPU time , sum of the path cells and the cost sum

of the path cells.

This time A* gives the shortest path. It can be seen that the

total CPU times are very close. This result comes from the

advantage of computing paths using visited cells. In dijkstra

|AB1|, |AB3| and |B1B2| cells are visited in the previous path

and there is no need to re-compute the cells. A* is lack of this

advantage but it is still more efficient in operations [12].

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.2, May 2012

56

Table 3. Comparison of Dijkstra and A* algorithms

Algorithm

Start

Destination

points

(farthest)

CPU

Time

(s)

Sum

of

the

path

cells

Cost

sum

of the

path

cells

Dijkstra

|SG2| 1.453 359 4770

|SG1|* 0.078 198 2900

|SG3|* 0.094 276 4220

|G1G3| 1.594 265 3380

|G1G2|** 0.078 210 2490

|G2G3| 1.875 198 2820

* visited in |SG2| **visited in |G1G3|

Selected Path

Total

CPU

Time

(s)

Sum

of

the

path

cells

Cost

sum

of the

path

cells

|SG1|- |G1G2|-|G2G3|-|G3S| 5.172 882 12430

Algorithm

Start

Destination

points

(farthest)

CPU

Time

(s)

Sum

of

the

path

cells

Cost

sum

of the

path

cells

A*

|SG2| 1.156 359 4770

|SG1| 0.672 200 2900

|SG3| 0.953 272 4220

|G1G3| 0.891 265 3380

|G1G2| 0.704 210 2490

|G2G3| 0.781 198 2820

Selected Path

Total

CPU

Time

(s)

Sum

of

the

path

cells

Cost

sum

of the

path

cells

|SG1|- |G1G2|-|G2G3|-|G3S| 5.157 880 12430

7. CONCLUSION
All the algorithms presented in this paper have some

computational advantages in path planning for multi-

destination cells. They seem to find the shortest path between

starting and destination cells but in fact these algorithms can

find all the shortest paths from the starting cell to all visited

cells. So we had to examine Breadth-first, Dijkstra and A*

discreetly. Now Breadth-first and Dijkstra don’t use the

location of the destination point in the computations that’s

why they can find all the shortest paths for all visited cells.

Where as A* can find paths for all visited cells but doesn’t

guarantee the shortest path because A* uses the location of

the destination point in its computation. This benefit gives

Breadth-first and Dijkstra one computational advantage. If the

destination cell is not in the visited cells, the computation for

the shortest path between cells to cell has to be repeated. In

these types of computations, starting the computation between

the most far destination cells can give an advantage.

In this paper we have discussed the path planning part of a

total water-borne rescue system by comparing, simulating

four path planning algorithms on grip based map for both one

starting - one destination cell and one starting - multi

destination cells. From the tabular and graphical results of the

experiments and the inferences from the algorithms, we

found some important information for path planning for maps

with same cost cells, different cost cells and with one

starting - one destination and one starting - multi destination

cells. For maps with same cost cells, with one starting-one

destination cell and multi destination cells, using Breadth-first

algorithm is the best if the computational time is the primary

desire criteria. But if the size of memory is the major criteria

then using A* can be a better alternative. For maps with

different cost cells and with one starting - one destination cell

A* is best in both computational time and size of memory.

But the heuristic cost function D for A* must be chosen in

order to find the shortest and lowest cost path. Again for maps

with different cost cells and with one starting-multi

destination cells A* is best in computational time with no

certainty for the shortest path. But it must be understood that

Dijkstra, using visited cells advantage especially in

enormous multi-destination cells and shortest path

guarantee, can be a good choice for these maps.

The algorithms used 4-adjacent traversable cells related to the

mobile robot. If a mobile robot with more movement abilities

is accepted, using 8- and 16- adjacent traversable cells give

better results. Again in our simulation A* uses Manhattan

method as the heuristic function. Using other functions can

also give better results. In future instead of using manually

drawn map, it is planned to use real geographical maps to get

more realistic and practical results.

8. ACKNOWLEDGMENTS
We would like express out heartiest thank to Tolga Yüksel,

Abdullah Sezgin of Ondokuz Mays University, Kurupelit,

Samsun, Turkey for their helpful discussions and

encouragements to apply their simulations into some practical

life saving automated rescue system.

9. REFERENCES
[1] Chou Wusheng; Wang Tianmiao; You Song; "Sensor-

based autonomous control for telerobotic system,"

Intelligent Control and Automation, 2002. Proceedings

of the 4th World Congress on, vol.3, no., pp. 2430- 2434

vol.3, 2002.

[2] S.M.M.R Al-Arif, N. Quader, A.M. Shaon and K.K.

Islam, “Sensor based autonomous medical nanorobots: A

cure to demyelination”; Cyber Journals:

Multidisciplinary Journals in Science and Technology,

Journal of Selected Areas in Nanotechnology (JSAN),

page: 1-7; Vol. 2, No. 11 September Edition, 2011.

[3] Quader, N.; Al-Arif, S.M.M.R.; Shaon, M.A.M.; Islam,

K.K.; Ridwan, A.R.; “Control of Autonomous

Nanorobots in Neural Network”; 4th International

Conference on Biomedical Engineering and Informatics

(BMEI 2011), 15-17 Oct. 2011; Shanghai, China; Vol.:

3; pp. 1399-1402.

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.2, May 2012

57

[4] S. M. Masudur Rahman Al-Arif; “Control System for

Autonomous Medical Nanorobots”; International

Conference on Biomedical Engineering (ICoBE 2012);

27 - 28 February 2012; Perlis, Malaysia. pp. 161-164.

[5] Miyama, S.; Imai, M.; Anzai, Y.; “Rescue robot

under disaster situation: position acquisition with Omni-

directional Sensor”, IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2003. (IROS 2003),

27-31 Oct. 2003, vol.3, pp. 3132 – 3137.

[6] Yin Chao, Wang Hongxia, “Developed Dijkstra shortest

path search algorithm and simulation”, International

Conference on Computer Design and Applications

(ICCDA), 2010, 25-27 June 2010, vol.1, pp. 116-119.

[7] Hwan Il Kang, Byunghee Lee, Kabil Kim, “Path

Planning Algorithm Using the Particle Swarm

Optimization and the Improved Dijkstra Algorithm”,

Pacific-Asia Workshop on Computational Intelligence

and Industrial Application, 2008. PACIIA '08, 19-20

Dec. 2008, vol.2, pp.1002-1004.

[8] Zhang Fuhao, Liu Jiping, “An Algorithm of Shortest

Path Based on Dijkstra for Huge Data”, 6th International

Conference on Fuzzy Systems and Knowledge

Discovery, 2009. FSKD '09, 14-16 Aug. 2009, vol.4,

pp.244-247.

[9] Xiang Liu, Daoxiong Gong, “A comparative study of A-

star algorithms for search and rescue in perfect maze”,

International Conference on Electric Information and

Control Engineering (ICEICE), 2011, 15-17 April 2011,

pp. 24-27.

[10] Woo-Jin Seo, Seung-Ho Ok, Jin-Ho Ahn, Sungho Kang,

Byungin Moon, “Study on the hazardous blocked

synthetic value and the optimization route of hazardous

material transportation network based on A-star

algorithm”, 5th International Joint Conference on INC,

IMS and IDC, 2009. NCM '09, 25-27 Aug. 2009, pp.

1499 –1502.

[11] Ma Changxi, Diao Aixia, Chen Zhizhong, Qi Bo, “Study

on the hazardous blocked synthetic value and the

optimization route of hazardous material transportation

network based on A-star algorithm”, 7th International

Conference on Natural Computation, 26-28 July 2011,

vol.4, pp. 2292 – 2294.

[12] Tolga Yüksel, Abdullah Sezgin; “An Implementation Of

Path Planning Algorithms For Mobile Robots On A Grid

Based Map”, Publisher: Citeseer, 2008.

[13] Mobedi, B.; Nejat, G.; , "3-D Active Sensing in Time-

Critical Urban Search and Rescue Missions,"

IEEE/ASME Transactions on Mechatronics, vol.99,

pp.1-9.

[14] Yibiao Lu; Xiaoming Huo; Arslan, O.; Tsiotras, P.; ,

"Incremental Multi-Scale Search Algorithm for Dynamic

Path Planning With Low Worst-Case Complexity," IEEE

Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, vol.41, no.6, pp.1556-1570, Dec. 2011.

[15] Selamat, A.; Zolfpour-Arokhlo, M.; Hashim, S.Z.;

Selamat, M.H.; "A fast path planning algorithm for route

guidance system," 2011 IEEE International Conference

on Systems, Man, and Cybernetics (SMC), pp.2773-

2778, 9-12 Oct. 2011.

[16] K. Manley, “Pathfinding : From A* to LPA”, seminar,

21 Apr 2003, Available online: http://csci.mrs.umn.edu/

UMMCSciWiki/pub/CSci3903s03/KellysPaper/seminar.

pdf

[17] B. Stout, ” Smart Moves :Intelligent Pathfinding ”, Game

Developer, October 1996; Available online: www.gamas

utra.com/features/19970801/pathfinding.htm

[18] D. Appplegate, R Bixby, C. Chvatal, W. Cook, “ Solving

Traveling Salesman Problem ”, Available online:

www.tsp.gatech.edu

[19] K. Hoffman, “Traveling Salesman Problem”, Available

online:http://iris.gmu.edu/~khoffman/papers/trav_salesm

an.html.

