
International Journal of Computer Applications (0975 – 8887) 

Volume 45– No.13, May 2012 

34 

Improved Solution to Job Shop Scheduling Problem with 

Delay Constraints using Genetic Algorithm 

  

Swati Singh 
Computer Science Dept 
IMS Engineering College  

 

Shruti Kapoor 
Computer Science Dept 
IMS Engineering College  

 

Shelly  Chikara 

Computer Science Dept 
IMS Engineering College  

 

Vijai Singh 
Astt Professor, CS 

IMS Engineering College  
 
 

            

ABSTRACT 
Job shop scheduling problem is one of the most difficult NP-

hard combinatorial optimization problems. Therefore, 

determining an optimal schedule and controlling and it is 

considered a difficult task. To achieve high performance in 

manufacturing firms, a scheduling system should make the 

right decision at the right time according to system conditions. 

It is difficult for traditional optimization techniques to provide 

the best solution. This paper focuses on the problems of 

determination of a schedule with the objective of minimizing 

the total make span time. An attempt has been made to 

generate a schedule using Genetic Algorithm.  

Keywords 
Scheduling, Genetic Algorithm, Makespan, Machine 

utilization 

1. INTRODUCTION  
To find the best schedule can be very easy or very difficult, 

depending on the shop environment, the process constraints 

and the performance indicators [1]. The Job-shop Scheduling 

Problem (JSP) is considered to be one the most complex 

combinatorial problems in computer science belonging to the 

class of NP Complete problems. In JSP, a set of jobs must be 

processed on a set of machines. Where each job is formed by 

a sequence of successive operations, every operation requires 

exactly one machine for a specified time, and machines are 

constantly obtainable and can process one operation at a time 

without pause. The complexity of the problem statement 

advocates for obtaining an optimal schedule in reasonable 

time by the use of heuristic techniques, instead of looking for 

an exact solution. Various approaches have been proposed for 

scheduling such as branch and bound, priority rules, Tabu 

search,  

simulated annealing, genetic algorithms etc. In recent years, 

the adoption of meta-heuristics like GA has led to better  

results than classical dispatching or heuristic algorithms [2]. 

Solving scheduling problems with GA methods have been 

introduced by many researchers.  

The rest of the paper is organized as follows. Section 2 

presents the literature review pertaining to jssp. In section 3, 

the concept of Genetic algorithm is presented. In Section 4, 

we have defined our problem using Genetic Algorithm 

method to find the optimal schedule and its functioning. 

Finally, conclusions and the scope for further improvement 

are given in the last section  

2.  LITERATURE SURVEY 
A comparative study of the latest algorithms and techniques 

has been done to gain a better insight into the problem 

solution space. The comparison was carried out while keeping 

in mind various parameters such as, selection, mutation, 

crossover, fitness criteria and solution space. After in- depth 

analysis we came to a conclusion that there is a tradeoff 

between optimality of solutions and computation time 

required. Since JSSP is a NP complete problem, there exists 

no specific algorithm which would give the optimal solution 

for all cases. We observed that, whenever a constrained JSSP 

was taken, the solutions obtained were near optimal when 

compared to the results obtained by modified crossover 

techniques [3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 45– No.13, May 2012 

35 

2.1 Comparison of Algorithms: 

 

 

3. GENETIC ALGORITHM 
In the field of Computer Science “Genetic Algorithm” is a 

heuristic search technique that mimics the process of natural 

evolution to generate useful solutions to combinatorial and 

optimization problems. Genetic Algorithm belongs to a set of 

algorithms called Evolutionary Algorithms which solve a 

problem by taking a population of solutions and applying 

genetic operators in each reproduction. GA proposed by John 

Holland [9], uses the basic Darwinian mechanism of “survival 

of the fittest” and repeatedly utilizes the information 

contained in the solution population to generate new solutions 

with better performance. The presence or absence of genes 

and their order in the chromosome decide the characteristics 

of a species. Different traits are passed on from one 

generation to the next through different biological processes 

that operate on the genetic structure. He also demonstrated 

that a computer simulation of this process could be employed 

for solving optimization problems. In a GA, each solution is 

stored in an artificial chromosome represented by a string  

of binary bits or numbers. New candidates are generated 

gradually from a set of renewed populations by applying 

artificial genetic operators selected from policies based on  

the survival of the fittest principle, after repeatedly using 

operators of crossover and mutation [10].  

A typical GA process consist of following steps  

 

Step 1: Generate the initial population. Determine the size of 

the population and the maximum number of the generation.  

Step 2: Calculate the fitness value of each member of the 

initial population.  

 

Step 3: Calculate the selection probability of each member of 

the initial population using the ratio of fitness value of that 

initial population to the summation of the fitness values of the 

individual solutions.  

 

Step 4: Select a pair of members (parents) that can be used for 

reproduction using selection probability. 

 

Step 5: Apply the genetic operators such as crossover, 

mutation, and inversion to the parents. Replace the parents 

with the new offspring to form a new population.  

Check the size of the new population. If it is equal to the 

initial population size, then go to step 6, otherwise go to step 

4.  

Step 6: If the current generation is equal to the maximum 

number of the generation then stop, else move to step 2. 

4.  PROBLEM DESCRIPTION 
The problem is formulated considering 4 machines and 6 jobs 

with 2 numbers of pieces per job. The delay constraints 

involved during the manufacturing are also taken. The inputs 

are processing time and delay time. We have taken the 

processing time from a manufacturing unit in Northern India. 

 Selection Crossover Mutation Fitness criteria Infeasible 

solution 

Characteristic 

The penalty 

method[4] for 

constraints  in 

JSSP 

 

Random Normal Hyper- 

mutation 

High threshold 

value to replace k 

worst chromosomes 

by k best 

Taken Constrained 

JSSP using 

Penalty function 

Generalized order 

crossover [5] 

Neighborhoo

d mating and 

local 

offspring 

acceptance 

GOX i.e. 

permutatio

n with 

repetition 

Position 

based 

mutation 

Active scheduling Not taken Generalized 

order crossover 

The job-based 

order crossover 

(JOX) [6] 

 

Random JOX Shift change Ranking method Taken(transfo

rmation from 

infeasible to 

active) 

Static JSSP and 

Job based order 

crossover 

Hybrid genetic 

algorithm using 

random keys [7] 

 

Random and 

top 10% 

direct 

Parameteriz

ed uniform 

crossover 

Replacing 

bottom 20% 

by random 

generation 

Minimum makespan 

function 

Not taken Priority of 

operation and 

delay time 

Variable 

neighborhood 

descent algorithm 

for flexible job 

shop scheduling 

problems [8] 

 

Ranking 

based 

Order- 

based 

Allele based 

and 

immigration 

based 

Roulette wheel 

selection 

Not taken VND, local 

search space 

optimization, 

flexible JSSP 

Order-based 

Griffer and 

Thompson 

algorithm [9] 

 

50%ND+ 

50%GT 

Order-

based 

Sublist 

permutation 

using order-

based 

Fitness value taken Not taken Static JSSP 



International Journal of Computer Applications (0975 – 8887) 

Volume 45– No.13, May 2012 

36 

Details of input parameters used in our work are given in tables 1and 2 

 

Table 1: Part processing time in minutes 

  

 M1 M2 M3 M4 

J1 40 50 60 70 

J2 40 57 34 27 

J3 60 54 80 36 

J4 40 34 66 34 

J5 49 23 34 20 

J6 35 45 55 50 

 
Table 2: Delay time in minutes in processing 

 

 M1 M2 M3 M4 

J1 10 12 8 7 

J2 3 7 13 10 

J3 6 4 10 12 

J4 7 4 10 6 

J5 1 4 8 10 

J6 2 3 1 6 

 

 
Following assumptions are made  
1. The load/unload station capacity is unlimited.  

2. Each machine completely manufactures the job assigned to 
it.  

3. The jobs are atomic.  

4. The inputs once set cannot be changed during the 

generation of the particular schedule. 

 

 

The methodology can be summarized as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 45– No.13, May 2012 

37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                  no 

 

 

                                                                            yes                                                                                                                                                  

 

 

                                                                               

 

 

 

 

 

4.1 Selection 
The selection process selects chromosomes from the mating 

pool directed by the survival of the fittest concept of natural 

genetic systems. A chromosome is assigned a number of 

copies according to the selection process in which the 

chromosomes having minimum fitness value  

(which is proportional to its fitness in the population) goes 

into the mating pool for further genetic operations. Random 

selection procedure is used.  

 

 

4.2 Crossover  
Single point crossover is used at the point ceil [p/2] *n, where 

p is the number of pieces per job and n is the total number of 

jobs. 

 4.3 Mutation 
Each chromosome undergoes mutation with a fixed 

probability (Pm) that is called as mutation probability. 

Mutation maintains the diversity and improves the probability 

of selecting a chromosome from feasible solution set. 

Permutation mutation is used, in which the order of gene is 

changed. The transposition of gene depends upon the degree 

Start 

Get input from the user in form of spreadsheet 

Population generation 

Crossover 

Mutation 

Generate random optimal schedule using generated chromosome 

Calculate Makespan and total acceptance factor 

Total acceptance factor 

< 

Old acceptance factor 

   
 

Replace old by new 

Continue in loop for itr no. of iterations 

Provide output schedule 

Gantt chart 

Machine utilization chart 

Load generation chart 

Don’t replace 



International Journal of Computer Applications (0975 – 8887) 

Volume 45– No.13, May 2012 

38 

of mutation selected. For instance 100% mutation is achieved 

by complete permutation of the selected chromosome.  

4.4 Parameter Setting  
 Number of iterations 1000 

 Crossover type: One point 

 Mutation type: transposition 

 Mutation probability 0.5 

 

4.5 Algorithm- Chromosome Generation 
function C = chromosome() 

global  n p 

C=zeros(1,n*p); 

for i=0:p-1 

    r=randperm(n); 

    for j= 1:n 

        C(j+i*n)=r(j); 

    end 

end  

end 

 

4.5 Algorithm- Crossover 
function child= crossover(c1,c2) 

for i=1:n*p 

if i<= ceil(p/2)* 

child[i]=c1[i]; 

else 

child[i]=c2[i]; 

end 

 

4.6 Algorithm- Mutation 
function C= mutation(C) 

global n p 

z = randperm(n*p); 

C = C(z); 

end 

 

4.7 Outputs obtained 
Table3. JOB SEQUENCE ON EACH MACHINE 

M1 J1 J2 J4 

M2 J1 J5 J6 

M3 J2 J5 J6 

M4 J4 J3 J3 

 
The above matrix displays each operation that would be done 

on a particular machine and the sequence of the same. 

 

 

Fig 1 Gantt chart per machine 

 

 

Fig 2 Machine utilization 

It is the percentage utilization of each machine according to 

the generated schedule. 

 

 

Fig 3. Load distribution per machine 

Load distribution is the percentage of the total load that is on a 

particular machine. 

 

 

0 50 100 150

4

3

2

1

1st job on 
machine

2nd job on 
machine

3rd job on 
machine

0

20

40

60

80

100

120

1 2 3 4

p
e

rc
e

n
t 

u
ti

liz
at

io
n

machines

Machine Utilization

24%

25%26%

25%

Load Distribution per 
machine

1st machine

2nd machine

3rd machine

4th machine



International Journal of Computer Applications (0975 – 8887) 

Volume 45– No.13, May 2012 

39 

5.  CONCLUSIONS 
The jssp many type of schedules depending upon the number 

of jobs and machines. Since the ability and functions of 

modern machines have been widely extended, the scheduling 

plan of a part might not be unique. So on a real shop floor, 

many feasible schedules can be found. It can be seen that 

Genetic Algorithm gives better result than traditional 

scheduling methods. The applicability of the GA based 

methodology has considerable potential application to 

manufacturing with further refinement in certain aspects, as 

outlined below.  

1. We have considered transportation time and setup time as 

constant, further work can be done using setup time and 

transportation time.  

2. We have assumed no break down, further work can be done 

taking into account actual breakdown. 

3. The jobs are considered to be atomic. Further work can be 

done by creating schedules with various parts manufactured 

on different machines. 

6. REFERENCES 
 [1] K. Deep et al. (Eds.): Proceedings of the International 

Conf. on SocProS 2011, AISC 131, pp. 875–882. 

springerlink.com © Springer India 2012  

[2] Li, D., Chen, L., Lin, Y.: Using functional virtual 

population as assistance to learn scheduling knowledge 

in dynamic manufacturing environment. Internation 

Journal of Production Research 41(17), 4011-4024 

(2003)  

[3] Shruti Kapoor et al Ways and Means of Applying Genetic 

Algorithms for Job Shop Scheduling International 

Journal of Computational Intelligence Research ISSN 

0973-1873 Volume 8, Number 1 (2012), pp. 19-25 

 [4] Liang Sun , Xiaochun Cheng, Yanchun Liang,” Solving 

Job Shop Scheduling Problem Using Genetic Algorithm 

with Penalty Function” International Journal of 

Intelligent Information Processing Volume 1, Number 2, 

December 2010 

[5] Christian Bierwirth in his paper “A Generalized 

Permutation Approach to Job Shop Scheduling Problem 

with Genetic Algorithms” 

[6] Isao Ono Masayuki Yamamura Shigenobu Kobayashi in 

their paper, “A Genetic Algorithm for Job-shop 

Scheduling Problems Using Job-based Order Crossover” 

Proc. of ICEC'96, pp.547-552 (1996) 

[7] José Fernando Gonçalves, Jorge José de Magalhães 

Mendes, Maurício G.C. Resende in their paper “A 

Hybrid Genetic Algorithm for the Job Shop Scheduling 

Problem” 

[8] Jie Gao, Linyan Sun, Mitsuo Gen in their paper, “A hybrid 

genetic and variable neighborhood descent algorithm for 

flexible job shop scheduling problems” Computers & 

Operations Research 35 (2008) 2892 --- 2907 

[9] J. H. Holland, Adaptation in Natural and Artificial 

Systems. Ann Arbor, MI: University of Michigan Press, 

1975. 

[10] Goldberg, E. E.: Genetic Algorithms in Search, 

Optimization, and Machine Learning. Addison Wesley, 

Reading, MA 1989 

  

                                                                                                                                                                                                                                                 

 


