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ABSTRACT 

In this paper a novel algorithm based on Discrete Wavelet 

Transform (DWT) approach has been applied to synthesize 

the sounds produced by a few traditional Indian musical 

instruments, viz. flute, shehnai and sitar. In this algorithm, the 

level of decomposition of wavelets is varied till the error norm 

between the original signal and that generated through DWT 

is below a desired level. It is observed that when the wavelet 

decomposition level is varied, the energy retained in wavelet 

coefficients varies with the type of the wavelet and its 

decomposition level. It is further observed that the maximum 

level of decomposition for the three sound signals is different 

and the signals are also reconstructed with the wavelet 

coefficients only up-to the maximum level of decomposition 

with lesser number of samples. The quality of sound as 

obtained through this algorithm is perceptually close to 

original sound signal. 
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Transform. 
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1. INTRODUCTION 
Theory of Discrete Wavelet Transform (DWT) and its 

application to various signal processing problems has been 

thoroughly developed and documented over last few decades 

[1]. It has been successfully employed in the area of signal 

processing, in general, and, speech, music and image 

processing in particular [2][3]. Further, wavelets have also 

been used for synthesizing musical signals [4]. In DWT, the 

signal is analyzed by decomposing it into high and low 

frequency bands; then these bands are recombined to 

reconstruct the original signal. Such examples can be found in 

Sub Band Coding (SBC), de noising signals etc [5]-[7]. The 

fundamental property of such analysis is the perfect recovery 

of the original signal from the sub sampled signals. Perfect 

reconstruction filter bank decomposes the signal into low pass 

and high pass frequency bands through quadrature mirror 

filters (QMF) and then, down sampling, which further 

reconstructs the original signal by up sampling, filtering and 

summation [8]. 

An algorithm for designing QMF for perfect reconstruction of 

signals is proposed in [9]. Algorithms which are essentially 

linear in nature and easy to implement, are classified on the 

basis of superiority in terms of peak reconstruction error, and 

computation time [10]. In this paper, a simple and fast 

algorithm providing a good compression ratio is proposed. 

Basically the algorithm makes use of the fact that if we 

determine the appropriate wavelet on the basis of the 

maximum energy concentrated in the wavelet coefficients, 

then, nearly perfect reconstruction of the musical signals is 

possible by considering these coefficients up to certain 

specified levels. The rest of the paper is organized as follows: 

In section 2, the concept of DWT for filter bank identification 

is discussed briefly. Algorithm used to determine the 

appropriate wavelet based on the energy concentrated in 

wavelet coefficients is discussed in section 3. In section 4, 

experimental results based on the algorithm in section 3 are 

discussed. Finally, concluding remarks are given in section 5.   

2. DISCRETE WAVELET TRANSFORM 
It is well known that DWT of a signal is equivalent to passing 

it through an analysis filter bank followed by decimation 

operation [11]. This analysis filter bank consists of a low pass 

and a high pass filter at each decomposition stage. When a 

signal is passed through these filters, it splits into two bands. 

The low pass filter which corresponds to averaging operation, 

extracts the coarse information of the signal. The high pass 

filter, which corresponds to a differencing operation, extracts 

the detail information of the signal. The output of the above 

filters is further decimated by two [12]. The DWT is 

computed by successive low pass and high pass filtering of 

the discrete time domain signals as shown in the figure 1. In 

this figure the signal, denoted as s(j) is in the form of 

sequence, where j is the scale of resolution, passed through a 

low pass filter  and the high pass filter with unit sample 

response h(-n) and g(-n) respectively. At each level the high 

pass filter produces the detail information, represented as 

wavelet function and low pass filter produces the approximate 

information, represented as scaling function. At each 

decomposition level, the filters h(-n) and g(-n) produce signal 

spanning only half the frequency band. This doubles the 

frequency resolution as the uncertainty in frequency is 

reduced to half. 

 

 

 

 

 

 

 

 

 

Figure1: Two stage DWT as Analysis Filter bank 
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As per the well known Nyquist’s sampling theorem [13], a 

signal band limited to f/2 Hz can be recovered back uniquely 

from its samples taken at f  sample/sec. So the output of the 

two filters is sampled at a frequency f, discarding half the 

samples without any loss of information. Thus this decimation 

by two halves the time resolution as the entire signal is now 

represented by half the samples only, while the low pass 

filtering removes the half of the frequencies, thus halves the 

resolution, then decimation by two doubles the scale. The 

filtering and decimation process continues up to the desired 

level. The maximum level of decomposition is dependent 

upon the length of the signal and the attributes of the analysis 

done. The reconstruction of the original signal can be done 

with the help of the figure 2.   

 

 

 

 

 

 

 

 

Figure2: Two stage DWT as synthesis Filter bank 

3. WAVELET MATCHING 

ALGORITHM  
By using the concept of DWT, an algorithm has been 

developed for the synthesis of the musical sound signals, 

which are represented by a specific wavelet without any loss 

of information. The following steps can be used for the 

analysis: 

1) Choose a specific wavelet. 

2) Apply the wavelet on the signal of study and 

calculate the wavelet (detail) coefficients and the 

approximate coefficients at level 1. 

3) Evaluate the energy concentrated in the wavelet 

coefficients and approximation coefficients. 

4) Calculate the percentage of energy concentrated in 

the wavelet coefficients and approximation 

coefficients at level 1 to that of energy of the 

original signal. 

The energy mentioned above is based on Parseval’s Theorem: 

“The energy that a time domain function contains is equal to 

the sum of all energy concentrated in the different resolution 

levels of the corresponding wavelet transformed signals”. This 

is mathematically expressed as [14]: 

 |f n |2

N

n=1

 =  |aj n |2

N

n=1

+    |dj n |2

N

n=1

J

j=1

                   (1) 

Where: 

f n    : Signal of study in time domain 

N       : Total No. of samples of the signal 

  f n  2

N

n=1

∶ Energy concentrated in signal  

  aj n  
2

 

N

n=1

: Energy concentrated in the jth level of the  

                           approximation coefficients  

   dj n  
2

N

n=1

J

j=1

: Total energy concentrated in the wavelet 

                    coefficints of the signal from level 1  to J 

eng−per−wav =
en g−wav

en g−sig
 ∗ 100                                        (2) 

Where  

eng_per_wav: Percentage of energy concentrated in the 

wavelet coefficients only. 

eng _wav : Energy concentrated in wavelet coefficients till 

that level. 

eng _ sig : Energy concentrated in the original signal of study. 

5) Steps 1, 2, 3 and 4 are repeated for different 

wavelets and at different level of resolution. 

6) Choose the wavelet which has maximum energy 

concentrated in the wavelet coefficients up to this 

level and the relative difference of energy to the 

previous level is negligible, which is the maximum 

level of decomposition. 

7) Reconstruct the signal by taking the wavelet 

coefficients from level 1 to the maximum level of 

decomposition. 

8) Compare the hearing perception of the original 

signal and the reconstructed signal obtained by 

taking wavelet coefficients from level 1 to the 

maximum level. 

4. EXPERIMENTAL RESULTS  
The algorithm developed in the previous section is applied to 

the sound samples of the various musical instruments. For 

experimental purpose the sounds of three musical instruments 

flute, shehnai and sitar are taken. Results are shown in the 

figure 3, 4 and 5. 
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Figure 3(a, b): Percentage of energy present in wavelet 

coefficients only at different levels in flute sound 
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Figure 4(a, b): Percentage of energy present in wavelet 

coefficients only at different levels in shehnai  sound 
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Figure 5(a, b): Percentage of energy present in wavelet 

coefficients only at different levels in sitar  sound 

It is observed from the figure3 that flute sound can be 

reconstructed with the help of the wavelet db10 taking 

wavelet coefficients only till the level 5, due to the presence 

of maximum energy concentrated in the wavelet coefficients 

with this wavelet. Similarly figure4 shows that shehnai sound 

is decomposed till the level 6 with maximum energy 

concentrated in the wavelet coefficients of wavelet db3. But 

from figure5 it is observed that sitar sound is decomposed till 

level 7 and the maximum energy is concentrated in the 

wavelet dmey. The original waveforms along with the 

synthesized waveform of flute shehnai and sitar are shown in 

figures 6-11. 

 

 Figure 6:Original flute waveform 

 

 Figure 7: Flute waveform after synthesis with db10 

wavelet at level 5 taking wavelet coefficients only 

 

 Figure8: Original shehnai waveform 

 

 Figure 9: Shehnai waveform after synthesis with db3 

wavelet at level 6 taking wavelet coefficients only 

 

Figure 10: Original sitar waveform 
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 Figure11: Sitar waveform after synthesis with dmey 

wavelet at level 7 taking wavelet coefficients only 

5. CONCLUSION 
In this paper discrete wavelet transform based analysis of the 

sounds produced by some Indian musical instruments is 

presented. Here an algorithm is proposed which analyses the 

musical sound signals with the help of standard wavelets and 

the amount of energy concentrated in wavelet coefficients at 

each level of decomposition is calculated. It is shown in 

figures 3, 4 and 5 that the flute sound is having maximum 

energy concentrated in wavelet coefficients when analyzed 

with db10 till the fifth level, shehnai sound with wavelet db3 

till sixth level and sitar sound with wavelet dmey till seventh 

level. Hence it is concluded that each sound signal is better 

represented with the different wavelet and at different level of 

decomposition. The wavelet db10 is most suited for flute 

sound, db3 for shehnai and dmey for the sitar waveform. This 

analysis also shows that these waveforms can be reconstructed 

with the help of the respective wavelets and at the respective 

level of decomposition with wavelet coefficients only. So 

lesser numbers of samples are required for the reconstruction 

of the sound signal with a little amount of error, hence a good 

amount of compression is achieved. This analysis can be 

extended to our future work of identification of signature 

wavelet of each musical instrument sound, which may be 

useful in the synthesis of sound signals. 
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