
International Journal of Computer Applications (0975 – 8887)

Volume 45– No.2, May 2012

44

Open-Gate: An Efficient Middleware System for

Heterogeneous Distributed Databases

Naglaa M. Reda
Faculty of Science

Ain Shams University

 Fayed F. M. Ghaleb
Faculty of Science

Ain Shams University

ABSTRACT

Middleware has become an essential component for almost

every distributed database system. It uses wrappers when

integration is achieved for heterogeneity. Different middleware

systems have been produced aiming for a better performance. In

this paper a new middleware system for heterogeneous

distributed databases (HDDBs) called Open-Gate is proposed.

Its main objective is to provide an efficient system with the

characteristics of autonomy, scalability, reliability, and high

performance. In addition, it can handle a huge number of users

overcoming the bottleneck problem or loss of user’s queries.

Experimental results show that, the proposed system achieved

high performance compared to other systems.

General Terms

Database, Distributed computing.

Keywords

Heterogeneous distributed database; middleware; wrapper.

1. INTRODUCTION
Currently middleware is an essential component for almost any

type of distributed environment and networked applications.

Starting from the hardware infrastructure and run-time support

all the way up to the applications, middleware solutions provide

endless possibilities to support applications requirements both

functional (i.e. the main processes of the system that will

generate the required outputs) and non-functional (i.e. those that

define how the system will perform in terms of overall

performance, reliability, scalability, etc.).

Database middleware systems [1], [2] are used to integrate

heterogeneous data sources dispersed over a computer network.

They impose a global data schema on top of the individual

schemas used by each source. This mechanism provides user

applications with a uniform view and access interface to the

data sets stored by each data source. The translation of the data

items to the global schema is performed by either a wrapper or

database gateway. Wrappers are used when integration is

achieved through a mediator system, such as COIN [3],

TSIMMIS [4], DISCO [5], Garlic [6], MOCHA [7], SQMD [8],

AMIS [9], OGSA-DAI [10], and OGSA-DQP [11].

Unfortunately, most mediators suffer from the bottleneck

problem. This paper proposes a new middleware system Open-

Gate that takes advantage of the benefits provided by using the

wrapper (IWRAP) established in [12] to handle this problem

properly, in addition to accomplishing other important features.

The rest of this paper is organized as follows: Section 2

discusses the needed system environment. Section 3 describes

the architecture of the proposed middleware system. Section 4

presents a detailed discussion on the system’s storages. The

system components including the manager, the global

integrator, the query processor and the data collector are

discussed in Section 5. The performance evaluation is

summarized in section 6. The main characteristics of the system

are introduced in Section 7. Conclusions are given in Section 8.

2. THE SYSTEM ENVIRONMENT
Since Open-Gate needs a special environment to work with. In

the following the elements that suites the system is discussed.

2.1. Users Interfaces
Generally, interfaces for users of the system to access data in

HDDBS must be provided. Mostly, the interfaces include GUI

[13] for users to pose queries against the database schema and

visualize their results. It also includes APIs [14] for

programmers to develop complicated applications. Queries are

formulated in a generic form and evaluated by the system. So

the Open-Gate system parses the issued queries and provides it

with the distribution information from the integrated schema,

accesses the data sources, gets requests throughout IWRAP, and

convert them into the format that can be displayed to the users.

Open-Gate provides users with two privileges. First, they are

not concerned of the location of the data and what is done in the

middleware system. Second, they don’t have to learn a new

query language. In addition, their queries will never be lost.

And that is why it is called Open-Gate.

2.2. Data Sources
Open-Gate is developed for heterogeneous distributed data

sources that have different operating systems, DBMSs, or query

languages. Each data source must have the IWRAP wrapper.

IWRAP acts as an interface for the middleware that interacts

with each data source and fetches data result. It also provides

other especial services such as query translation and schema

integration which improve the system overall performance.

3. THE PROPOSED OPEN-GATE

ARCHITECTURE

The Open-Gate’s main goal is to provide users with an efficient,

reliable, scalable, and autonomous HDDB middleware system

with high performance. This is achieved by the new proposed

middleware system introduced in the following. It consists of

four different components.

• The manager: it plays the role of controlling. It manages the

work of the other components composing the Open-Gate and

the storages. It is also the basic component that deals with

users and coordinates between their requests.

• The global integrator: its main job is to collect the local

schemas from each IWRAP and then integrates them forming

a global schema. Any change in any local schema will

replicated by this component to form a new global schema.

• The query processor: it accepts queries from the manager.

Each query that enter this component must be subjected to

some processing, translating, fragmenting, optimizing, and

deciding for each fragment what IWRAP it should be sent to.

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.2, May 2012

45

• The data collector: it is responsible for composing the final

data result that must be sent to the requesting user. This is

done by collecting the partial data resulting from every

IWRAP and emerging them.

Also, the system needs two storages. The storage queue is used

to store queries. And the data cache storage is used to store data

results. The architecture showing the interaction between the

system components, the storages, the users, and the wrappers is

presented in fig. 1.

Fig. 1: Open-Gate architecture

4. OPEN-GATE STORAGE

Open-Gate has a new feature that doesn’t exist in other systems.

It preserves queries that have been processed with their resulted

data. So if any user poses one of these queries, the system will

directly replay the stored data without reprocessing. Another

feature of Open-Gate is storing queries in a queue for keeping

them from lost and preserving their ordering. In the following,

an explanation of the storages needed to accomplish these

features is presented.

4.1. The Query Queue

The query queue (QU) is a repository for queries that are sent

by users. It is used by the system to make a control on all

queries sent by users simultaneously and preserves them from

lost. It organizes queries depending on the principle of ”First in

First out”, but it gives a priority to the administrator. This is

done by saving administrator’s queries marked by the manager

component in a separate repository to distinguish them from the

ordinary ones. QU Interacts only with the manager component.

It receives queries and verifies for their existence in its

repository SQ. If a query doesn’t exist then QU save it after

giving it an ID number specifying its user so that each user can

get his requested query. On the other hand, if a query exists in

its repository, it simply leaves it to take its role for processing

and adds the new user’s ID to its IDs list. Marked queries are

saved in another repository SQ* in its role. Whenever the

manger component asks for a query to be processed, QU gives

it the first query in SQ* if it exists, otherwise it returns the first

query in SQ. These services are done by the following steps.

• Whenever a query Q is sent from the manager component

(MG), QU accepts it.

• If the query Q is marked then QU inserts it in its role at the

end of the administrators’ repository SQ*.

• For not controlled query Q, it verifies if Q doesn’t exist in the

repository SQ, then it saves Q in its role at the end of the

repository SQ with its ID number. Otherwise QU saves the ID

of the new user in the list L containing other user’s IDs that

poses Q.

• As MG sends a request, QU replies the first query existing in

its administrators’ repository SQ* if it is not empty, otherwise

QU returns the query at SQ front.

The proposed algorithm for achieving these services is shown in

Algorithm 1.

ALGORITHM 1 Query queue

Input: Query Q, user’ ID ID, request R

Output: Query Q

1: Receive Q from MG

2: if Q =Q* then

3: Enqueue (Q, SQ*)

4: else

5: if Q Not in SQ then

6: Enqueue (Q , SQ)

7: Insert (ID , L)

8: end if

9: end if

10: Receive R from MG

11: if not Empty (SQ*) then

12: Dequeue (Q, SQ*)

13: else

14: Dequeue (Q, SQ)

15: Send Q to MG

16: end if

4.2. The Data Cache
The data cache storage (DCH) is a huge memory for storing

queries and its data result; where each query entered the

mediator is stored in DCH with its user’s IDs list L. Open-Gate

uses it for two main purposes. First, it works as a store for all

processed queries with their data so that when MG requests one

of them, it simply passes its saved data.

Second, it works as a mediator between the data collector

component (DTC) and the manager. As the collected data result

is received from DTC, saved with its current processed query,

and passed to MG by DCH. This work is accomplished by the

following steps. The DCH steps are given in algorithm 2.

ALGORITHM 2 Data cache

Input: Query Q, user’ ID ID, data result DR

Output: data result - DR

1: Receive Q from MG

2: if Q = _ then

3: Clear DCH

4: else

5: if Q 2 DCH then

6: Get DR from DCH

7: else

8: Save Q in DCH

9: Insert (ID, L)

10: Receive DR from DTC

11: Save DR with its Q

12: end if

13: Send DR to MG

14: end if

• When DCH receives a query from MG, it tastes the query if it

is empty then it clears its repository.

• Otherwise, it searches in its repository for this query, If the

query exists in DCH’s repository then its data is sent to MG

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.2, May 2012

46

to be passed to its suitable user, otherwise it is saved in the

respiratory, and inserts the user’s ID in L.

• After the query is processed, and the data is collected by DTC,

DCH receives this final data result from DTC.

• Finally, DCH saves this data result with its query and sends it

to MG for sending it to its requester.

5. OPEN-GATE COMPONENETS
As mentioned above, Open-Gate is composed of four main

components: the manager; the global integrator; the query

processor; and the data collector. This section presents a

detailed study of them including their algorithms.

5.1. The Manager
The manager component MG is the principle component of

Open-Gate. It manages the overall work of the system. For

users, they interact with the system through MG using GUI or

API interfaces to pass their queries and get their results. Also

any change happen to the schema is reflected to them. As for

administrators, they send their control queries to MG to be

marked and processed directly. While for the global integrated

schema (GS), it is always sent from the global integrator

component (GI) to provide MG with the up-to-date copy that

support users’ interfaces with it. Also for AUI, it is sent to each

IWRAP by MG with an ID for each user to control the whole

process. And for storages, MG clears the data cache storage

DCH if it receives an empty query. Then it cheeks-up DCH for

each entered query, if it exits then MG returns the data result to

the user request, and stores the query with its data in DCH.

Otherwise MG sends this query to the query queue storage QU

to stand in line, save a copy in DCH, and add the user’s ID to its

ID’s list L. Finally for query processing, MG gets queries from

QU one by one for processing, sends them simultaneously to

the query processing component (QP) for fetching the desired

data, and gets the collected data result from the data cache DCH

to send them to the user.

The following steps show how MG does his work properly.

These steps are illustrated in an algorithm 3.

• It receives GS from GI component for providing a copy of its

global schema to the users’ interfaces.

• It sends to every IWRAP on each data source, AUIs of users,

and provides each user with an ID number.

• If it receives a new GS, then it sends an empty query to DCH

indicating that the GS has changed, and sends a copy of GS to

user’s interface.

• When it gets a query Q, it checks if Q is from the

administrator then it is marked, and sent to QU.

• If the query is not from admin. It sends a copy of Q to DCH

with the user’s ID.

• If a data result (DR) is received from DCH, then it returns DR

to the users, otherwise, it sends the query to take its role in

QU.

• Then it sends a request R to QU, gets a query Q’ from QU and

sends it to QP for processing and fetching data result from

data sources.

• Finally, it gets data result from DCH to be sent to all users

whose ID is in L. Then disconnect.

ALGORITHM 3 Manager

Input: Query Q, user’ ID ID, global schema GS,

 data result DR

Output: Global schema GS, query Q, data result DR

1: Receive GS from GI

2: Connect DTS via IWRAPs

3: Send AUI to IWRAPs

4: if Receive GS from GI then

5: Send Q = _ to DCH

6: Send GS to user interface

7: end if

8: Receive Q from user with ID

9: if ID = administrator’s ID then

10: Mark Q=Q*

11: Send Q to QU

12: else

13: Send Q and ID to DCH

14: end if

15: if Receive DR from DCH then

16: Go to step 23

17: else

18: Send Q to QU

19: end if

20: Send R to QU

21: Receive Q’ from QU

22: Send Q’ to QP

23: Receive DR from DCH

24: for all id in L do

25: Send DR to user ID

26: end for

27: Disconnect DTS

5.2. The Global Integrator
The global integrator component (GI) includes the global

conceptual schema which comes from integrating all local

schemas distributed over sites participating in the distributed

system. GI includes the information of data distribution such as

address and specifications of vertical and horizontal

fragmentations (schema map) for allocating it at each site in the

system. It also includes the access interface information for

each data source that enables the users to transparently access

the data sources no matter if they are stored remotely or locally

or can be accessed by means of SQL or APIs. With this

mechanism, users serviced by the middleware system are

provided with a uniform view and access interface to the data

stored on each data source. When GI gets the local schemas

from each data source throughout its wrapper IWRAP, it gives

an ID for each wrapper to connect each one with its schema and

its information. After receiving all local schemas, GI merges

these schemas to form the global schema. Any changes in any

local schema are transformed to GI to change the global

schema. Whenever a data source is disconnected or added it

will be reflected on the global schema by GI. The new global

schema is always sent to MG to provide interfaces with the new

global schema to make users up to date with data sources. Also

data sources’ information and location of data are sent to QP.

GI accomplishes its service by the following steps and

Algorithm 4 shows how this is done.

• It receives the local schema of each data source.

• It saves in its database all information and localization of data

for each data source.

• It ingrates these local schemas forming a global schema.

• It sends the global schema to MG.

• When any change happen in any local schema, GI well update

the global schema, and send it to MG.

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.2, May 2012

47

• When it receives a schema request (SR) from QP, it sends a

schema map (SM).

ALGORITHM 4 Global integrator

Input: Local schemas LS, no. of wrappers n,

 Schema request SR

Output: Global schema GS, schema map SM

1: for i:=1 to n do

2: Get LS i from IWRAPi

3: end for

4: Integrate LS i:1→ n to GS

5: Send GS to MG

6: if change LS i:1→ n then

7: Receive updated LSi

8: GOTO step 4

9: end if

10: Receive SR from QP

11: Send SM to QP

5.3. The Query Processer
The query processer component (QP) is the middle-tier

component that controls the execution of all the queries and

commands received from the user throughout the manager

component MG. The main goal of QP is decomposing the query

into fragments and finding the corresponding location for each

data item which can handle the request. The choice of the best

fragmentation and execution for the query is done by applying

special optimization techniques. Fragmentation process is also

guided by information about the data sources and the schema

map which are requested from the global integrator component

GI. This information is also sent to the data collector

component DTC as a base to the process of recomposing

results.

As all query processing component; QP provides the services:

query parsing; query optimization, and query execution. When

a query is entered from client as standard SQL query or user’s

familiar query language, QP parses it to an algebraic

expression, and then it provides an optimal query plan that will

be executed efficiently and gets the wanted data from its data

sources. Algorithm 5 represents the QP’s work.

The main tasks of QP are illustrated in the following steps.

• It receives a query from MG component for processing.

• It requests the global integrator component GI to get the last

copy of schema map SM to be used for choosing the optimal

fragmentation for the query.

• It processes the query by translating the query to an algebraic

form, fragmenting the query, and specifying the suitable

location for each fragment.

• It sends query fragments to its specific IWRAP.

• Finally, it sends the fragmentation information to the data

collector component DTC.

ALGORITHM 5 The query processer algorithm

Input: Schema map SM, query Q

Output: Schema request SR, query fragments QF,

 no. of wrappers n, fragments information FI

1: Receive Q from MG

2: Send SR to GI

3: Receive SM from GI

4: Process Q

5: for i:=1 to n do

6: Send QFi to IWRAPi

7: end for

8: Send FI to DTC

5.4. The Data Collector
The data collector DTC plays a serious role in the Open- Gate

system. Its main aim is to collect the data result from all

IWRAP wrappers, merge them to form one data result, and send

this combined data result to DTC, which in turn sends these

data to the requested users throughout MG.

While merging the partials data received from each wrapper

data results for one fragmented query, DTC depends on the

information of fragmentations that is sent from QP. It also uses

some of union operations and clustering algorithm [1]. This is

done by the following steps. The data collector algorithm is

presented in Algorithm 6.

ALGORITHM 6 Data collector

Input: Fragment information FI, no. of wrappers n, partial

data results PDR

Output: data result DR

1: if FI then

2: Receive FI from QP

3: end if

4: for i:=1 to n do

5: Receive PDRi from IWRAPi

6: end for

7: Merge PDRi to DR

8: Send DR to DCH

• When there is fragment information FI, DTC receives it from

QP.

• Then, it receives the partials data results from each IWRAP

that has a data.

• As DTC has all parts, it merges them to form the final data

result for this query.

• Finally, it sends the final data result to DCH.

6. PERFORMANCE EVALUATION
The performance of the introduced middleware system Open-

Gate has been evaluated practically. All of its components have

been built by the Java 6 using Eclipse Galileo version [15].

IWRAP was installed on six deferent data sources using (Linux-

Redhat11 and windows-XP) operating systems. Their random

access memory is 2 GB; their hard disk storage is 80 GB, with

speed 2000/3000 MHZ. The amount of data Distributed over

the six data sources was about 70 GB and the origin middleware

system was AMIS [9]. They include data sets describing

information of employees, products, stores, and agents for

companies. Some of these data sources use the object oriented

database system Oracle while the rest uses the relational

database system SQL-server. As a case study, the chosen

standard type of the integrated schema was the object oriented.

Also the entered queries were relational ones including different

functions such as select, project, join, and aggregate functions.

Various queries have been experimentally tested. For

comparison, the processing time has been calculated for the two

systems as the number of data sources increases from 1 to 6.

Figure 1 shows their average performance variation.

Fig 1: Performance comparison

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.2, May 2012

48

Performance measurements prove that the Open-Gate average

performance is much better whenever a new data source is

added. This is because of two reasons. First, it takes advantage

of the computer power of each data source by partitioning the

schema integration or query translation computations over all

DTSs. Second, it doesn't suffer from network bandwidth as the

AMIS does since it eliminates most of communications

between the wrapper and DTSs.

7. OPEN-GATE CHARACTERSTICS
The Open-Gate system has the characteristics that distinguish it

from other systems. It accomplishes the most important

promises of DDBS and overcomes some of its challenges. The

following subsections discuss how it does so.

7.1. Autonomy
Autonomy [1], [2] refers to the capacity of a component to

choose its own design and operational model. An autonomous

component is able to define the data that it wants to share with

other components, define the representation and naming of the

data elements, determine the way that it views the data and

combines existing data, decide when to enter or leave a

federation, specify whether to communicate with other

components, execute local operations without interference from

external operations, add new data and withdraw access to any

shared data.

Open-Gate is an autonomous system as it achieves the above

privileges. These privileges are provided by the GI component.

Since it gives the data source administrator the whole

responsibility to decide which data will be participating in the

global schema as he sends the local schema. Thus it frees the

data sources from concerning about its private data and how to

keep them far away from users accessing.

7.2. Scalability
The most crucial challenge that the design of an efficient

middleware in a distributed environment face is the

development of a distributed architecture for managing large

amounts of data stored in geographically distributed resources.

The efficiency of the system should not decline when the

amount of stored data and the number of data sources increase.

The system should scale well, providing reliable and concrete

services [16].

Some middleware systems like DISCO [5] scale well. It

provides special features for all users to deal with the problems

of scale. For the application programmer and end user, it

provides a new semantics for query processing to ease dealing

with unavailable data sources during query evaluation. For the

DBA, it models data sources as objects which permit powerful

modeling capability. In addition, DISCO supports type

transformations to ease the incorporation of new data sources

into a mediator, and provides a flexible wrapper interface to

ease the construction of wrappers. Also SQMD [8] focuses on

the issue of data scalability with the software architecture and

virtualization technology. But other systems such as MOCHA

[7] don’t achieve scalability. As a new site is added, it must

manage system-wide interactions.

On the other hand, the proposed Open-Gate system handles the

problem of scalability properly. Since the GI component always

gets local schemas from each data source. So when a new data

source is added to the system, it instantly sends its local schema

to GI after installing IWRAP on it. And GI by his turn

integrates this new schema with other schemas and directly

composes the updated global schema. This new global schema

is directly sent to the manager who simply passes it to all users.

7.3. Reliability
High reliability is critical for distributed systems. However,

achieving it at a reasonable cost can be a challenge, especially

in large-scale. Even when the devices are fairly reliable, failures

are frequent in such systems due to the large number of devices

they employ. Some researchers concentrate their efforts to

achieve high reliability like in [17].

The proposed system handles this challenge directly. When a

data source failed, it is instantly recognized. As the GI

component regularly inquires about any changes happening in

any of the data sources. If a data source failed then GI directly

omitted its local schema from the global schema, passes the

new global schema to the manger MG, to inform the users.

7.4. High Performance
In the last few years efforts have been made in enhancing the

performance of DDBSs by concentrating on the key challenges

in DDBs performance which are data allocation and high

communication cost. Several kinds of distributed approaches

have been implemented that reduce the amount of data

transferred during the run time, speeds up the database system

by maximizing the degree of parallel execution, minimize the

communication cost, and increase data availability and integrity

by replication of fragments where possible [18].

Open-Gate handles these challenges perfectly by installing

IWRAP on each data source to minimize the communication

cost and speed up the system as explained in [12].

Another factor that badly affects the system performance is

growing population of users which is not comparable to the

processing done. This situation causes significant congestion

around the communication network leading to the bottleneck

problem [19]. Open-Gate handles this situation perfectly. First,

the burden of query translation has been distributed over the

IWRAPs of the data sources. This reduces the load of

processing on the QP component and speeds up the processing

time which in turn leads to a higher performance compared to

other systems like AMIS [9] as proved experimentally in

previous section. Second, the use of QU component decreases

the load on the QP component by organizing queries. Also a

better performance is expected due to the data cache storage

DCH, since it replies data results to users directly for its stored

queries. Thus it saves the time of processing.

8. CONCLUSION
In this paper, Open-Gate a new middleware system for efficient

management and integration of heterogeneous distributed data

resources was proposed. The introduced architecture uses the

most promising wrapper IWRAP with each data source to

minimize the communication cost. It also avoids the

centralization of query translation by distributing this burden

over the multiple IWRAPs. This technique alleviates the

congestion bottleneck and speed up the system.

In addition, the system preserves processed queries with their

resulted data in data cache storage so as not to reprocess any of

them when possessed by other users. This new strategy makes

the system serves more users at less time. It also preserves

queries from lost by using queue storage.

Experiments prove that Open-Gate average performance is

much higher compared to AMIS system. It also scales very well

as the number of data sources increase. Moreover, analysis of

other existing systems indicates that the proposed architecture

provides a reliable, scalable and autonomous infrastructure that

meets the evolving user’s requirements.

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.2, May 2012

49

In the future, it is planned to extend Open-Gate system to

become a full-scale comprehensive DDBMS that implements

the functionality and techniques proposed in recent DDB

research, and emerge it as a commercially viable product. As

well as testing it on valuable and huge databases such as those

of Bioinformatics.

9. REFERENCES

[1] M. Tamer Özsu, "Principles of distributed database

systems", 3rd ed., Prentice Hall, USA, Jul. 2007.

[2] Ling Liu, M. Tamer Özsu, "Encyclopedia of Database

Systems", Springer US, USA, Sep. 2009.

[3] H. Zhu, S.E. Madnick, "Context interchange as a scalable

solution to interoperating amongst heterogeneous

dynamic services", in 3rd Workshop on eBusiness

(WEB), Washington, DC, 150-161, Dec. 2004.

[4] H. Garcia-Molina, Y. Papakonstantinou, D. Quass,

A.Rajaraman, Y. Sagiv, J.D. Ullman, V. Vassalos, and

J.Widom, “The TSIMMIS Approach to Mediation: Data

Models and Languages”, in Journal of Intelligent

Information Systems, vol. 8(2):117-132, Mar. 1997.

[5] Eric Freudenthal, Vijay Karamcheti, "DisCo: Middleware

for Securely Deploying Decomposable Services in Partly

Trusted Environments", in proceedings of 24th IEEE

International Conference on Distributed Computing

Systems (ICDCS'04), 494-503, Japan, Mar. 2004.

[6] M. Tork Roth, et al., “The Garlic Project”, in proceedings

of the 1996 ACM SIGMOD International Conference on

Management of Data, 557-558, Montreal, Jun. 1996.

[7] M. Rodriguez-Martinez and N. Roussopoulos, “MOCHA:

a self-extensible database middleware system for

distributed data sources”, in proceedings of the 2000

ACM SIGMOD international conference on Management

of data, Texas, Jun. 2000.

[8] Kim, K., R. Guha, M. E. Pierce, G. C. Fox, D. J. Wild,

and K. E. Gilbert, “SQMD: Architecture for Scalable,

Distributed Database System built on Virtual Private

Servers”, in proceedings of the 4th IEEE International

Conference on eScience, 658-665, Indianapolis, Dec.

2008.

[9] Don Libes, Edward J. Barkmeyer, et al., “The AMIS

Approach to Systems Integration: An Overview”,

National Institute of Standards and Technologies,

Manufacturing Systems Integration Division, May 2004.

[10] Xuhong Liu, Yunmei Shi, Yabin Xu, Yingai Tian,

Fuheng Liu, "Heterogeneous Database Integration of EPR

System Based on OGSA-DAI", in High Performance

Computing and Applications LNCS, 5938: 257-263, Mar.

2010.

[11] Helen X. Xiang, “Integrated Queries over a

Heterogeneously Distributed Scientific Database using

OGSA-DQP”, in proceedings of the 6th IEEE Joint

International Information Technology and Artificial

Intelligence Conference (ITAIC), 421-425, Chongqing,

Agu. 2011.

[12] Abdullah F. A. Sebai, Naglaa M. Reda, Fayed F. M.

Ghaleb, "IWRAP: An intelligent wrapper for distributed

heterogeneous database systems", in Egyptian Computer

Science Journal, 34(5):79-90, Sep. 2010.

[13] Konstantinos Liakos, Albert Burger, and Richard

Baldock, “A Scalable Mediator Approach to Process

Large Biomedical 3-D Images”, in IEEE Transactions on

Information Technology in Biomedicine, 8(3):354-359,

Sept. 2004.

[14] Arvind S. Krishna, Aniruddha S. Gokhale, Douglas C.

Schmidt, ”Context-specific middleware specialization

techniques for optimizing software product-line

architectures”, in proceedings of the 1st ACM

SIGOPS/EuroSys European Conference on Computer

Systems, 40(4): 205-218, NY, USA, Oct. 2006.

[15] Java developer, at http://www.eclipse.org

[16] A. Asiki, K. Doka, I. Konstantinou, A. Zissimos, D.

Tsoumakos, N. Koziris, and P. Tsanakas, “A grid

middleware for data management exploiting peer-to-peer

techniques”, in Future Generation Computer System,

25(4): 426-435, Apr. 2009.

[17] R. Bachwani, L. Gryz, R. Bianchini, C. Dubnicki,

"Dynamically Quantifying and Improving the Reliability

of Distributed Storage Systems", in proceedings of the

27th International Symposium on Reliable Distributed

Systems (SRDS), 85-94, Naples, Oct. 2008.

[18] I. O. Hababeh, M. Ramachandran, N. Bowring, “A high-

performance computing method for data allocation in

distributed database systems”, in Journal of

Supercomputing, 39(1):3-18, Jan. 2007.

[19] Saumitra M. Das, Himabindu Pucha, Y. Charlie Hu,

"Mitigating the gateway bottleneck via transparent

cooperative caching in wireless mesh networks", in

Journal of Ad Hoc Networks, 5(6):680-703, Aug. 2007.

http://portal.acm.org/citation.cfm?id=342009.335413&coll=GUIDE&dl=GUIDE&CFID=83629736&CFTOKEN=15377293
http://portal.acm.org/citation.cfm?id=342009.335413&coll=GUIDE&dl=GUIDE&CFID=83629736&CFTOKEN=15377293
http://portal.acm.org/citation.cfm?id=342009.335413&coll=GUIDE&dl=GUIDE&CFID=83629736&CFTOKEN=15377293
http://portal.acm.org/citation.cfm?id=342009.335413&coll=GUIDE&dl=GUIDE&CFID=83629736&CFTOKEN=15377293

