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ABSTRACT 

 Let f  be a mapping from a linear space X into a complete 

Random Normed Space Y. In this paper, we prove some 

results for the stability of Cubic, Quadratic and Jensen-Type 

Quadratic functional equations in the setting of Random 

Normed Spaces (RNS).  
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1. INTRODUCTION 
The concept of stability for a functional equation arises when 

we replace the functional equation by an inequality which acts 

as a perturbation of the equation. Thus the stability question 

of functional equation is, “How do the solutions of the 

inequality differ from those of the given functional equation? 

The stability problem of functional equations originated from 

a question of S. M. Ulam [19], concerning the stability of 

group homomorphism: 

Let (G1, *) be a group and let (G2, ◊, d) be a metric 

group with the metric   d (., .). Given  > 0, does there exists a 

() > 0 such that if a mapping   h: G1G2 satisfies the 

inequality  

  d(h(x* y), h(x)◊h(y)) < , 

for all x, yG1, then there is a homomorphism H: G1G2 

with d(h(x), H(x)) < , for all xG1? If the answer is 

affirmative, we would say that equation of homomorphism 

H(x y) = H(x) H(y) is stable. 

In1941, D. H. Hyers [7] gave the first affirmative answer to 

the question of S. M. Ulam [19] for Banach spaces. Let X and 

Y be Banach spaces, and let f : XY satisfies 

( ) ( ) ( )f x y f x f y      

for all x, yX and   0. Then there exists a unique additive 

mapping T: XY such that  

 ( ) ( )f x T x   , for all xX 

Also, if for each x the function t f (tx) from R to Y is 

continuous at a single point of X, then T is continuous every 

where in X. In1978, Th. M. Rassias [25] gave the 

generalization of Hyer’s result which allows the Cauchy 

difference to be unbounded. Let f : XY be a mapping from 

a normed vector space X into a Banach space Y subject to the 

inequality 

( ) ( ) ( ) ( )p pf x y f x f y x y      

 for all x, yX, where  and p are constants with  > 0 and 

p<1. Then the limit 

 C(x) = (2 )

2n
Lim

nf x
n

 

for all xX and C: XY is the unique mapping which satisfies  

 2( ) ( )
2 2

pf x C x xp
 


 

for all xX. Also, if for each xX the function f (tx) is 

continuous in tR, then C is R-linear. The case of the 

existence of unique additive mapping had been obtained by T. 

Aoki [28]. In 1994, P. Gavruta [18] following Th. M. Rassias 

[25] approach for the stability of the linear mapping between 

Banach spaces further obtained a generalization of Th. M. 

Rassias in which he replaced the bound ( )
ppx y   by a 

general function (x, y) for the existence of unique linear 

mapping. The functional equation 

( ) ( ) 2 ( ) 2 ( )f x y f x y f x f y      is called a quadratic 

functional equation. In particular, every solution of the 

quadratic functional equation is said to a quadratic mapping. 

A generalized Hyers- Ulam stability problem for the quadratic 

functional equation was given by F. Skof [11] for the mapping 

f : XY, where X is a normed space and Y is a Banach 

space. P. Cholewa [17] again generalized the Skof’s result for 

abelian groups. The stability problem of several functional 

equations have been investigated by a number of authors and 

there are many interesting results concerning this problem 

(see [5], [6], [8], [16], [21], [22],  [26], [27]). The functional 

equation       

f (x+3y)3 f (x + y)+3 f (xy) f (x3y) =48 f (y) 

       (1.1)     

 is said to be the cubic functional equation since f (x) = cx3 

is its solution. Every solution of the cubic functional equation 

is said to be a cubic mapping. The stability problem of cubic 

equation (1.1) was proved by Wiwatwanich and 

Nakmahalhlasint [1] for the mapping f : XY, where X and 

Y are real Banach spaces. Later on, Park and Jung [16] 

introduced a cubic equation different from the equation (1.1) 

as follows.  

f (x+3y) + f (3yx) = 3 f (x+y)+3 f (xy)+48 f (y)    

and proved the generalized Hyers-Ulam-Rassias stability for 

this equation on abelian groups.  The functional equation      6

f (x + y) 6 f (x  y) + 4 f (3y)                                          

                  = 3 f (x + 2y) 3 f (x  2y) + 9 f (2y)   (1.2)   is 

said to be the cubic - quadratic type functional equation since 

ax3+bx2 is its solution. Chang and Jung [12] established the 

general solution and generalized Hyers-Ulam stability for the 

function f : XY, where X is a real vector space and Y is a 

real Banach space. The functional equations   

2 2 ( ) ( )
2 2

x y x yf f f x f y
   
   
     

  

                      (1.3)    

and 

2 2( ) ( ) 2 ( ) 2 ( )f ax ay f ax ay a f x a f y    
   

(1.4) 
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are said to be Jensen- Type Quadratic functional equations. In 

2009, S.Y.Jang, Rye Lee, Choonkil Park, and Dong Yun Shin 

[24] proved the Fuzzy stability of equation (1.3) and (1.4). 

The notion of a Random Normed space in which the values of 

the norms are probability distribution functions rather than 

numbers was given by Sherstnev in [2] and again generalized 

by Alsina, Schweizer and Sklar in [4]  

In this paper we adopt the usual terminology, notion and 

convention of the theory of random normed space. Through 

out this paper  the space of Probabilistic distribution functions 

is given by +; that is the space of all mappings F: R{+,-

}[0,1], such that F is left continuous non decreasing and 

F(0)=0, F(+)= 1 and D+ is a subset of + for which 

( )l F  =1 where ( )l F x denotes the left limit of all function 

at the point x, that is, ( )l F x = ( )Lim F tt x
. The space + 

is partially ordered by the usual pointwise ordering of 

functions, i.e. FG if and only if F(t)G(t) for all t in R. The 

maximal element for + in this order is the distribution 

function 
0 given by 

0 0

0 1 0

if t

if t










 

Finally, we prove the Hyers-Ulam stability of the functional 

equation (1.1), (1.2), (1.3) and (1.4) respectively in random 

normed space. We also prove some corollaries in the sense of 

Hyers-Ulam-Rassias stability. 

2. PRELIMINARIES 
Definition 2.1. A mapping T: [0, 1][0, 1] [0, 1] is a 

continuous triangular norm (briefly a  t – norm) if T satisfies 

the following conditions : 

(a) T is commutative and associative; 

(b) T is continuous; 

(c) T(a, 1) = a for all a[0, 1]; 

(d) T(a, b)≤T(c, d) whenever a ≤ c and b ≤ d for all  

                a, b, c, d[0, 1]. (see [3]) 

Typical examples of continuous t-norm are T(a, b) = ab,     

T(a, b) = max(a+b-1,0) and    T(a, b) = min(a, b) 

Definition 2.2. [2] A Random Normed space (briefly RN-

space) is a triple (X, , T), where X is a vector space, T is a 

continuous t-norm, and  is a mapping from X into D+ such 

that the following  conditions hold: 

(PN1) 0( ) ( )x t t   for all t > 0 if and only if x = 0;  

(PN2)  ( ) ( / )x xt t    for all x in X,   0 and all t  0; 

(PN3) ( )x y t s     ( ( ), ( ))x yT t s   for all x, yX   

            and all t, s  0 

 

Definition 2.3. Let (X, , T) be an RN- space 

(1) A sequence {xn} in X is said to be convergent to x in 

X if, for every t > 0 and  > 0, there exists a positive integer N 

such that ( )
nx x t  > 1- whenever  n  N. 

(2) A sequence {xn} in X is said to be Cauchy sequence 

if, for every t > 0 and  > 0, there exists a positive integer N 

such that ( )
n mx x t  > 1- whenever  n  m  N. 

(3) An RN- space (X, , T) is said to be complete if and 

only if every Cauchy sequence in X is convergent to a point in 

X. 

Theorem 2.4. If (X, , T) is an RN-space and {xn} is a 

sequence such that xn x, then ( ) ( )
nn x xLim t t   . [3] 

Lemma 2.5. Let (X, µ, min) be an RN- space and define 

, : {0}E X R 

   by 

, ( )E x  = inf{t>0: ( ) 1x t   },       (2.1) 

 for all ]0,1[ , xX. Then, one has 

, 1( )nE x x   ≤ , 1 2( )E x x   + …+ , 1( )n nE x x    , (2.2)
 

for all x1, …,xn  X and the sequence {xn} is convergent to x 

with respect to random norm µ if and only if  

, ( ) 0nE x x    as n.  Also, the sequence {xn} is a 

Cauchy sequence with respect to random norm µ if and only if 

it is a Cauchy sequence with ,E  . [10] 

3. MAIN RESULTS 
In the following theorems, by using the idea of  Baktash, Cho, 

Saadati and Vaezpour (see[10]), we will prove the Hyers – 

Ulam – Rassias stability of the functional equations (1.1) and 

(1.2) in Random Normed spaces.   

3.1 Stability of Cubic Functional Equation 

(1.1) in RN- space 
Theorem 3.1:- Let X be a linear space, (Z, 1, min) an RN-

space. Let : X X Z   be a  function such that for some  

0<<27 
1

(0,3 ) ( )y t   
1

(0, ) ( )y t   (3.1) 

(0) 0f   and 
1

(3 ,3 )
27 ( )n n

n

n x y
Lim t


 = 1, for all x, yX and 

all t > 0. Let (Y, , min) be a complete RN-space.  If 

:f X Y is a mapping such that  

( 3 ) 3 ( ) 3 ( ) ( 3 ) 48 ( ) ( )f x y f x y f x y f x y f y t            
1

( , )( )x y t , (3.2) 

for all x, yX and all t > 0  

Then there exists a unique cubic mapping :C X Y such 

that  

( ) ( )( )f y C y t   1

(0, )(27 )(48(27 ) )y t         (3.3)  

for all yX and all t > 0.     

Proof: - By using the Lemma 2.5, equation (3.2) implies that,  

,E  ( ( 3 ) 3 ( ) 3 ( ) ( 3 ) 48 ( ))f x y f x y f x y f x y f y          

= inf{t > 0; ( 3 ) 3 ( ) 3 ( ) ( 3 ) 48 ( ) ( )f x y f x y f x y f x y f y t         > 1-}   

≤ inf{t > 0; 
1

( , ) ( )x y t > 1-} 

= 1,
E
 

( ( , ))x y for all x, yX, (0, 1)               (3.4) 

Now substituting y = y, we have  

,E  ( ( 3 ) 3 ( ) 3 ( ) ( 3 ) 48 ( ))f x y f x y f x y f x y f y        
     

 1,
E
 

( ( , ))x y      (3.5) 

Adding (3.4) and (3.5), we get  

,E  ( 48 ( ) 48 ( ))f y f y     
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≤ 1,
E
 

+ 1,
E
 

( ( , ))x y   

≤ 2 1,
E
 

( ( , ))x y ,E  ( ( ) ( ))f y f y                                   ≤ 

1

24
1,

E
 

( ( , ))x y    (3.6) 

From equation (3.2) and (3.4). Let us fix x = 0, then we get  

(3 ) 3 ( ) 3 ( ) ( 3 ) 48 ( ) ( )f y f y f y f y f y t          
1

(0, )( )y t ,   

for all y  X and all t > 0. 

,E  ( (3 ) 3 ( ) 3 ( ) ( 3 ) 48 ( ))f y f y f y f y f y        

≤ 1,
E
 

( (0, ))y     (3.7) 

Solving (3.6) and (3.7), we get  

,E  (2 (3 ) 54 ( ))f y f y   

≤ ,E  ( (3 ) ( 3 )) 3( ( ) ( ))f y f y f y f y      + 1,
E
 

( (0, ))y  

≤ 1,
E
 

( (0, ))y + ,E  ( (3 ) ( 3 ))f y f y    

                                                         + ,E  3( ( ) ( ))f y f y   

≤ 1,
E
 

( (0, ))y + 
1

24
1,

E
 

( (0,3 ))y + 
3

24
1,

E
 

 

from (3.6) 

≤ 
27

24
1,

E
 

( (0, ))y +
1

24
 1,
E
 

( (0,3 ))y  

,E 

(3 )
( )

27

f y
f y

 
 

 
 

 ≤ 
1

48
[ 1,

E
 

( (0, y))  + 
1

27
 1,
E
 

( (0, 3y))]     (3.8) 

Now,  it follows from  

 
(3 )

( )
27

n

n

f y
f y  = 

11

1
0

(3 ) (3 )

27 27

k kn

k k
k

f y f y




 
 

 
  ,       

,E 

(3 )
( )

27

n

n

f y
f y

 
 

 
  ,E 

11

1
0

(3 ) (3 )

27 27

k kn

k k
k

f y f y




 
 

 
  

≤

 

1

,

0

n

k

E 






1

1

(3 ) (3 )

27 27

k k

k k

f y f y



 
 

 
  

≤ 1
48

1 1

270

n

kk





[ 1,
E
 

( (0,3 ))k y +
1

27
1,

E
 

1( (0,3 ))k y 
]  

      (3.9) 

Again for any positive integer m, dividing (3.9) by 27m  and 

replacing y with 3my to obtain that  

,E 

(3 ) (3 )

27 27

n m m

n m m

f y f y



 
 

 
  

≤ 1
48

1 1

270

n

k mk






[ 1,
E
 

( (0,3 ))k m y 
+

1

27
1,

E
 

1( (0,3 ))k m y  
]

        (3.10) 

This shows that { (3 ) / 27 }n nf y  is a Cauchy sequence in      (Y, 

, min) because the right hand side of (3.10) converges to zero 

when m  . Since (Y, , min) is a complete RN-space , this 

sequence converges to some points C(y)Y. Fix y  X and put 

m = 0 in (3.10) then we obtain  

,E 

(3 )
( )

27

n

n

f y
f y

 
 

 
  

≤ 1
48

 1 1

270

n

kk





[ 1,
E
 

( (0,3 ))k y +
1

27
1,

E
 

1( (0,3 ))k y 
] 

    (3.11)  

So, we get 

, ( ( ) ( ))E C y f y  
 

≤ ,E 

(3 )
( )

27

n

n

f y
C y
 

 
 

 + ,E 
(3 )

( )
27

nf y
f yn

 
 
 
 

  

≤ ,E 

(3 )
( )

27

n

n

f y
C y
 

 
 

+ 1
48

1 1

270

n

kk





 [ 1,
E
 

( (0,3 ))k y +
1

27
 

1,
E
 

1( (0,3 ))k y 
]    (3.12) 

Taking the limit as n, we get 

, ( ( ) ( ))E C y f y     

≤ 1
48

1

270 kk





 [ 1,
E
 

( (0,3 ))k y +
1

27
 

1,
E
 

1( (0,3 ))k y 
] 

≤
1

48
0 27

k

k





 
 
 

 1,
E
 

( (0, ))y + 
1

48

1

0 27

k

k






 
 
 

 1,
E
 

( (0, ))y  

 ≤
1

48

27

27 
1,

E
 

( (0, ))y + 
1

48
 

27




1,

E
 

( (0, ))y  

  ≤ 1,
E
 

 ( (0, ))y
27

48(27 )





 
 

 
  (3.13)   

that is, 

inf {t > 0 ; 
( ) ( )( )C y f y t 

>1-}  

≤ inf {t > 0 ; 1

(0, )(27 )(48(27 ) )y t    >1-} (3.14)  

Then, we get  

( ) ( )( )C y f y t 
 1

(0, )(27 )(48(27 ) )y t      (3.15) 

Now, for uniqueness let there exist a cubic mapping 

:D X Y which satisfies (3.3) then, clearly C(3ny) = 27nC(y) 

and D(3ny) = 27nD(y) for all nN. It follows from (3.3) that 

( ) ( )( )C y D y t 
= 

( (3 ) / 27 ) ( (3 ) / 27 )
( )n n n nn C y D y

Lim t 
 

( (3 ) / 27 ) ( (3 ) / 27 )
( )n n n nC y D y
t


 

 min{
( (3 ) / 27 ) ( (3 ) / 27 )

( / 2)n n n nC y f y
t


, 

( (3 ) / 27 ) ( (3 ) / 27 )
( / 2)n n n nD y f y
t


} 

 1

(0,3 )
(27 (27 ) )n

n

y
t


   1

(0, )

(27 (27 ) )n

y n

t







 
 
 

 

Since  (27 (27 ) ) /n n

nLim t    = , we get 

1

(0, )(27 (27 ) ) /n n

n yLim t     = 1. Therefore, it follows that 

( ) ( )( )C y D y t 
 = 1 for all t > 0 and so C(y) = D(y). This 

completes the proof. 

Corollary 3.2:- Let X be a linear space, (Z, 1, min) an RN-

space and (Y, , min) a complete RN-space. Let p, q be non- 

negative real numbers and let z0  Z. If :f X Y is a 

mapping such that   

( 3 ) 3 ( ) 3 ( ) ( 3 ) 48 ( ) ( )f x y f x y f x y f x y f y t            1

( )
( )p q

x y
t



,(3.16) 

)),(( yx

)),0(( y
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 for all x, y  X and all t > 0              (0) 0f   

and p, q<3, then there exists a unique cubic mapping 

:C X Y such that  

( ) ( )( )f y C y t 
  

0

1

(27 )
(48(27 ) )q

y z
t


 


  ,   (3.17) 

 for all y  X and all t > 0    

Proof: Define ( , ) ( )
p q

x y x y   and applying the Theorem 

(3.1) we get the desired result where  = 3q. 

Example 3.1:- Let (X, ॥.॥) be a Banach Algebra and  

 max 1 ,0 0
( )

0 0

x

x
if t

t t

if t



   
   

    




 

for every x, yX, let 

1

( , )

48 48
x 1 ,0 0

( )

0 0

x y

x y
ma if t

t t

if t



   
   

    




     

We know that norm is a distribution function and
1

(3 ,3 )
27 ( ) 1n n

n

n x y
Lim t


 

   
for every x, yX and t > 0. By the 

definition (2.2) (X, , T) is a RN-space. In fact, ( ) 1x t  for all 

t>0  0
x

t
  for all t > 0  x = 0 and certainly (PN2) 

( )x x

t
t 



 
  

 
for all xX and t > 0.  Therefore, for every x, 

yX and t, s>0, we obtain  

( ) max 1 ,0x y

x y
t s

t s
 

  
   

  

= max 1 ,0
x y

t s

 
 

 

=

max 1 ,0
x y

t s t s

 
  

  

max 1 ,0
x y

t t

 
  

 

  ( ( ), ( ))x yT t s   

Also RN- space (X, , T) is complete for  

( ) 1x y

x y
t

t
 


      (x, y  X, t > 0) 

and hence (X, ॥.॥) is complete. 

 Let us define a mapping f : XX, f (x)= x3+॥x॥x0 , where 

x0  is a unit vector in X. Now by using a simple calculation, 

we get 

( 3 ) 3 ( ) 3 ( ) ( 3 ) 48 ( )f x y f x y f x y f x y f y         

=
03 3 3 3 48x y x y x y x y y x         

 48 y  48 48x y  for all x, yX.  

Hence 1

( 3 ) 3 ( ) 3 ( ) ( 3 ) 48 ( ) ( , )( ) ( )f x y f x y f x y f x y f y x yt t         
 

for all    

x, yX and t>0 

Now let 

1

2(0,3 )

48
27 (27 ) max 1 ,0

3 (27 )
n

n

ny

y
t

t
 



  
   

  

 ,  

 where   0< <27  1

(0,3 )
27 (27 ) 1n

n

n y
Lim t


     

which implies that all the conditions of Theorem (3.1) hold.   

Since 

1

(0, )

(27 )48(27 )
max 1 ,0

(27 ) (27 )
y

yt

t





 

   
  

   

, 

We deduce that C(x) = x3 is the unique cubic mapping          C: 

X  X such that 

( ) ( )

(27 )
( ) max 1 ,0

(27 )
f y C y

y
t







  
  

  

, for all y  X and t > 0. 

4.1 Stability of Cubic- Quadratic Type 

Functional Equation (1.2) in RN -spaces 

Theorem 4.1:- Let X be a real linear space, (Z, 1, min) an 

RN-space. Let : X X Z   be a function such that for 

some 0<<4 

1

(2 ,2 ) ( )x x t   1

( , )( )x x t   (4.1) 

and  
1

(0,2 ) ( )x t   1

(0, ) ( )x t   (4.2) 

(0) 0f  and 1 4 ( )
(2 ,2 )

nLim tn n nx y



 = 1, for all  x, y  X 

and all t > 0. Let (Y, , min) be a complete RN-space. If 

:f X Y  an even function satisfying the inequality   

6 ( ) 6 ( ) 4 (3 ) 3 ( 2 ) 3 ( 2 ) 9 (2 ) ( )f x y f x y f y f x y f x y f y t           1

( , ) ( )x y t , (4.3) 

for all x, yX and all t > 0.Then there exists a unique 

quadratic mapping :C X Y such that  

( ) ( ) ( )f x C x t   1 1

4 ( , ) (0, )(3(4 ) ) (3(4 ) )x x xt t       , (4.4) 

for all x  X and all t > 0. 

Proof:- By using Lemma 2.5, equation (4.3) follows that 

,E  (6 ( ) 6 ( ) 4 (3 ) 3 ( 2 ) 3 ( 2 ) 9 (2 ))f x y f x y f y f x y f x y f y        
 

= inf{t > 0: 6 ( ) 6 ( ) 4 (3 ) 3 ( 2 ) 3 ( 2 ) 9 (2 ) ( )f x y f x y f y f x y f x y f y t          >1-}   

≤ inf{t > 0; 1

( , ) ( )x y t > 1-} 

= 1,
E
 

( ( , ))x y , for all x, y  X, (0, 1) (4.5) 
 

Putting x = 0, and then replace y by x we get 

,E  (6 ( ) 6 ( ) 4 (3 ) 3 (2 ) 3 ( 2 ) 9 (2 ))f x f x f x f x f x f x      
                 

≤ 

1,
E
 

( (0, ))x  

,E  (4 (3 ) 9 (2 ))f x f x ≤  1,
E
 

( (0, ))x , for all x  X 

     (4.6) 

Putting y = x in (4.5) we get 

,E  ( (3 ) 3 ( ) 3 (2 ))f x f x f x   ≤  1,
E
 

( ( , ))x x
 (4.7)

 

Now from (4.6) and (4.7), we get 
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,E  (3 (2 ) 12 ( ))f x f x
 

≤ ,E  (4 (3 ) 12 ( ) 12 (2 )f x f x f x  4 (3 ) 9 (2 ))f x f x 
 

≤ ,E  (4 (3 ) 12 ( ) 12 (2 ))f x f x f x  + ,E  (4 (3 ) 9 (2 ))f x f x
 

≤ ,E  4( (3 ) 3 ( ) 3 (2 ))f x f x f x  + ,E  (4 (3 ) 9 (2 ))f x f x  

≤ ,4E  ( (3 ) 3 ( ) 3 (2 ))f x f x f x  + ,E  (4 (3 ) 9 (2 ))f x f x  

≤ 4 1,
E
 

( , )x x  + 1,
E
 

(0, )x  

 ,E 

(2 )
( )

4

f x
f x

 
 

 
 ≤ 

1

12
[4 1,

E
 

( , )x x  + 1,
E
 

(0, )x ]

     (4.8)  

Now replacing x by 2x in (4.8) and then dividing by 4, the 

resulting inequality with (4.8) gives 

,E 

2

2

(2 ) (2 )

4 4

f x f x 
 

 
 

≤
1

48
[4 1,

E
 

(2 ,2 )x x + 1,
E
 

(0,2 )x ]   

,E 

2

2

(2 )
( )

4

f x
f x

 
 

 
 

≤
1

12

4 (2 ,2 ) (0,2 )
1 1, ,

4

E x x E x 
   

 
 
 
 
 
 





 

12

1
4 ( , ) (0, )

1 1, ,
E x x E x 
   

 
 
 
 

  

for all xX . By induction we can write  

,E 
(2 )

( )
4

n

n

f x
f x

 
 

 

  

≤ 
1

12
1 1

1
, ,

0

4 (2 ,2 ) (0,2 )

4

i i i
n

i
i

E x x E x
   

 



 
 
 
 

  (4.9)             

for all  xX. We divide (4.9) by 4m and replacing x with 2mx, 

we get 

,E 
(2 ) (2 )

4 4

n m m

n m m

f x f x



 
 

 
\ 

≤ 1
12

1 1
1

, ,

0

4 (2 2 ,2 2 ) (0,2 2 )

4

i m i m i m
n

i m
i

E x x E x
   

 




 
 
 
 

  

≤ 
1

12
1 1

1
, ,

0

4 (2 ,2 ) (0,2 )

4

i m i m i m
n

i m
i

E x x E x
   

   





 
 
 
 


 

(4.10)        

This implies that { (2 ) / 4 }n nf x  is a Cauchy sequence in X by 

taking the Limit m since (Y, , min) is a complete         

RN –Space it follows that the sequence { (2 ) / 4 }n nf x

converges in (Y, , min). Taking m = 0 in the equation (4.10), 

we get  

,E 
(2 )

( )
4

n

n

f x
f x

 
 

 
 

≤ 
1

12
1 1

1
, ,

0

4 (2 ,2 ) (0,2 )

4

i i i
n

i
i

E x x E x
   

 



 
 
 
 

  

So that  

,E  ( ( ) ( ))C x f x    

≤  ,E 
(2 )

( )
4

nf x
C x n
 
 
 
 

  + ,E 

(2 )
( )

4

n

n

f x
f x

 
 

 
 

≤ ,E 
(2 )

( )
4

n

n

f x
C x
 

 
 

 + 
1

12
1 1

1
, ,

0

4 (2 ,2 ) (0,2 )

4

i i i
n

i
i

E x x E x
   

 



 
 
 
 


 

Now taking the limit as n  ∞, we get 

,E  ( ( ) ( ))C x f x ≤ 
12

1
1 1, ,

0

4 (2 ,2 ) (0,2 )

4

i i i

i
i

E x x E x
   

 



 
 
 
 


 

≤ 
1

12
1,

0

4
( , )

4

i

i
i

E x x
 








 + 
1

12
1,

0

(0, )
4

i

i
i

E x
 








  

≤ 1,
E
 

( , )x x
4

3(4 )
+ 1,

E
 

(0, )x
1

3(4 )
 

      (4.11)  

that is

 
inf { t > 0 ; 

( ) ( )C x f x 
>1-}  

≤ inf {t > 0 ; 1 1

4 ( , ) (0, )3(4 )( ) 3(4 )( )x x xt t       >1-} (4.12) 

then, we get 

( ) ( ) ( )C x f x t 
 1 1

4 ( , ) (0, )3(4 )( ) 3(4 )( )x x xt t               (4.13) 

Now, for uniqueness let there exist a quadratic  mapping 

:T X Y which satisfies (4.3) then, clearly C(2nx) = 4nC(x) 

and T(2nx) = 4nT(x), for all nN. It follows from (4.3) that 

( ( ) ( ))( )C x T x t 
   = 

( (2 ) / 4 ) ( (2 ) / 4 )
( )n n n nn C x T x

Lim t 

 
( (2 ) / 4 ) ( (2 ) / 4 )

( )n n n nC x T x
t



   min{
( /2)

( (2 )/4 ) ( (2 )/4 )
tn n n nC x f x




,
( (2 ) / 4 ) ( (2 ) / 4 )

( / 2)n n n nT x f x
t


} 

 1

(0,2 )
(4 (4 ) )n

n

x
t


    1

(0, )

4 (4 )n

x n

t







 
 
 

  

Since Limn (4 (4 ) ) /n nt  = , we get                   Limn 

1 (4 (4 ) )/
(0, )

n nt
x

  


 = 1. Therefore it follows that 

( ) ( ) ( )C x T x t  = 1 for all t > 0 and so C(x) = T(x). This 

completes the proof.  

Theorem 4.2:- Let X be a real linear space, (Z, 1, min) an 

RN-space. Let : X X Z   be a  function such that for 

some  0<<8 

 1

(2 ,2 ) ( )x x t   1

( , )( )x x t   (4.14) 

and  

 1

(0,2 ) ( )x t   1

(0, ) ( )x t   (4.15) 

f (0)=0 and 1

(2 ,2 )
8 ( )n n

n

n x y
Lim t




 = 1, for all x, yX and all 

t > 0. Let (Y,  , min) be a complete RN- space.  If 

:f X Y an odd function satisfies the inequality  

6 ( ) 6 ( ) 4 (3 ) 3 ( 2 ) 3 ( 2 ) 9 (2 ) ( )f x y f x y f y f x y f x y f y t             1

( , )( )x y t
 

  
    (4.16) 

 for all x, y  X and all t > 0. Then there exists a unique cubic 

mapping :C X Y  such that  
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( ) ( ) ( )C x f x t 
 1 1

4 ( , ) (0, )3(8 )( ) 3(8 )( )x x xt t       ,    (4.17) 

for all x  X and all t > 0    

Proof:- By using the Lemma (2.5) equation (4.16) implies 

that 

,E  (6 ( ) 6 ( ) 4 (3 ) 3 ( 2 ) 3 ( 2 ) 9 (2 ))f x y f x y f y f x y f x y f y        
 

= inf{t > 0: 6 ( ) 6 ( ) 4 (3 ) 3 ( 2 ) 3 ( 2 ) 9 (2 )( )f x y f x y f y f x y f x y f y t          >1-}   

≤ inf{t>0; 1

( , ) ( )x y t > 1-} 

= 1,
E
 

( ( , ))x y for all x, y  X  and (0, 1) (4.18) 

Putting  x = 0, and  replace y by x, we get 

,E  (6 ( ) 6 ( ) 4 (3 ) 3 (2 ) 3 ( 2 ) 9 (2 ))f x f x f x f x f x f x         

≤  1,
E
 

( (0, ))x  

,E  (12 ( ) 4 (3 ) 15 (2 ))f x f x f x  ≤ 1,
E
 

( (0, ))x ,            

for all x  X.     (4.19) 

Putting y = x in (4.18) we get 

,E  (3 ( ) (3 ) 3 (2 ))f x f x f x  ≤ 1,
E
 

( ( , ))x x , (4.20) 

for all x  X. Now from (4.19) and (4.20), we have  

, (24 ( ) 3 (2 ))E f x f x  
 

, (12 ( ) 4 (3 ) 15 (2 ) 12 ( ) 4 (3 ) 12 (2 ))E f x f x f x f x f x f x        

≤ , (12 ( ) 4 (3 ) 15 (2 ))E f x f x f x    + ,4 (3 ( ) (3 ) 3 (2 ))E f x f x f x     

≤ 4 1,
( , )E x x

 
  + 1,

(0, )E x
 

 , ,E 

(2 )
( )

8

f x
f x

 
 

 
                 

≤ 
1

24
[4 1,

( , )E x x
 

  + 1,
(0, )E x

 
 ]  (4.21)  

for all x  X. Now replacing x with 2x in (4.21) and then 

dividing by 8, the resulting inequality with (4.21) gives 

,E 

2

2

(2 ) (2 )

8 8

f x f x 
 

 

≤ 1

192
[4 1,

(2 ,2 )E x x
 

 + 1,
(0,2 )E x

 
 ], 

,E 

2

2

(2 )
( )

8

f x
f x

 
 

 
  

≤
1

24
1 1, ,
4 (2 ,2 ) (0,2 )

8

E x x E x
   

  
  

 

1

24 1 1, ,
4 ( , ) (0, )E x x E x

   
  

 
 

for all xX. By induction on ‘n’ we can write  

,E 
(2 )

( )
8

n

n

f x
f x

 
 

 

 ≤ 
1

24
 1 1

1
, ,

0

4 (2 ,2 ) (0,2 )

8

i i i
n

i
i

E x x E x
   

 



 
 
 
 



for all xX.     (4.22)       

We divide (4.22) by 8m and replacing x with 2mx, we get 

,E 
(2 ) (2 )

8 8

n m m

n m m

f x f x



 
 

 
  

≤ 1
24

 1 1
1

, ,

0

4 (2 2 ,2 2 ) (0,2 2 )

8

i m i m i m
n

i m
i

E x x E x
   

 




 
 
 
 

  

≤ 
1

24
 1 1

1
, ,

0

4 (2 ,2 ) (0,2 )

8

i m i m i m
n

i m
i

E x x E x
   

   





 
 
 
 


 

(4.23)  

This implies that { (2 ) /8 }n nf x  is a Cauchy sequence in X by 

taking the Lim m since         (Y, , min) is a complete RN 

– Space it follows that the sequence { (2 ) /8 }n nf x  converges 

in   (Y, , min). Taking m = 0 in (4.23), we get  

,E 
(2 )

( )
8

n

n

f x
f x

 
 

 

≤ 
1

24
 1 1

1
, ,

0

4 (2 ,2 ) (0,2 )

8

i i i
n

i
i

E x x E x
   

 



 
 
 
 

  

Now taking 

,E  ( ( ) ( ))C x f x
 

≤  ,E 

(2 )
( )

8

n

n

f x
C x
 

 
 

 + 
,E 

(2 )
( )

8

n

n

f x
f x

 
 

 
 

≤ ,E 
(2 )

( )
8

n

n

f x
C x
 

 
 

+
1

24

1 1
1

, ,

0

4 (2 ,2 ) (0,2 )

8

i i i
n

i
i

E x x E x
   

 



 
 
 
 

  

,E  ( ( ) ( ))C x f x  ≤ 
1

24

1 1, ,

0

4 (2 ,2 ) (0,2 )

8

i i i

i
i

E x x E x
   

 



 
 
 
 

  

 ≤ 
1

24
1,

0

4
( , )

8

i

i
i

E x x
 








 + 
1

24
1,

0

(0, )
8

i

i
i

E x
 








  

 ≤ 1,
( , )E x x

 


4

3(8 )
+ 1,

(0, )E x
 


1

3(8 )
       

(4.24)    

that is 

inf { t > 0 ; ( ) ( ) ( )C x f x t  >1-}  

≤ inf {t > 0 ; 1 1

4 ( , ) (0, )3(8 )( ) 3(8 )( )x x xt t       >1-}  (4.25) 

then,  we have 

)()()( txfxC   1 1

4 ( , ) (0, )3(8 )( ) 3(8 )( )x x xt t       (4.26)  

Now, To prove uniqueness, let there exists another cubic 

mapping :T X Y which satisfies the equation (4.16), then 

clearly C(2nx) = 2nC(x) and T(2nx) = 2nT(x) for all n  N. 

Then it follows from (4.16) 

( ( ) ( ))( )C x T x t 
   = Lim n ( )

( (2 )/8 ) ( (2 )/8 )
tn n n nC x T x


  

( (2 ) / 8 ) ( (2 ) / 8 )
( )n n n nC x T x
t



 

 

  min {
( (2 ) / 8 ) ( (2 ) / 8 )

( / 2)n n n nC x f x
t


, 

( (2 ) / 8 ) ( (2 ) / 8 )
( / 2)n n n nT x f x
t


} 

 1

(0,2 )
(8 (8 ) )n

n

x
t


   1

(0, )

8 (8 )n

x n

t







 
 
 

 

 

Since Limn (8 (8 ) ) /n nt   = , we get                  Limn 
1

(0, )(8 (8 ) ) /n n

x t    = 1. Therefore it follows that         

C(x) - T(x)(t) = 1 for all t > 0 and so C(x) = T(x).  

Corollary 4.3:- Let X be a linear space, (Z, 1, min) be a RN 

space, and (Y, 1, min) be a complete RN-space. If 

:f X Y be a mapping such that 
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6 ( ) 6 ( ) 4 (3 ) 3 ( 2 ) 3 ( 2 ) 9 (2 ) ( )f x y f x y f y f x y f x y f y t           1

( )
( )p p

x y
t



,    

     (4.30)    

 for all x, y  X ,  t > 0, 0)0( f ,   0 and p < 2 ,  then 

there exists a unique cubic mapping :C X Y and a unique 

quadratic mapping :Q X Y such that 

 
( )

( ) ( ) ( )
t

f x C x Q x


 
  

 (4 2 )( ) (8 3 )( )
3 3

p pt tp px x
 
 

   ,       (4.31) 

for all x  X and all t > 0.   

Proof: - Define ( , ) ( )
p p

x y x y   and applying Theorem 

(4.3) we get the desired result. 

5.1 Stability of Jensen-Type Quadratic 

Functional Equations (1.3) and (1.4) in RN- 

space  

We prove the Hyers-Ulam-Rassias stability of equation (1.3) 

in random normed space. 

Theorem 5.1:- Let X be a linear space, (Z, 1, min) an RN-

space, and let : X X Z  
 
be a function such that for some 

0<<4 
1

(2 ,0) ( )x t   
1

( ,0)( )x t   (5.1) 

(0) 0f   and 1

(2 ,2 )
4 ( ) 1n n

n

n x y
Lim t


   , for all x, y  X and all  

t > 0. Let (Y, , min) be a complete RN-space. If :f X Y is 

a mapping such that  

(2( ) / 2 2 ( ) / 2 ( ) ( )) ( )x y f x y f x f y t        
1

( , )( )x y t ,                            

for all x, y  X and all t > 0   (5.2) 

Then there exists a unique cubic mapping :C X Y  such 

that 
( ) ( ) ( )f x C x t 

 
1

( ,0)(4 )( )x t   for all x  X and all t > 0.

     (5.3)  

Proof: - By using the Lemma (2.5) and inequality (5.2),  

implies that 

,E  (2 (( ) / 2) 2 (( ) / 2) ( ) ( ))f x y f x y f x f y      
 

= inf {t > 0: (2 ( ) / 2 2 ( ) / 2 ( ) ( )) ( )f x y f x y f x f y t       > 1-}   

≤ inf{t > 0; 1

( , ) ( )x y t > 1-} 

= 1,
E
 

( ( , ))x y for all x, y  X,   (0, 1) (5.4) 

Putting y = 0 and replacing x with 2x, we get 

,E  (2 ((2 )/ 2) 2 ((2 )/ 2) (2 ))f x f x f x   ≤ 1,
E
 

( (2 ,0))x  

,E  (2 ( ) 2 ( ) (2 ))f x f x f x   ≤ 
1,

E
 

( (2 ,0))x
 

,E  (4 ( ) (2 ))f x f x  ≤ 1,
E
 

( (2 ,0))x  

,E 

(2 )
( )

4

f x
f x

 
 

 
 ≤ 

1

4
1,

E
 

( (2 ,0))x  

Replacing x with 2x and dividing by 4, we have 

,E 

2

2

(2 ) (2 )

4 4

f x f x 
 

 
 ≤ 

2

1

4
1,

E
 

2( (2 ,0))x  

,E 

2

2

(2 )
( )

4

f x
f x

 
 

 
  

≤ 
2

1

4
1,

E
 

2( (2 ,0))x + 
1

4
1,

E
 

( (2 ,0))x  

for all x  X. By induction on ‘n’ we can write  

,E 

(2 )
( )

4

n

n

f x
f x

 
 

 
 ≤ 

1

n

i


1

4i 1,
E
 

( (2 ,0))i x   (5.5)  

Again replacing x with 2mx and dividing by 4m in (5.5), we 

obtain 

,E 
(2 ) (2 )

4 4

n m m

n m m

f x f x



 
 

 

 ≤ 
1

n

i


1

4i m 1,
E
 

( (2 ,0))i m x 
 

This implies that the sequence { (2 ) / 4 }n nf x is a Cauchy 

sequence as m∞, since {Y, µ, min} is complete random 

normed space, thus the sequence { (2 ) / 4 }n nf x is convergent 

in {Y, µ, min}. Taking m = 0, we get 

,E 

(2 )
( )

4

n

n

f x
f x

 
 

 
 ≤ 

1

n

i


1

4i 1,
E
 

( (2 ,0))i x
   

(5.6) and 

so, 

,E  ( ( ) ( ))C x f x
 

≤ ,E 

(2 )
( )

4

n

n

f x
C x
 

 
 

 + ,E 

(2 )
( )

4

n

n

f x
f x

 
 

 
 

Using above equation (5.6), we get  

,E  ( ( ) ( ))C x f x   

≤ ,E 

(2 )
( )

4

n

n

f x
C x
 

 
 

 + 
1

n

i


1

4i 1,
E
 

( (2 ,0))i x  

Taking n  ∞, we get 

,E  ( ( ) ( ))C x f x  ≤  
1i






1

4i 1,
E
 

( (2 ,0))i x
                    

≤  

1i






4

i

i


1,

E
 

( ( ,0))x ≤  
1i






4

i
 

 
 

1,
E
 

( ( ,0))x         ≤ 

1,
E
 

( ( ,0))x
4




    (5.7)  

that is,   inf {t > 0: (2( ) / 2 2 ( ) / 2 2 ( ) 2 ( )) ( )x y f x y f x f y t       > 1-}  

             ≤ inf{t > 0; 1

( , ) ( )x y t > 1-}  (5.8) 

then, we get  

( ) ( ) ( )C x f x t 
  1

( ,0)(4 )( )x t 
  

(5.9)        

Now, to prove uniqueness of the quadratic mapping C, let us 

consider another quadratic equation :T X Y which satisfies 

(5.2). Fix x  X then we have C(2nx) = 4nC(x) and T(2nx) = 

4nT(x) for all nN. It follows from (5.2) that  

( ) ( ) ( )C x T x t 
 = Lim n ( (2 ) / 4 ) ( (2 ) / 4 )

( )n n n nC x T x
t


 

( (2 ) / 4 ) ( (2 ) / 4 )
( )n n n nC x T x
t



 

  min{
( (2 ) / 4 ) ( (2 ) / 4 )

( / 2)n n n nC x f x
t


, 

( (2 ) / 4 ) ( (2 ) / 4 )
( / 2)n n n nT x f x
t


}
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  1

(2 ,0)
(4 (4 ) )n

n

x
t


   1

( ,0)

4 (4 )n

x n

t







 
 
 

 

 

Since Limn (4 (4 ) ) / )n nt  = , we get                     Limn 
1

( ,0)(4 (4 ) ) /n n

x t    = 1. Therefore, it follows that 
( ) ( ) ( )C x T x t 

= 1 for all t > 0 and so C(x) = T(x).                      This 

completes the proof. 

Corollary 5.2:- Let X be a linear space, (Z, 1, min) an RN-

space and (Y, , min) a complete RN-space. Let  

: X X Z    a function such that some 0<<9 

1

(3 ,0) ( )x t   
1

( ,0)( )x t   (5.10) 

(0) 0f   and 1

(3 ,3 )
9 ( ) 1n n

n

n x y
Lim t


  , for all x, y  X and 

all t > 0. If :f X Y is a mapping such that  

(2( ) / 2 2 ( ) / 2 ( ) ( )) ( )x y f x y f x f y t        
1

( , )( )x y t ,   (5.11) 

 for all x, y  X and all t > 0. Then there exists a unique cubic 

mapping :C X Y  such that  

( ) ( ) ( )f x C x t 
   

1

( ,0)(9 )( )x t  , for all x  X and all t > 0 

     (5.12) 

Proof:-Taking the value of  from 0 to 9 and using the 

Theorem (5.1) we get the required result.  

Now, we prove the Hyers-Ulam stability of equation (1.4) 

in random normed space. 

Theorem 5.3:- Let X be a linear space, (Z, 1, min) an RN-

space and (Y, , min) be a complete RN-space. Let 

: X X Z   a function such that some 0<<4 2a ,            a  
≠ (±1/2) 

1

( ,0)( )ax t   
1

( ,0)( )x t   (5.13) 

(0) 0f   and 1 2

( , )
( ) 1n n

n

n a x a y
Lim a t


   , for all x, y  X and 

all t > 0. If :f X Y is a mapping such that  

2 2( ( ) ( ) 2 ( ) 2 ( ))
( )

f ax ay f ax ay a f x a f y
t

    
  

1

( , )( )x y t , 

     (5.14) 

for all x, y  X and all t > 0. Then there exists a unique 

quadratic mapping :C X Y  such that  

( ) ( ) ( )f x C x t 
  

1 2

( ,0) 2( )( )x a t  ,  for all x  X and all t > 0 

     (5.15)  

Proof: - By using Lemma (2.5) and inequality (5.14), implies 

that 

,E 
2 2( ( ) ( ) 2 ( ) 2 ( ))f ax ay f ax ay a f x a f y      

 
= inf {t > 0: 2 2( ( ) ( ) 2 ( ) 2 ( ))

( )
f ax ay f ax ay a f x a f y

t
    

>1-}   

≤ inf{t > 0: 1

( , ) ( )x y t > 1-} = 1,
E
 

( ( , ))x y
 

(5.16)
 

for all x, y  X,   (0, 1).    

Putting y = 0, we get 

,E 
2 2( ( ) ( ) 2 ( ) 2 (0))f ax f ax a f x a f    ≤ 1,

E
 

( ( ,0))x  

,E 
2(2 ( ) 2 ( ))f ax a f x   ≤ 1,

E
 

( ( ,0))x  

,E  2

( )
( )

f ax
f x

a

 
 

 
  ≤ 12 ,

1

2
E

a  
( ( ,0))x  

Replacing x with a x and dividing  by 2a , we get 

,E 

2

4 2

( ) ( )f a x f ax

a a

 
 

 
  ≤ 14 ,

1

2
E

a  
( ( ,0))ax  

,E 

2

4

( )
( )

f a x
f x

a

 
 

 
   

≤ 14 ,

1

2
E

a  
( ( ,0))ax  + 12 ,

1

2
E

a  
( ( ,0))x  

for all x  X. By induction we can write  

,E  2

( )
( )

n

n

f a x
f x

a

 
 

 
 ≤ 

1

2

1

0

n

i





 2 2

1
ia  1,

E
 

( ( ,0))ia x
 

     
(5.17) 

 Again replacing x by ma x and dividing by 2ma  , we have 

,E  2 2 2

( ) ( )n m m

n m m

f a x f a x

a a





 
 

 
≤

1

2

1

0

n

i





 2 2 2

1
i ma   1,

E
 

( ( ,0))i ma x 

     
(5.18)    

 This implies that the sequence 
2{ ( ) / }n nf a x a is a Cauchy 

sequence as m∞, since {Y, µ, min} is complete random 

normed space, thus the sequence 
2{ ( ) / }n nf a x a is convergent 

in {Y, µ, min}. Taking m = 0, we get 

,E  2

( )
( )

n

n

f a x
f x

a

 
 

 
 ≤ 

1

2

1

0

n

i





 2 2

1
ia  1,

E
 

( ( ,0))ia x
 

     
(5.19)  

and so, 

,E  ( ( ) ( ))C x f x
 

≤ ,E  2

( )
( )

n

n

f a x
C x

a

 
 

 
 + ,E  2

( )
( )

n

n

f a x
f x

a

 
 

 
 

Using above equation (5.19), we get  

,E  ( ( ) ( ))C x f x   

≤ ,E  2

( )
( )

n

n

f a x
C x

a

 
 

 
 + 

1

2

1

0

n

i





 2 2

1
ia  1,

E
 

( ( ,0))ia x  

Taking n  ∞, we get 

,E  ( ( ) ( ))C x f x  ≤  
1

2 0i





 2 2

1
ia  1,

E
 

( ( ,0))ia x  

≤ 
1

2 0i





 2 2

i

ia


 1,

E
 

( ( ,0))x  

≤ 1,
E
 

( ( ,0))x
2

1

2( )a 
    (5.20) 

that is,  

 inf {t > 0: 2 2( ( ) ( ) 2 ( ) 2 ( ))
( )

f ax ay f ax ay a f x a f y
t

    
 > 1-}  



International Journal of Computer Applications (0975 – 8887) 

Volume 45– No.11, May 2012 

33 

≤ inf{t > 0; 1

( , ) ( )x y t > 1-}   (5.21) 

then, we get 
( ) ( ) ( )C x f x t 

  
1 2

( ,0) 2( )x a t 
 

(5.22)       

 Now, to prove uniqueness of the quadratic mapping C, let us 

consider another quadratic mapping :T X Y which 

satisfies (5.14). Fix xX then we have C( na x) = 2na C(x) and 

T( na x) = 2na T(x) for all n  N. It follows from (5.14) that  

( ) ( ) ( )C x T x t 
 = Lim n 2 2( ( ) / ) ( ( ) / )

( )n n n nC a x a T a x a
t


 

2 2( ( ) / ) ( ( ) / )
( )n n n nC a x a T a x a
t



 

  min{
2 2( ( ) / ) ( ( ) / )

( / 2)n n n nC a x a f a x a
t


, 

2 2( ( ) / ) ( ( ) / )
( / 2)n n n nT a x a f a x a
t


}

 

  1 2 2

( ,0)
( ( ) )n

n

a x
a a t


   

2 2
1

( ,0)

( )n

x n

a a t







 
 
 

 

 

Since Limn 2 2( ( ) ) /n na a t 
 
 = , we get                Limn 

1 2 2

( ,0)( ( ) ) /n n

x a a t    = 1. Therefore it follows that 

( ) ( ) ( )C x T x t  = 1 for all t > 0 and so C(x) = T(x).                  

This completes the proof. 

Corollary 5.4:- Let X be a linear space, (Z, 1, min) be a RN-

space and (Y, , min) be a complete RN-space. Let 

: X X Z   a function such that some  > 4 2a ,               a 

 (1/2)     

1

( ,0)( )ax t   
1

( ,0)( )x t   (5.23) 

(0) 0f   and 1 2

( , )
( ) 1n n

n

n a x a y
Lim a t


   , for all x, y  X and 

all t > 0. If :f X Y is a mapping such that   

2 2( ( ) ( ) 2 ( ) 2 ( ))
( )

f ax ay f ax ay a f x a f y
t

    
  

1

( , )( )x y t , 

     (5.24) 

for all x, y  X and all t > 0. Then there exists a unique 

quadratic mapping :C X Y  such that  

( ) ( ) ( )f x C x t 
 

1 2

( ,0) 2( )( )x a t  ,  for all x  X and all t > 0 

     (5.25)  

Proof: - Applying Theorem (5.3) we get the desired result. 

Example 5.1:- Let (X, ॥.॥) be a Banach Algebra and  

max 1 ,0 0
( )

0 0

x

x
if t

t t

if t



   
   

    




 

for every x, y  X and a  R, let 

2 2

1

( , )

(2 2 ) (2 2 )
x 1 ,0 0

( )

0 0

x y

a a x a a y
ma if t

t t

if t



     
   

    




 

We know that norm is a distribution function and 
1 2

( , )
( ) 1n n

n

n a x a y
Lim a t


   for every x, y  X and t > 0. As we 

know that (X, , T) is a RN-space. In fact, ( ) 1x t  for all        t 

> 0  0
x

t
  for all t > 0  x = 0 and certainly (PN2) 

( )x x

t
t 



 
  

 
for all n  X and t > 0. Next for every x, yX 

and t, s > 0 we obtain 

( ) max 1 ,0x y

x y
t s

t s
 

  
   

  

= max 1 ,0
x y

t s

 
 

 

 

= max 1 ,0
x y

t s t s

 
  

  

 

  max 1 ,0
x y

t t

 
  

 

   ( ( ), ( ))x yT t s   

Also RN-space  (X, , T) is complete for  

( ) 1x y

x y
t

t
 


       (x, y  X, t > 0) 

and hence (X, ॥.॥) is complete. 

Let us define a mapping f : XX, f (x) = x2+॥x॥x0 , where 

x0  is a unit vector in X. Now by using a simple calculation, 

we get 

2 2( ) ( ) 2 ( ) 2 ( )f ax ay f ax ay a f x a f y      

= 2 2

02 2ax ay ax ay a x a y x      

 2 2

0(2 2 ) (2 2 )a a x a a y x    

 2 2

0(2 2 ) (2 2 )a a x a a y x    

for all x, y  X. Hence 2 2

1

( , )( ) ( ) 2 ( ) 2 ( )
( ) ( )x yf ax ay f ax ay a f x a f y
t t 

    


for all x, yX and t>0
 

Now let 
2

1 2 2

2 2( ,0)

(2 2 )
( ) max 1 ,0

( )
n

n

n

na x

a a a x
a a t

a a t
 



  
   

  

          

 where  0<<4a2 a  (1/2) 

 1 2 2

( ,0)
( ) 1n

n

n a x
Lim a a t


     

which shows that all the conditions of Theorem (5.3) hold.  

Since 
2

1 2

( ,0) 2

(2 2 )
2( ) max 1 ,0

2( )
x

a a x
a t

a t
 



  
   

  

, 

We deduce that C(x) = x2 is the unique cubic mapping C: X  

X such that 
2

( ) ( ) 2

( )
( ) max 1 ,0

( )
f x C x

a a y
t

a t





  
  

  

, 

for all y  X and t > 0. 

 

4. CONCLUSION 

Throughout this paper we introduced the following results: 

(i) In the subsection 3.1, using the Hyers-Ulam approach we 

proved the stability of functioan equation (1.1) in random 

normed space. 

(ii) In the subsection 4.1, we proved the stability of functional 

equation (1.2). 
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(iii) Further, in subsection 5.1 we proved the stability of 

equation (1.3) and (1.4) using an example and also introduced 

some corollaries for different conditions. 
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