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ABSTRACT 

In this work, we propose a new formal tool called CGPN 

(Conceptual Graph Petri Nets) which is a combination of CG 

(Conceptual Graph) and CPN (Color Petri Net) to model 

collaborative behavior of agents in a MAS(Multi Agent 

System) to achieve some goals. The CG is used to represent 

knowledge and on the other side CPN is used to model the 

concurrent and dynamic aspects of a system. It is difficult to 

extract precise information from MAS which is dynamic in 

nature. Modeling MAS with CGPN will help in representing 

the knowledge and dynamic behavior together. Finally, the 

CGPN model for MAS is tested for deadlock freedom and 

reachability analysis to verify its correctness. 
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1. INTRODUCTION 

1.1 Agents and Multi Agent Systems 
An agent is a computer system or software entity that can act 

autonomously in an environment. Agent autonomy means that 

an agent has the ability to make its own decisions about what 

activities to do, when to do, what type of information should 

be communicated and to whom, and how to assimilate the 

information received. Thus, an intelligent agent resides in an 

environment and can perform autonomous actions in order to 

satisfy its design objective [1-5]. Multi-agent systems (MASs) 

[2, 5] are computational systems in which two or more agents 

interact or work together to perform a set of tasks or to 

achieve some common goals [5-8]. Human society is the best 

example of MAS where a number of people reside, work 

together and schedule their individual actions according to the 

requirements so that they can achieve their common or 

individual goals. Agents of a multi-agent system (MAS) need 

to interact with others toward their common objective or 

individual benefits of themselves. A multi-agent system can 

be studied as a computer system that is concurrent, 

asynchronous, stochastic and distributed. A multi agent 

system permits to coordinate the behavior of agents, 

interacting and communicating in an environment, to perform 

some tasks or to solve some problems. It allows the 

decomposition of complex task in simple sub-tasks which 

facilitates its development, test and updating. 

A number of modeling tools for agents and multi agent 

systems have been proposed, of which Petri Nets are most 

common. The description of Color Petri Nets is given in the 

following sub section. 

1.2 Color Petri Nets (CPN) 
A Color Petri Net [12] is a tuple CPN = (Σ, P, T, A, N, C, G, 

E, I) satisfying the following requirements: 

 Σ is a finite set of non-empty types, called color 

sets. 

 P is a finite set of places. 

 T is a finite set of transitions. 

 A is a finite set of arcs such that P∩ T = P ∩ A = 

T∩ A = Ø. 

 N is a node function. It is defined from A into P ×T 

∪ T×P. 

 C is a color function. It is defined from P into Σ. 

 G is a guard function. It is defined from T into 

expressions such that ∀t∈T: [Type(G(t)) = Bool  ∧   

Type(Var(G(t))) ⊆ Σ]. 

 E is an arc expression function. It is defined from A 

into expressions such that ∀a∈A [Type(E(a)) = 

C(p(a))MS ∧ Type(Var(E(a))) ⊆ Σ] where p(a) is 

the place of N(a). 

 I is an initialization function. It is defined from P 

into closed expressions such that ∀p∈P, [Type(I(p)) 

= C(p)MS] 

There is a requirement of a tool that can represent the 

knowledge of the system effectively. Knowledge can be 

represented most effectively with the help of Conceptual 

Graphs (CG) [9]. A conceptual graph can be described with 

respect to Ontology [9]. The formal definition of a conceptual 

graph with respect to Ontology is given in the following 

subsection. 

1.3 Conceptual Graph with respect to 

Ontology 
A Conceptual Graph [9] is a five tuple G=<C, R, type, 

referrent, arg1, arg2, …, argm> 

 C is a set of concept nodes. In Ontology[9], the set 

of concept types is represented by TCG.  

 R is a set of conceptual relations. In Ontology[9], 

the set of concept relations is represented by TRG.  

 type: C∪R→ TCG ∪ TRG. It associates each concept 

node to a concept type with the constraint 

∀r∈R  type(r) ∈ TRG and TRG = type(R)  

∀c∈C  type(c) ∈ TCG and TCG = type(C)  

 referent: C→IG associates each concept node to a 

referent marker. IG is the set of distinct markers 

used in association with concept nodes in C. IG is a 

subset of I. I is the set of all instances that can be a 

part of that an Ontology. It is defined in [9]. A blank 

referent is the generic “*” marker. 
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 each argi, 1≤i≤m : R → C is a partial function 

where argi(r) indicates the i-th argument of the 

relation r. The argument functions are partial as they 

are undefined for arguments higher than the 

relation‟s „arity‟. We adopt the convention 

that arg0 indicates the (at most) one incoming arc. If 

there is no incoming arc to the relation, then arg0 is 

undefined. We also define the function arity(r) 

which returns an integer value representing the 

number of arguments that the relation r has. 

When agents need to collaborate in MAS, some knowledge 

has to be exchanged. Petri Nets and Color Petri Nets [12] can 

only represent the dynamic change of states in MAS. The 

exchange of knowledge among the agents which leads to 

change in states is not possible to be represented with the help 

of Color Petri Nets. Thus, there is a requirement of a tool that 

can represent the knowledge and dynamism of MAS 

effectively. The combination of Color Petri Nets and 

Conceptual Graphs is a new tool called Conceptual Graph 

Petri Nets.  The new formal tool should be capable of 

representing that the system can reach to its final state or goal 

state from an intial state. The tool should also exhibit the 

deadlock freedom property. In this paper, we have proposed a 

new formal tool called Conceptual Graph Petri Nets that can 

represent the dynamic aspects as well as the inner knowledge 

of the system. We have also theoretically verified the 

correctness of the tool using a case study of distributed shared 

memory.  

2. RELATED WORK 
A variety of tools have been used to model Multi Agent 

Systems. 

2.1 Petri Nets and Color Petri Nets 
Petri Nets and Color Petri Nets are system study tools that 

provide appropriate mathematical formalism for modeling 

distributed systems, also allowing analysis of the states of the 

system. Petri Nets have been widely used to describe the 

Multi Agent Systems for a long time. Color Petri Nets have 

been used in [13] to achieve agent scheduling in open 

dynamic environments. [14] uses Color Petri Nets to model an 

agent based interactive system. The representation of 

composite behaviors through Color Petri Nets has been done 

in [15]. The fundamentals of an agent‟s social behavior in a 

Multi Agent System have been modeled with the help of 

Color Petri Nets taking the packet world scenario as a case 

study in [16]. [17] uses Petri Nets to model the abstract 

architecture for intelligent agents and structural analysis of the 

net provides an assessment of the interaction properties of 

Multi Agent Systems. Deadlock Avoidance in Multi Agent 

System is considered and is evaluated using the liveness and 

boundedness property of the Petri Net Model. [18] introduce a 

Color Petri Net model to represent flexible agent interactions. 

2.2 Agent Petri Nets 
Agent Petri Nets [19] is a new formalism for modeling Multi 

Agent System which is able to describe not only the internal 

state of each agent modeled but also its behavior. Hence, one 

can naturally model the dynamic behavior of complex systems 

and the communication between these entities. 

2.3 Predicate transition Nets 
Predicate Transition Nets [20, 21] are a high level formalism 

of Petri Nets for modeling and analyzing Multi Agent 

behaviors. In MAS, how agents accomplish goals is specified 

by plans built from individual actions. Predicate Transition 

Nets allow us to make sure that the plans are reliable. Here, 

planning graphs have been used to perform the reachability 

analysis. 

2.4 CGP-Nets 
CGP Nets have been introduced in [22] which is a hybrid 

model binding Conceptual Graphs and Color Petri Nets to 

represent Multi Agent Systems. It has been used to model 

proactivity in Multi Agent Systems. There is a lack of formal 

proof of the correctness of the model given in this work.  

3. SCOPE OF THE WORK 
Although a number of tools have been proposed to model 

Multi Agent System, but they lack the ability to represent the 

inner knowledge of the system. The available tools so far, like 

Petri Nets or Color Petri Nets, can only model the dynamic 

aspects of the system, like concurrency, synchronization or 

mutual exclusion. There is a need for a tool that can express 

the knowledge of a Multi Agent System in the form of 

properties, capabilities and requirements of the system. In this 

paper, we present an extended definition of CGP Nets which 

is a binding between Conceptual Graphs and Color Petri Nets. 

With this CGPN tool, the multi agent collaboration is modeled 

and a formal proof of the reachability and deadlock- freedom 

is provided. 

4. FORMAL DEFINITION OF MAS 
MAS can be formally defined in the following way: 

 State_concept={s1, s2,…, sr}, r∈N be the set of 

different conditions of the system.  

 Au={a1‟,a2‟,…,as‟},s∈N be the set of all agents 

available in the universe. 

 Tu={t1‟,t2‟,…,tt‟}, t∈N be the set of all tasks that 

can be performed in the universe. 

 A={a1, a2, …, ap}, p∈N be the set of agents that are 

a part of the system. 

 T={t1, t2, …, tq}, q∈N be the set of tasks that can be 

performed in the system. 

 Set={A, T}, is a set of sets, consisting sets A and T. 

 Let able(ai,tj), 1≤i≤s, 1≤j≤t be a function which is 

true if an agent ai is able to perform a task tj, able: 

AuxTuBool 

 Let belong be a function. 

belong : (AU ∪ TU)X Set Bool  

 Let GL={G1,G2,…,Gn} be the set of goals the 

system may have, Gi=P(S), 1≤i≤n, P(S) denotes the 

power set of S. 

 Let perceive(ai,tj,sk), 1≤i≤p,1≤j≤q,1≤k≤r be a 

function which is true under the following 

condition: 

∃ai ∃tj [ able(ai,tj) ∧ belong(ti,T) ∧ belong(ai,A) ∧ sk 

is the state perceived by performing the task tj by 

agent ai]| ai∈AU, tj∈TU, sk∈S ↔perceive (ai, tj, sk) 

 req: P(S)P(TU), req is a function that maps a set 

of states to some set of tasks in TU. 

 Lead: P(TU) X P(S)P(S), lead is a function that 

maps a set of tasks and set of states to a new set of 

states.  

 R: TUBool, R(ti) indicates requirement for 

performing a task has arisen, ti∈TU 

 S: TUBool, S(ti) indicates a task ti has been 
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completed successfully, ti∈TU 

 State_relation is the relation that relates different 

conditions of state_concept that are true at any 

instant.   

5. MAS COORDINATION ONTOLOGY 

 

Fig. 1: MAS coordination Ontology 

The Ontology diagram shown in figure 1 describes the MAS 

coordination Ontology. We have, 

 TCO={Set, AU, A, TU, T, State_concept} 

 TRO={belong, req, able, lead, perceive, 

state_relation} 

 ≤(T, TU)=true, ≤(A, AU)=true  

 B(state_rel)={state_concept} 

 B(req)={state_concept, T} 

 B(belong)={TU, AU, Set} 

 B(perceive)={T, A, state_concept} 

 B(lead)={T, state_concept} 

 B(able)={A, T} 

Here, the different concepts are shown as rectangles and 

relations are shown as ovals. The instances of State_concept, 

A, and T are application specific. A conceptual graph 

adhering to this Ontology forms a token for the Conceptual 

Graph Petri Net. At any instant, the CG formed from the 

State_concept and state_relation describes the state of the 

system. 

6. FORMAL PROOF OF THE SYSTEM 
We have proposed the CGPN tool to represent the 

dynamics as well as knowledge of MAS. The CGPN tool uses 

conceptual graphs to represent the knowledge of MAS. Since 

conceptual graphs cannot exist in isolation, Ontology is used 

to describe the framework of domain knowledge. Thus, 

CGPN is dependent on the Ontology for its existence. The 

following shows some of the dependency relations on the 

Ontology we have proposed. 

6.1 Dependency relations 
The system determines all the functions that are true in the 

system: 

 ∀ sk  perceive(ai, tj, sk), sk ∈ S, tj ∈TU, ai∈AU 

 ∀ tj able(ai,tj), tj∈T, ai∈AU 

 Let the initial states be s1 ∧ s2 ∧ … ∧ sx. If the following 

is true, 

 ∀sk ∃ai ∃tj [perceive(ai, tj, sk)]| ai ∈ Au, tj ∈ Tu, 1≤k≤x, 

k,x ∈ N, then we can  write: 

{s1 ∧ perceive(a1, t1, s1)} ∧ {s2 ∧ perceive (a2, t2, s2)} 

∧… ∧  {sx ∧ perceive(ax, tx,  sx)}=true 

 Being able to perceive the states, the system finds out a 

requirement to perform some tasks. So we can write: 

{s1 ∧ perceive(a1, t1, s1)} ∧ {s2 ∧ perceive(a2, t2, s2)} 

∧… ∧  {sx ∧ perceive(ax, tx, sx)}↔R(t1
‟) ∧ R(t2

‟) ∧…∧ 

R(ty
‟), ti

‟∈Tu, 1≤i≤y, y∈N where R(ti
‟) indicates a 

requirement has arisen for some task ti
‟∈Tu. 

 When the requirement for a task arises, the system 

searches for agents who can perform the task. We say 

that a task is successfully completed if and only if 

         R(ti
‟) ∧ ∃az [able(az, ti

‟) ∧ belong(ti
‟, T) ∧ belong(az,A)], 

az ∈ Au , 1≤i≤y, ti
‟∈Tu= true, so [R(ti

‟) ∧ ∃az [able(az, 

ti
‟) ∧ belong(ti

‟, T) ∧ belong(az,A)], az ∈ Au , 1≤i≤y, 

ti
‟∈Tu]↔S(ti

‟) 

 If all the tasks whose requirement had arisen are 

completed successfully, then it leads to a change in 

state. 

 S(t1
‟) ∧ S(t2

‟) ∧…∧ S(ty
‟)  ↔ s1 ∧ s2 ∧ … ∧ sa, 1≤a≤r, it 

leads to a new state of states which  can be  perceived 

as stated earlier. If we perform all the tasks required by 

the system and the final state the system reaches is 

equivalent to the goal, we can say that the goal is 

achievable. 

6.2 Lemmas 
6.2.1 Lemma 1. The set of agents, A1, employed to perform a 

set of tasks leading to the achievement of some goal, Gx, is a 

subset of A. 

Proof: To prove the above lemma, proof by contradiction has 

been used. Let us assume the following: 

     T1={t1,t2,…,tp} is the set of tasks that have been performed 

to achieve the goal, Gx A1={a1,a2,…,aq} is the set of agents 

that have performed the task set T1. A1⊄A i.e A1-

A≠∅={a1,a2,…,as}, s>=1and ∀ ti∈T1, let belong(ti, T)=true 

1. Goal Gx is achieved 

2. ∀ tj S(tj) = true| tj ∈T1,  

3. ∀ az able(al, tm) = true| az ∈A1, where az has 

performed some task tm in T1 

4. So, [∀ an  able(an, to)=true] ∧ [ R(to)=true] an ∈A1-A, 

where an has performed some task to∈T1….(from 3, 

A1-A⊆A1) 

5. ∀ an belong(an, A)=false| an∈A1-A 

6. ∀ an [able(an, to) ∧ belong(an, A) ∧ belong(to, 

T)]=false, an∈A1-A ,to∈ T1, to is the task performed 

by an …(from 4, 5, 6) 

7. ∀ an [R(to) ∧ able(an, to) ∧ belong(an, A) ∧ belong(to, 

T)]=false, an∈A1-A ,to∈ T1, to is the task performed 

by an …(from 4,7) 
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8. ∀ an S(to) = false, an∈A1-A ,to∈ T1, to is the task 

performed by an …(from format of dependency) 

8 is in contradiction with 2. Our assumption, A1-A≠∅ was 

false. Therefore, A1 ⊆ A. Hence, the lemma stands true.  

6.2.2 Lemma 2. Given the goal is acheived, the set of tasks 

performed to achieve the goal is always a subset of T. 

Proof: The following derivation uses proof by contradiction. 

Let us assume the following: T1={t1,t2,…,tp} be the set of 

tasks that have been performed to achieve the goal, 

A1={a1,a2,…,aq} be the set of agents that have performed the 

task set T1, ∀ aj belong(aj, A)=true aj∈A1 and ∀ ti 

R(ti)=true|ti∈T1 

     Let us assume T1⊄T i.e T1-T≠∅. 

1. Goal is achieved. 

2. ∀ ti S(ti) = true| ti ∈T1,  

3. ∀ ti ∃ aj able(aj,ti)=true | aj∈A1 ,ti∈T1 

4. ∀ ti belong(ti, T)=false| ti∈T1-T  

5. ∀ ti [able(aj,ti) ∧ belong(ti, T) ∧ belong(aj, A)] = 

false| ti∈T1-T, aj∈A1, able(aj,ti)=true…(from 3,4,5) 

6. ∀ ti R(ti)=true|ti∈T1…(given) 

7. ∀ ti [R(ti) ∧ able(aj,ti) ∧ belong(ti, T) ∧ belong(aj, 

A)] = false| ti∈T1-T, aj∈A1, able(aj,ti)=true …(from 

6,7) 

8. ∀ ti S(ti) = false| ti∈T1-T …(from format of 

derivation 3) 

     8 is in contradiction with 2. Our assumption, T1-T≠∅ was 

false. Therefore, T1 ⊆ T. Hence, the lemma stands true.  

6.2.3 Lemma 3. Given the goal is achieved, the set of states 

reached is always perceivable. 

Proof: Here, proof by contradiction has been used similar to 

the previous cases. Let us assume the following: 

     T1={t1,t2,…,tp} be the set of tasks that have been 

performed to achieve the goal, A1={a1,a2,…,aq} be the set of 

agents that have performed the task set T1. 

     Let us assume that for some state Sb=sb1∧ sb2 ∧…∧ sbc ≠Gb 

generated in the sequence of derivations, ∄ tc ∃sbi 

perceive(ad,tc,sbi)=true| tc ∈T1, sbi, 1≤i≤c, ad∈ A1. 

1. Goal Gb is achieved. 

2. ∀ ti S(ti) = true| ti ∈T1,  

3. {sb1 ∧ perceive(a1,t1,sb1)} ∧ {sb2 ∧ 

perceive(a2,t2,sb2)} ∧ …∧ {sbc ∧ 

perceive(ac,tc,sbc)}=false…(given) 

4. R(t1) ∧ R(t2) ∧…∧ R(tk) =false, where t1, t2,…, tk are 

the tasks whose R(tk) would have been true if 

perceive(ad,tc,sbi)=true ∀ sbi, 1≤i≤c , ad∈A1, tc∈T1 

5. Sb is the final state 

6. Sb≠Gb 

7. Gb is not achieved 

7 is in contradiction with 1. So, our assumption was false. 

Hence, the lemma stands true. 

 

7. CONCEPTUAL GRAPH PETRI NETS 
A conceptual graph Petri net is a tuple (CG, P, T, A, N, G, E, 

I) 

 CG is a conceptual graph type 

 P is a finite set of places 

 T is a finite set of transitions 

 A is a finite set of arcs such that P∩T= P∩A= 

T∩A=∅ 

 N is a node function defined from A into PXT ∪ 

TXP 

 G is a guard function defined from T into 

expression such that ∀t∈T [Type(G(t))=B∧ 

Type(Var(G(t)))=CG. Each transition is mapped 

into a Boolean expression by a guard function such 

that Type (G(t))=B, where B = B1 ∧ B2, where, 

B1: boolean expression denoting the transition 

enabling condition 

B2: boolean expression denoting the transition 

executing condition.  

The expression B1 represents that the system, with 

the help of its agents, can perceive the states that are 

input places of the transition. The expression B2 

represents that a requirement of some task has 

arisen and there exist some agents in the system 

which can perform this task. 

 E is an arc expression function defined from A into 

expressions such that ∀a∈A Type(E(a))=CG and 

Type(Var(E(a)))=CG 

 I is an initialization function that maps every place 

to a CG, I:P→CG  

A CGP net can be represented as given in Figure 2. 

 

Fig. 2. A simple CGP net 

We can represent the functions able, belong and req as 

conceptual graphs in figure 3, 4, 5, 8.The perceive function 

for CG1and CG2 is shown in figure 6 and figure 7. 

 

Fig. 3. CG representation “able” of able function 

 

 
Fig. 4. CG representation “belong_a” of belong function 

for agents 
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Fig. 5. CG representation “belong_t” of belong function 

for tasks    

 
Fig 6. CG representation of “perceive” 

 
Fig 7. CG representation of “perceive’” 

 

Fig. 8. CG representation of “req” 

The transition t1 in figure 2 can be expressed as 

Type(G(t1))=B, where  

B=[{CG1 ∧ perceive} ∧ {CG2 ∧ perceive‟}] ∧ [req ∧ able∧ 

belong_a ∧ belong_t]. Here, B1={CG1 ∧ perceive} ∧ {CG2 ∧ 

perceive‟} is the enabling condition of the transition and B2= 

req ∧ able ∧ belong_t ∧ belong_a is the executing condition of 

the transition. From the CGPN model, we can verify the 

reachability and deadlock freeness of the model. We can map 

the CGPN model into a simple Petri net model by considering 

the special tokens of CGPN as plain tokens and assigning all 

the arc weights as 1. Let the initial state of the Petri net be M0. 

A marking Mj is said to be reachable from marking Mi if there 

exists a sequence of transitions that takes the Petri net from Mi 

to Mj . The set of all possible markings that are reachable 

from M0 is called the reachability set and is defined by R(M0). 

If I is the incidence matrix of the model, then the reachability 

criterion can be specified by the following matrix equation: 

                               𝑀𝑖 + 𝐼. 𝜎 = 𝑀𝑗                                      (1) 

where I is the incidence matrix of the Petri Net and σ is the 

sequence of transitions[11]. This is a necessary but not 

sufficient condition. We can map the sequence of transitions 

of the CGPN to the steps of formal derivation as given in 

section 6. If a transition has fired, it indicates that the enabling 

condition and the executing conditions for the transition are 

true. Firing of a transition in the CGPN takes us to a new 

state. Similarly, the enabling and the executing conditions 

both being true for a transition means the task has successfully 

completed and it leads to some new state. If the goal state in 

the CGPN is reachable, it indicates that goal can be achieved 

through formal derivation. The deadlock freedom of the 

model can also be proved using algebraic techniques [23]. In 

terms of Petri net, a deadlock corresponds to a marking from 

where no transition is fire able. So, every reachable deadlock 

is a solution of the state equation where every transition is 

disabled. If we can prove that these markings are never 

reachable, then we can prove that the Petri net is deadlock 

free. So, the following is a basic, general, sufficient condition 

for deadlock freedom: 

Let S be a Petri net system. If there is no solution to 

𝑀𝑗 − 𝐼. 𝜎 = 𝑀𝑖 

𝑀𝑗, 𝜎 ≥ 0 

∨ 𝑚 𝑝 < 𝑃𝑟𝑒 𝑝, 𝑡  ∀𝑡𝜖𝑇, ∀𝑝 𝜖 . 𝑡              (2)                               

where Pre[p,t] is the minimum no. of tokens required in place 

p to enable the transition t, ∙t is the set of all input places of 

transition t, m[p] is the number of tokens in place p, Mi is the 

initial state, Mj is the state formed after finding out m[p] for 

every place and σ is the sequence of transitions, then S is 

deadlock free. 

8.  CASE STUDY 
We have used the brick problem [17] as an example to model 

this scenario. It consists of 2 agents, A and B, which are 

collaboratively working to move bricks from end 2 to end 1. 

End 1 consists of a pile of bricks which should be transferred 

to end 2 with the help of both agents. Agent A and B both 

start moving towards end 2 from end 1. Since agent A moves 

faster than B, it reaches end 2 earlier. It takes a brick and 

starts moving towards end 1. Meanwhile, it crosses B and 

hands over the brick to it. A then moves towards end 2 to 

collect another brick and B moves towards end 1. When it 

reaches end 1, it places the brick there. The coordination 

between the agents continues until all the bricks from end 2 

are transferred to end 1. This is the goal that is to be achieved 

by the system.  

8.1 CGPN Model 
The CGPN model of the bricks problem is shown in Fig. 10. It 

has 11 states and 9 transitions. The outgoing and incoming 

arcs to and from places have tokens describing those places. 

The description of the tokens is given in the following table: 

 

Fig 9: The bricks problem 
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Fig 10: CGPN model for the bricks problem 

Table 1: CG description of places 

Token label Conceptual Graph 

a, o, z 

 

b 

 

c, d, y 

 

e, f 

 

g, h 

 

r, i 

 

j, k 

 

u, v, x 

 

m, n 

 

w, q, s 

 

p, l, t 

 

a1 

 

a2 

 

In order to prove that the goal state is reachable, we can use 

the matrix equation for reachability of a marking.  

8.2 Proof for Reachability 
 Let us assume that the number of bricks at end 2 initially is 1. 

This can be represented in CGPN by assigning number of 

tokens to place p12 as 1. So, the goal state should contain 1 

brick at end 1. In CGPN, the goal state marking should have 1 

token in place p13. For 1 brick, the reachability graph is shown 

in Fig 11. From the initial state, there exists a sequence of 

transitions that lead us to the goal state, i.e marking 

0010001100001. The final marking indicates that all bricks 

from end 2 have been transferred to end 1.  If the number of 

bricks is more than 1, then the same sequence of transitions 

will be fired until number of tokens in place p13 is equal to the 

number of bricks initially at end 2. 
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Fig 11: Reachability graph for CGPN 

Here, the initial state is Mi=[1100001100010]‟, the final state 

is Mj=[0010001100001]‟, and we have σ=[111111111]‟, for 

which 

𝑀𝑖 + 𝐼. 𝜎 = 𝑀𝑗 i.e                        

 1 1 0 0 0 0 1 1 0 0 0 1 0 ′ + 𝐼.  1 1 1 1 1 1 1 1 1 ′ =

  0 0 1 0 0 0 1 1 0 0 0 0 1 ′  

8.3 Proof for deadlock freedom 
A deadlock is a marking from which no transition is enabled. 

From the CGPN model shown in Fig. 6, specifying the 

deadlock conditions in the form of inequalities, the following 

set of inequalities should be solved, where pi is the number of 

tokens present in place pi, 1≤i≤13 

𝑝1 + 𝑝2 ≤ 1 (disabling condition for t1)                (3) 

𝑝3 + 𝑝12 ≤ 1(disabling condition for t2)                (4) 

𝑝4 ≤ 1(disabling condition for t3)                 (5) 

𝑝5 + 𝑝6 ≤ 1(disabling condition for t4)                               (6) 

𝑝7 + 𝑝8 ≤ 1(disabling condition for t5)                               (7) 

𝑝7 + 𝑝9 ≤ 1(disabling condition for t6)                           (8)                         

𝑝11 ≤ 1(disabling condition for t7)                                     (9) 

𝑝8 + 𝑝11 ≤ 1(disabling condition for t8)                          (10) 

𝑝10 + 𝑝1 ≤ 1(disabling condition for t9)                          (11) 

Solving these inequalities, the solution obtained for p1 to p13 is 

[0010010000001]‟, which is the next state reached after 

transition t5 fires from the goal state i.e. [0010001100001]. It 

indicates that as long as the goal state is not reached, deadlock 

does not occur.                                     

9. CONCLUSION 
In this paper, we have defined a formal tool called CGPN to 

model the collaboration of agents in a Multi Agent System. It 

has been shown that the CGPN tool is more expressive in 

representing the inner knowledge of the MAS. The model has 

also been tested for reachability analysis and deadlock 

freedom. The system modeled so far is reactive, so the future 

prospect of the work will be to model proactivity in the 

system and represent it with the help of CGPN. 
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