
International Journal of Computer Applications (0975 – 8887)

Volume 45– No.12, May 2012

10

A Conceptual Graph Petri Net Model based Multi Agent

System

Prajna Devi Upadhyay
National Institute of Technology,

Durgapur,
India

Animesh Dutta
National Institute of Technology,

Durgapur,
India

ABSTRACT

In this work, we propose a new formal tool called CGPN

(Conceptual Graph Petri Nets) which is a combination of CG

(Conceptual Graph) and CPN (Color Petri Net) to model

collaborative behavior of agents in a MAS(Multi Agent

System) to achieve some goals. The CG is used to represent

knowledge and on the other side CPN is used to model the

concurrent and dynamic aspects of a system. It is difficult to

extract precise information from MAS which is dynamic in

nature. Modeling MAS with CGPN will help in representing

the knowledge and dynamic behavior together. Finally, the

CGPN model for MAS is tested for deadlock freedom and

reachability analysis to verify its correctness.

General Terms

Multi Agent System

Keywords

Multi Agent System, Petri net, Conceptual Graph, Deadlock,

Reachability.

1. INTRODUCTION

1.1 Agents and Multi Agent Systems
An agent is a computer system or software entity that can act

autonomously in an environment. Agent autonomy means that

an agent has the ability to make its own decisions about what

activities to do, when to do, what type of information should

be communicated and to whom, and how to assimilate the

information received. Thus, an intelligent agent resides in an

environment and can perform autonomous actions in order to

satisfy its design objective [1-5]. Multi-agent systems (MASs)

[2, 5] are computational systems in which two or more agents

interact or work together to perform a set of tasks or to

achieve some common goals [5-8]. Human society is the best

example of MAS where a number of people reside, work

together and schedule their individual actions according to the

requirements so that they can achieve their common or

individual goals. Agents of a multi-agent system (MAS) need

to interact with others toward their common objective or

individual benefits of themselves. A multi-agent system can

be studied as a computer system that is concurrent,

asynchronous, stochastic and distributed. A multi agent

system permits to coordinate the behavior of agents,

interacting and communicating in an environment, to perform

some tasks or to solve some problems. It allows the

decomposition of complex task in simple sub-tasks which

facilitates its development, test and updating.

A number of modeling tools for agents and multi agent

systems have been proposed, of which Petri Nets are most

common. The description of Color Petri Nets is given in the

following sub section.

1.2 Color Petri Nets (CPN)
A Color Petri Net [12] is a tuple CPN = (Σ, P, T, A, N, C, G,

E, I) satisfying the following requirements:

 Σ is a finite set of non-empty types, called color

sets.

 P is a finite set of places.

 T is a finite set of transitions.

 A is a finite set of arcs such that P∩ T = P ∩ A =

T∩ A = Ø.

 N is a node function. It is defined from A into P ×T

∪ T×P.

 C is a color function. It is defined from P into Σ.

 G is a guard function. It is defined from T into

expressions such that ∀t∈T: [Type(G(t)) = Bool ∧

Type(Var(G(t))) ⊆ Σ].

 E is an arc expression function. It is defined from A

into expressions such that ∀a∈A [Type(E(a)) =

C(p(a))MS ∧ Type(Var(E(a))) ⊆ Σ] where p(a) is

the place of N(a).

 I is an initialization function. It is defined from P

into closed expressions such that ∀p∈P, [Type(I(p))

= C(p)MS]

There is a requirement of a tool that can represent the

knowledge of the system effectively. Knowledge can be

represented most effectively with the help of Conceptual

Graphs (CG) [9]. A conceptual graph can be described with

respect to Ontology [9]. The formal definition of a conceptual

graph with respect to Ontology is given in the following

subsection.

1.3 Conceptual Graph with respect to

Ontology
A Conceptual Graph [9] is a five tuple G=<C, R, type,

referrent, arg1, arg2, …, argm>

 C is a set of concept nodes. In Ontology[9], the set

of concept types is represented by TCG.

 R is a set of conceptual relations. In Ontology[9],

the set of concept relations is represented by TRG.

 type: C∪R→ TCG ∪ TRG. It associates each concept

node to a concept type with the constraint

∀r∈R type(r) ∈ TRG and TRG = type(R)

∀c∈C type(c) ∈ TCG and TCG = type(C)

 referent: C→IG associates each concept node to a

referent marker. IG is the set of distinct markers

used in association with concept nodes in C. IG is a

subset of I. I is the set of all instances that can be a

part of that an Ontology. It is defined in [9]. A blank

referent is the generic “*” marker.

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.12, May 2012

11

 each argi, 1≤i≤m : R → C is a partial function

where argi(r) indicates the i-th argument of the

relation r. The argument functions are partial as they

are undefined for arguments higher than the

relation‟s „arity‟. We adopt the convention

that arg0 indicates the (at most) one incoming arc. If

there is no incoming arc to the relation, then arg0 is

undefined. We also define the function arity(r)

which returns an integer value representing the

number of arguments that the relation r has.

When agents need to collaborate in MAS, some knowledge

has to be exchanged. Petri Nets and Color Petri Nets [12] can

only represent the dynamic change of states in MAS. The

exchange of knowledge among the agents which leads to

change in states is not possible to be represented with the help

of Color Petri Nets. Thus, there is a requirement of a tool that

can represent the knowledge and dynamism of MAS

effectively. The combination of Color Petri Nets and

Conceptual Graphs is a new tool called Conceptual Graph

Petri Nets. The new formal tool should be capable of

representing that the system can reach to its final state or goal

state from an intial state. The tool should also exhibit the

deadlock freedom property. In this paper, we have proposed a

new formal tool called Conceptual Graph Petri Nets that can

represent the dynamic aspects as well as the inner knowledge

of the system. We have also theoretically verified the

correctness of the tool using a case study of distributed shared

memory.

2. RELATED WORK
A variety of tools have been used to model Multi Agent

Systems.

2.1 Petri Nets and Color Petri Nets
Petri Nets and Color Petri Nets are system study tools that

provide appropriate mathematical formalism for modeling

distributed systems, also allowing analysis of the states of the

system. Petri Nets have been widely used to describe the

Multi Agent Systems for a long time. Color Petri Nets have

been used in [13] to achieve agent scheduling in open

dynamic environments. [14] uses Color Petri Nets to model an

agent based interactive system. The representation of

composite behaviors through Color Petri Nets has been done

in [15]. The fundamentals of an agent‟s social behavior in a

Multi Agent System have been modeled with the help of

Color Petri Nets taking the packet world scenario as a case

study in [16]. [17] uses Petri Nets to model the abstract

architecture for intelligent agents and structural analysis of the

net provides an assessment of the interaction properties of

Multi Agent Systems. Deadlock Avoidance in Multi Agent

System is considered and is evaluated using the liveness and

boundedness property of the Petri Net Model. [18] introduce a

Color Petri Net model to represent flexible agent interactions.

2.2 Agent Petri Nets
Agent Petri Nets [19] is a new formalism for modeling Multi

Agent System which is able to describe not only the internal

state of each agent modeled but also its behavior. Hence, one

can naturally model the dynamic behavior of complex systems

and the communication between these entities.

2.3 Predicate transition Nets
Predicate Transition Nets [20, 21] are a high level formalism

of Petri Nets for modeling and analyzing Multi Agent

behaviors. In MAS, how agents accomplish goals is specified

by plans built from individual actions. Predicate Transition

Nets allow us to make sure that the plans are reliable. Here,

planning graphs have been used to perform the reachability

analysis.

2.4 CGP-Nets
CGP Nets have been introduced in [22] which is a hybrid

model binding Conceptual Graphs and Color Petri Nets to

represent Multi Agent Systems. It has been used to model

proactivity in Multi Agent Systems. There is a lack of formal

proof of the correctness of the model given in this work.

3. SCOPE OF THE WORK
Although a number of tools have been proposed to model

Multi Agent System, but they lack the ability to represent the

inner knowledge of the system. The available tools so far, like

Petri Nets or Color Petri Nets, can only model the dynamic

aspects of the system, like concurrency, synchronization or

mutual exclusion. There is a need for a tool that can express

the knowledge of a Multi Agent System in the form of

properties, capabilities and requirements of the system. In this

paper, we present an extended definition of CGP Nets which

is a binding between Conceptual Graphs and Color Petri Nets.

With this CGPN tool, the multi agent collaboration is modeled

and a formal proof of the reachability and deadlock- freedom

is provided.

4. FORMAL DEFINITION OF MAS
MAS can be formally defined in the following way:

 State_concept={s1, s2,…, sr}, r∈N be the set of

different conditions of the system.

 Au={a1‟,a2‟,…,as‟},s∈N be the set of all agents

available in the universe.

 Tu={t1‟,t2‟,…,tt‟}, t∈N be the set of all tasks that

can be performed in the universe.

 A={a1, a2, …, ap}, p∈N be the set of agents that are

a part of the system.

 T={t1, t2, …, tq}, q∈N be the set of tasks that can be

performed in the system.

 Set={A, T}, is a set of sets, consisting sets A and T.

 Let able(ai,tj), 1≤i≤s, 1≤j≤t be a function which is

true if an agent ai is able to perform a task tj, able:

AuxTuBool

 Let belong be a function.

belong : (AU ∪ TU)X Set Bool

 Let GL={G1,G2,…,Gn} be the set of goals the

system may have, Gi=P(S), 1≤i≤n, P(S) denotes the

power set of S.

 Let perceive(ai,tj,sk), 1≤i≤p,1≤j≤q,1≤k≤r be a

function which is true under the following

condition:

∃ai ∃tj [able(ai,tj) ∧ belong(ti,T) ∧ belong(ai,A) ∧ sk

is the state perceived by performing the task tj by

agent ai]| ai∈AU, tj∈TU, sk∈S ↔perceive (ai, tj, sk)

 req: P(S)P(TU), req is a function that maps a set

of states to some set of tasks in TU.

 Lead: P(TU) X P(S)P(S), lead is a function that

maps a set of tasks and set of states to a new set of

states.

 R: TUBool, R(ti) indicates requirement for

performing a task has arisen, ti∈TU

 S: TUBool, S(ti) indicates a task ti has been

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.12, May 2012

12

completed successfully, ti∈TU

 State_relation is the relation that relates different

conditions of state_concept that are true at any

instant.

5. MAS COORDINATION ONTOLOGY

Fig. 1: MAS coordination Ontology

The Ontology diagram shown in figure 1 describes the MAS

coordination Ontology. We have,

 TCO={Set, AU, A, TU, T, State_concept}

 TRO={belong, req, able, lead, perceive,

state_relation}

 ≤(T, TU)=true, ≤(A, AU)=true

 B(state_rel)={state_concept}

 B(req)={state_concept, T}

 B(belong)={TU, AU, Set}

 B(perceive)={T, A, state_concept}

 B(lead)={T, state_concept}

 B(able)={A, T}

Here, the different concepts are shown as rectangles and

relations are shown as ovals. The instances of State_concept,

A, and T are application specific. A conceptual graph

adhering to this Ontology forms a token for the Conceptual

Graph Petri Net. At any instant, the CG formed from the

State_concept and state_relation describes the state of the

system.

6. FORMAL PROOF OF THE SYSTEM
We have proposed the CGPN tool to represent the

dynamics as well as knowledge of MAS. The CGPN tool uses

conceptual graphs to represent the knowledge of MAS. Since

conceptual graphs cannot exist in isolation, Ontology is used

to describe the framework of domain knowledge. Thus,

CGPN is dependent on the Ontology for its existence. The

following shows some of the dependency relations on the

Ontology we have proposed.

6.1 Dependency relations
The system determines all the functions that are true in the

system:

 ∀ sk perceive(ai, tj, sk), sk ∈ S, tj ∈TU, ai∈AU

 ∀ tj able(ai,tj), tj∈T, ai∈AU

 Let the initial states be s1 ∧ s2 ∧ … ∧ sx. If the following

is true,

 ∀sk ∃ai ∃tj [perceive(ai, tj, sk)]| ai ∈ Au, tj ∈ Tu, 1≤k≤x,

k,x ∈ N, then we can write:

{s1 ∧ perceive(a1, t1, s1)} ∧ {s2 ∧ perceive (a2, t2, s2)}

∧… ∧ {sx ∧ perceive(ax, tx, sx)}=true

 Being able to perceive the states, the system finds out a

requirement to perform some tasks. So we can write:

{s1 ∧ perceive(a1, t1, s1)} ∧ {s2 ∧ perceive(a2, t2, s2)}

∧… ∧ {sx ∧ perceive(ax, tx, sx)}↔R(t1
‟) ∧ R(t2

‟) ∧…∧

R(ty
‟), ti

‟∈Tu, 1≤i≤y, y∈N where R(ti
‟) indicates a

requirement has arisen for some task ti
‟∈Tu.

 When the requirement for a task arises, the system

searches for agents who can perform the task. We say

that a task is successfully completed if and only if

 R(ti
‟) ∧ ∃az [able(az, ti

‟) ∧ belong(ti
‟, T) ∧ belong(az,A)],

az ∈ Au , 1≤i≤y, ti
‟∈Tu= true, so [R(ti

‟) ∧ ∃az [able(az,

ti
‟) ∧ belong(ti

‟, T) ∧ belong(az,A)], az ∈ Au , 1≤i≤y,

ti
‟∈Tu]↔S(ti

‟)

 If all the tasks whose requirement had arisen are

completed successfully, then it leads to a change in

state.

 S(t1
‟) ∧ S(t2

‟) ∧…∧ S(ty
‟) ↔ s1 ∧ s2 ∧ … ∧ sa, 1≤a≤r, it

leads to a new state of states which can be perceived

as stated earlier. If we perform all the tasks required by

the system and the final state the system reaches is

equivalent to the goal, we can say that the goal is

achievable.

6.2 Lemmas
6.2.1 Lemma 1. The set of agents, A1, employed to perform a

set of tasks leading to the achievement of some goal, Gx, is a

subset of A.

Proof: To prove the above lemma, proof by contradiction has

been used. Let us assume the following:

 T1={t1,t2,…,tp} is the set of tasks that have been performed

to achieve the goal, Gx A1={a1,a2,…,aq} is the set of agents

that have performed the task set T1. A1⊄A i.e A1-

A≠∅={a1,a2,…,as}, s>=1and ∀ ti∈T1, let belong(ti, T)=true

1. Goal Gx is achieved

2. ∀ tj S(tj) = true| tj ∈T1,

3. ∀ az able(al, tm) = true| az ∈A1, where az has

performed some task tm in T1

4. So, [∀ an able(an, to)=true] ∧ [R(to)=true] an ∈A1-A,

where an has performed some task to∈T1….(from 3,

A1-A⊆A1)

5. ∀ an belong(an, A)=false| an∈A1-A

6. ∀ an [able(an, to) ∧ belong(an, A) ∧ belong(to,

T)]=false, an∈A1-A ,to∈ T1, to is the task performed

by an …(from 4, 5, 6)

7. ∀ an [R(to) ∧ able(an, to) ∧ belong(an, A) ∧ belong(to,

T)]=false, an∈A1-A ,to∈ T1, to is the task performed

by an …(from 4,7)

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.12, May 2012

13

8. ∀ an S(to) = false, an∈A1-A ,to∈ T1, to is the task

performed by an …(from format of dependency)

8 is in contradiction with 2. Our assumption, A1-A≠∅ was

false. Therefore, A1 ⊆ A. Hence, the lemma stands true.

6.2.2 Lemma 2. Given the goal is acheived, the set of tasks

performed to achieve the goal is always a subset of T.

Proof: The following derivation uses proof by contradiction.

Let us assume the following: T1={t1,t2,…,tp} be the set of

tasks that have been performed to achieve the goal,

A1={a1,a2,…,aq} be the set of agents that have performed the

task set T1, ∀ aj belong(aj, A)=true aj∈A1 and ∀ ti

R(ti)=true|ti∈T1

 Let us assume T1⊄T i.e T1-T≠∅.

1. Goal is achieved.

2. ∀ ti S(ti) = true| ti ∈T1,

3. ∀ ti ∃ aj able(aj,ti)=true | aj∈A1 ,ti∈T1

4. ∀ ti belong(ti, T)=false| ti∈T1-T

5. ∀ ti [able(aj,ti) ∧ belong(ti, T) ∧ belong(aj, A)] =

false| ti∈T1-T, aj∈A1, able(aj,ti)=true…(from 3,4,5)

6. ∀ ti R(ti)=true|ti∈T1…(given)

7. ∀ ti [R(ti) ∧ able(aj,ti) ∧ belong(ti, T) ∧ belong(aj,

A)] = false| ti∈T1-T, aj∈A1, able(aj,ti)=true …(from

6,7)

8. ∀ ti S(ti) = false| ti∈T1-T …(from format of

derivation 3)

 8 is in contradiction with 2. Our assumption, T1-T≠∅ was

false. Therefore, T1 ⊆ T. Hence, the lemma stands true.

6.2.3 Lemma 3. Given the goal is achieved, the set of states

reached is always perceivable.

Proof: Here, proof by contradiction has been used similar to

the previous cases. Let us assume the following:

 T1={t1,t2,…,tp} be the set of tasks that have been

performed to achieve the goal, A1={a1,a2,…,aq} be the set of

agents that have performed the task set T1.

 Let us assume that for some state Sb=sb1∧ sb2 ∧…∧ sbc ≠Gb

generated in the sequence of derivations, ∄ tc ∃sbi

perceive(ad,tc,sbi)=true| tc ∈T1, sbi, 1≤i≤c, ad∈ A1.

1. Goal Gb is achieved.

2. ∀ ti S(ti) = true| ti ∈T1,

3. {sb1 ∧ perceive(a1,t1,sb1)} ∧ {sb2 ∧

perceive(a2,t2,sb2)} ∧ …∧ {sbc ∧

perceive(ac,tc,sbc)}=false…(given)

4. R(t1) ∧ R(t2) ∧…∧ R(tk) =false, where t1, t2,…, tk are

the tasks whose R(tk) would have been true if

perceive(ad,tc,sbi)=true ∀ sbi, 1≤i≤c , ad∈A1, tc∈T1

5. Sb is the final state

6. Sb≠Gb

7. Gb is not achieved

7 is in contradiction with 1. So, our assumption was false.

Hence, the lemma stands true.

7. CONCEPTUAL GRAPH PETRI NETS
A conceptual graph Petri net is a tuple (CG, P, T, A, N, G, E,

I)

 CG is a conceptual graph type

 P is a finite set of places

 T is a finite set of transitions

 A is a finite set of arcs such that P∩T= P∩A=

T∩A=∅

 N is a node function defined from A into PXT ∪

TXP

 G is a guard function defined from T into

expression such that ∀t∈T [Type(G(t))=B∧

Type(Var(G(t)))=CG. Each transition is mapped

into a Boolean expression by a guard function such

that Type (G(t))=B, where B = B1 ∧ B2, where,

B1: boolean expression denoting the transition

enabling condition

B2: boolean expression denoting the transition

executing condition.

The expression B1 represents that the system, with

the help of its agents, can perceive the states that are

input places of the transition. The expression B2

represents that a requirement of some task has

arisen and there exist some agents in the system

which can perform this task.

 E is an arc expression function defined from A into

expressions such that ∀a∈A Type(E(a))=CG and

Type(Var(E(a)))=CG

 I is an initialization function that maps every place

to a CG, I:P→CG

A CGP net can be represented as given in Figure 2.

Fig. 2. A simple CGP net

We can represent the functions able, belong and req as

conceptual graphs in figure 3, 4, 5, 8.The perceive function

for CG1and CG2 is shown in figure 6 and figure 7.

Fig. 3. CG representation “able” of able function

Fig. 4. CG representation “belong_a” of belong function

for agents

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.12, May 2012

14

Fig. 5. CG representation “belong_t” of belong function

for tasks

Fig 6. CG representation of “perceive”

Fig 7. CG representation of “perceive’”

Fig. 8. CG representation of “req”

The transition t1 in figure 2 can be expressed as

Type(G(t1))=B, where

B=[{CG1 ∧ perceive} ∧ {CG2 ∧ perceive‟}] ∧ [req ∧ able∧

belong_a ∧ belong_t]. Here, B1={CG1 ∧ perceive} ∧ {CG2 ∧

perceive‟} is the enabling condition of the transition and B2=

req ∧ able ∧ belong_t ∧ belong_a is the executing condition of

the transition. From the CGPN model, we can verify the

reachability and deadlock freeness of the model. We can map

the CGPN model into a simple Petri net model by considering

the special tokens of CGPN as plain tokens and assigning all

the arc weights as 1. Let the initial state of the Petri net be M0.

A marking Mj is said to be reachable from marking Mi if there

exists a sequence of transitions that takes the Petri net from Mi

to Mj . The set of all possible markings that are reachable

from M0 is called the reachability set and is defined by R(M0).

If I is the incidence matrix of the model, then the reachability

criterion can be specified by the following matrix equation:

 𝑀𝑖 + 𝐼. 𝜎 = 𝑀𝑗 (1)

where I is the incidence matrix of the Petri Net and σ is the

sequence of transitions[11]. This is a necessary but not

sufficient condition. We can map the sequence of transitions

of the CGPN to the steps of formal derivation as given in

section 6. If a transition has fired, it indicates that the enabling

condition and the executing conditions for the transition are

true. Firing of a transition in the CGPN takes us to a new

state. Similarly, the enabling and the executing conditions

both being true for a transition means the task has successfully

completed and it leads to some new state. If the goal state in

the CGPN is reachable, it indicates that goal can be achieved

through formal derivation. The deadlock freedom of the

model can also be proved using algebraic techniques [23]. In

terms of Petri net, a deadlock corresponds to a marking from

where no transition is fire able. So, every reachable deadlock

is a solution of the state equation where every transition is

disabled. If we can prove that these markings are never

reachable, then we can prove that the Petri net is deadlock

free. So, the following is a basic, general, sufficient condition

for deadlock freedom:

Let S be a Petri net system. If there is no solution to

𝑀𝑗 − 𝐼. 𝜎 = 𝑀𝑖

𝑀𝑗, 𝜎 ≥ 0

∨ 𝑚 𝑝 < 𝑃𝑟𝑒 𝑝, 𝑡 ∀𝑡𝜖𝑇, ∀𝑝 𝜖 . 𝑡 (2)

where Pre[p,t] is the minimum no. of tokens required in place

p to enable the transition t, ∙t is the set of all input places of

transition t, m[p] is the number of tokens in place p, Mi is the

initial state, Mj is the state formed after finding out m[p] for

every place and σ is the sequence of transitions, then S is

deadlock free.

8. CASE STUDY
We have used the brick problem [17] as an example to model

this scenario. It consists of 2 agents, A and B, which are

collaboratively working to move bricks from end 2 to end 1.

End 1 consists of a pile of bricks which should be transferred

to end 2 with the help of both agents. Agent A and B both

start moving towards end 2 from end 1. Since agent A moves

faster than B, it reaches end 2 earlier. It takes a brick and

starts moving towards end 1. Meanwhile, it crosses B and

hands over the brick to it. A then moves towards end 2 to

collect another brick and B moves towards end 1. When it

reaches end 1, it places the brick there. The coordination

between the agents continues until all the bricks from end 2

are transferred to end 1. This is the goal that is to be achieved

by the system.

8.1 CGPN Model
The CGPN model of the bricks problem is shown in Fig. 10. It

has 11 states and 9 transitions. The outgoing and incoming

arcs to and from places have tokens describing those places.

The description of the tokens is given in the following table:

Fig 9: The bricks problem

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.12, May 2012

15

Fig 10: CGPN model for the bricks problem

Table 1: CG description of places

Token label Conceptual Graph

a, o, z

b

c, d, y

e, f

g, h

r, i

j, k

u, v, x

m, n

w, q, s

p, l, t

a1

a2

In order to prove that the goal state is reachable, we can use

the matrix equation for reachability of a marking.

8.2 Proof for Reachability
 Let us assume that the number of bricks at end 2 initially is 1.

This can be represented in CGPN by assigning number of

tokens to place p12 as 1. So, the goal state should contain 1

brick at end 1. In CGPN, the goal state marking should have 1

token in place p13. For 1 brick, the reachability graph is shown

in Fig 11. From the initial state, there exists a sequence of

transitions that lead us to the goal state, i.e marking

0010001100001. The final marking indicates that all bricks

from end 2 have been transferred to end 1. If the number of

bricks is more than 1, then the same sequence of transitions

will be fired until number of tokens in place p13 is equal to the

number of bricks initially at end 2.

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.12, May 2012

16

Fig 11: Reachability graph for CGPN

Here, the initial state is Mi=[1100001100010]‟, the final state

is Mj=[0010001100001]‟, and we have σ=[111111111]‟, for

which

𝑀𝑖 + 𝐼. 𝜎 = 𝑀𝑗 i.e

 1 1 0 0 0 0 1 1 0 0 0 1 0 ′ + 𝐼. 1 1 1 1 1 1 1 1 1 ′ =

 0 0 1 0 0 0 1 1 0 0 0 0 1 ′

8.3 Proof for deadlock freedom
A deadlock is a marking from which no transition is enabled.

From the CGPN model shown in Fig. 6, specifying the

deadlock conditions in the form of inequalities, the following

set of inequalities should be solved, where pi is the number of

tokens present in place pi, 1≤i≤13

𝑝1 + 𝑝2 ≤ 1 (disabling condition for t1) (3)

𝑝3 + 𝑝12 ≤ 1(disabling condition for t2) (4)

𝑝4 ≤ 1(disabling condition for t3) (5)

𝑝5 + 𝑝6 ≤ 1(disabling condition for t4) (6)

𝑝7 + 𝑝8 ≤ 1(disabling condition for t5) (7)

𝑝7 + 𝑝9 ≤ 1(disabling condition for t6) (8)

𝑝11 ≤ 1(disabling condition for t7) (9)

𝑝8 + 𝑝11 ≤ 1(disabling condition for t8) (10)

𝑝10 + 𝑝1 ≤ 1(disabling condition for t9) (11)

Solving these inequalities, the solution obtained for p1 to p13 is

[0010010000001]‟, which is the next state reached after

transition t5 fires from the goal state i.e. [0010001100001]. It

indicates that as long as the goal state is not reached, deadlock

does not occur.

9. CONCLUSION
In this paper, we have defined a formal tool called CGPN to

model the collaboration of agents in a Multi Agent System. It

has been shown that the CGPN tool is more expressive in

representing the inner knowledge of the MAS. The model has

also been tested for reachability analysis and deadlock

freedom. The system modeled so far is reactive, so the future

prospect of the work will be to model proactivity in the

system and represent it with the help of CGPN.

10. REFERENCES
[1] Rouff, C.A., Hinchey, M., Rash, J., Truszkowski, W.,

and Gordon-Spears, D. (Eds). 2006. “Agent Technology

from a formal perspective” (Springer-Verlag London

Limited 2006).

[2] Weiss, G., Ed., “Multiagent systems: a modern approach

to distributed artificial intelligence”, (MIT Press, 1999).

[3] N. J. Nilsson, “Artificial intelligence: a new synthesis”,

(Morgan Kaufmann Publishers Inc., 1998).

[4] S. J. Russell and P. Norvig,” Artificial Intelligence: A

Modern Approach”, (Pearson Education, 2003).

[5] M. J. Wooldridge, “Introduction to Multiagent Systems”,

(John Wiley & Sons, Inc., 2001).

[6] A. Idani, “B/UML: Setting in Relation of B Specification

and UML Description for Help of External Validation of

Formal Development in B”, Thesis of Doctorat, The

Grenoble University, November 2005.

[7] G. W. Brams, “Petri Nets: Theory and Practical”, Vol. 1-

2, (MASSON, Paris, 1982).

[8] M-J. Yoo, “A Componential For Modeling of

Cooperative Agents and Its Validation”, Thesis of

Doctorat, The Paris 6 University, 1999.

[9] P.H.P. Nguyen, D. Corbett, “A basic mathematical framework

for conceptual graphs”, In: IEEE Transactions on Knowledge
and Data Engineering, Volume 18, Issue 2, 2005.

[10] John F. Sowa, Conceptual Graphs, in “The Handbook of

Knowledge Representation”, ed. F. van Harmelen, V.

Lifschitz, and B. Porter, (Elsevier, 2008), pp. 213-237.

[11] John F.Sowa, “Knowledge Representation: Logical,

Physical and Computational Foundations” (Thomson

Brooks/Cole, 2000)

[12] K. Jensen, “Color Petri Nets – Basic Concepts, Analysis

Methods and Practical Use”, volume 1: Basic Concepts,

(Springer-Verlag, Berlin 1992).

[13] Quan Bai, Minjie Zhang and Haijun Zhang, “A Coloured

Petri Net Based Strategy for Multi-agent Scheduling”,

Proceedings of the Rational, Robust, and Secure

Negotiation Mechanisms in Multi-Agent Systems

(RRS‟05)

[14] Vedran Kordic, “Petri Net,Theory and Applications, in,

Use of Petri Nets for Modeling an Agent-Based

Interactive System: Basic Principles and Case Study” ed.

Houcine Ezzedine and Christophe Kolski,(I-Tech

Education and Publishing, Vienna, Austria, 2008) , pp.

534

[15] Su Jindian, Guo Heqing, Yu Shanshan, “A Coloured

Petri Net Model for Composite Behaviors in Multi-Agent

System”, 978-1-4244-1674-5/08 /$25.00 ©2008 IEEE

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.12, May 2012

17

[16] Danny Weyns, Tom Holvoet, “A Color Petri Net for

Multi Agent Application”.

[17] Jose R. Celaya, Alan A. Desrochers, and Robert J.

Graves, “Modeling and Analysis of Multi-agent Systems

using Petri Nets”, Journal of Computers, vol. 4, no. 10,

October 2009

[18] Quan Bai, Minjie Zhang and Khin Than Win, “A Color

Petri Net Based Approach for Multi-agent Interactions”,

2nd International Conference on Autonomous Robots

and Agents, December 13-15, 2004 Palmerston North,

New Zealand.

[19] Borhen Marzougui, Khaled Hassine, Kamel Barkaoui,

“A New Formalism for Modeling a Multi Agent

Systems: Agent Petri Nets”, J. Software Engineering &

Applications.3(2010) 1118-1124

[20] Dianxiang Xu, Richard Volz, Thomas Ioerger, John Yen,

“Modeling and Verifying Multi-Agent Behaviors Using

Predicate/Transition Nets”, SEKE ‟02.

[21] Tadao Murata, Peter C. Nelson, “A Predicate-Transition

Net Model for Multiple Agent Planning”, Information

Sciences (1991) 57-58, 361-384

[22] J.-D. Vally, R. Courdier, “Hybrid Model to Design

Proactivity and Multi-Agent-Systems”, 2002 World

Scientific and Engineering Society (WSES) Intern.

Conference on evolutionary computations, 2002

[23] Laura Recalde, Enrique Teruel, and Manuel Silva, “On

Linear Algebraic Techniques for Liveness Analysis of

P/T systems”

