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ABSTRACT

Let f be a mapping from a linear space X into a complete
Random Normed Space Y. In this paper, we prove some
results for the stability of Cubic, Quadratic and Jensen-Type

Quadratic functional equations in the setting of Random
Normed Spaces (RNS).
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1. INTRODUCTION

The concept of stability for a functional equation arises when
we replace the functional equation by an inequality which acts
as a perturbation of the equation. Thus the stability question
of functional equation is, “How do the solutions of the
inequality differ from those of the given functional equation?
The stability problem of functional equations originated from
a question of S. M. Ulam [19], concerning the stability of
group homomorphism:

Let (G1, *) be a group and let (G,, ¢, d) be a metric
group with the metric d (., .). Given &> 0, does there exists a
&e) > 0 such that if a mapping h: G;—> G, satisfies the
inequality

d(h(x*y), h(x)0h(y)) < 6,
for all x, yeG;, then there is a homomorphism H: G, —> G,
with d(h(x), H(X)) < & for all xeG;? If the answer is
affirmative, we would say that equation of homomorphism
H(x y) = H(x) H(y) is stable.
In1941, D. H. Hyers [7] gave the first affirmative answer to
the question of S. M. Ulam [19] for Banach spaces. Let X and

Y be Banach spaces, and let f : XV satisfies
[T (x+y)=T0)—f(y)|<e
for all x, yeX and ¢ > 0. Then there exists a unique additive

mapping T: X—Y such that
H f(x) _T(x)H <g, forall xeX

Also, if for each x the function t— f (tx) from R to Y is

continuous at a single point of X, then T is continuous every
where in X. In1978, Th. M. Rassias [25] gave the
generalization of Hyer’s result which allows the Cauchy

difference to be unbounded. Let f : X—Y be a mapping from

a normed vector space X into a Banach space Y subject to the
inequality
|F o) = 00— (e P+yP)
for all x, yeX, where ¢ and p are constants with ¢ > 0 and
p<1. Then the limit
n
C09 = n G0

for all xeX and C: X—Y is the unique mapping which satisfies
— < 2& p
[F(9-COY<, 2 i

for all xeX. Also, if for each xeX the function f (tx) is

continuous in teR, then C is R-linear. The case of the
existence of unique additive mapping had been obtained by T.
Aoki [28]. In 1994, P. Gavruta [18] following Th. M. Rassias
[25] approach for the stability of the linear mapping between
Banach spaces further obtained a generalization of Th. M.
Rassias in which he replaced the bound S(HXHpH\pr) by a
general function &(x, y) for the existence of unique linear
mapping. The functional equation
f(x+y)+ f(x=y)=2f(x)+2f(y) is called a quadratic
functional equation. In particular, every solution of the
quadratic functional equation is said to a quadratic mapping.
A generalized Hyers- Ulam stability problem for the quadratic
functional equation was given by F. Skof [11] for the mapping
f : X>Y, where X is a normed space and Y is a Banach
space. P. Cholewa [17] again generalized the Skof’s result for
abelian groups. The stability problem of several functional
equations have been investigated by a number of authors and
there are many interesting results concerning this problem
(see [5], [6], [8], [16], [21], [22], [26], [27]). The functional
equation
f (x+3y)-3 f (x+y)+3 f (x-y)- f (x-3y) =48 f (y)
(1.1)
is said to be the cubic functional equation since f (x) = cx
is its solution. Every solution of the cubic functional equation
is said to be a cubic mapping. The stability problem of cubic
equation (1.1) was proved by Wiwatwanich and
Nakmahalhlasint [1] for the mapping f : X—Y, where X and
Y are real Banach spaces. Later on, Park and Jung [16]
introduced a cubic equation different from the equation (1.1)
as follows.
f (x+3y)+ f By—x)=3  (x+y)+3 f (x-y)+48  (y)
and proved the generalized Hyers-Ulam-Rassias stability for
this equation on abelian groups. The functional equation 6
fx+y)-6f (x-y)+4f @3y
=3f x+2y)-3f (x-2y)+9f (2y) (1.2) is
said to be the cubic - quadratic type functional equation since
ax+bx? is its solution. Chang and Jung [12] established the
general solution and generalized Hyers-Ulam stability for the
function T : X—>Y, where X is a real vector space and Y is a
real Banach space. The functional equations

X+Y) 0§ (X=Y)_ .

2f {TJ+2f [T] f()+f(y) (13)
and

f (ax+ay)+ f (ax—ay)=2a2f (x)+2a2f (y) (1.4)
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are said to be Jensen- Type Quadratic functional equations. In
2009, S.Y.Jang, Rye Lee, Choonkil Park, and Dong Yun Shin
[24] proved the Fuzzy stability of equation (1.3) and (1.4).
The notion of a Random Normed space in which the values of
the norms are probability distribution functions rather than
numbers was given by Sherstnev in [2] and again generalized
by Alsina, Schweizer and Sklar in [4]

In this paper we adopt the usual terminology, notion and
convention of the theory of random normed space. Through
out this paper the space of Probabilistic distribution functions
is given by A™; that is the space of all mappings F: Ru{+co,-
w0}—[0,1], such that F is left continuous non decreasing and
F(0)=0, F(+w)= 1 and D' is a subset of A" for which
I~ F (+00) =1 where |—|:(X)denotes the left limit of all function

at the point x, that is,|~F(x) = Limt—)X—F(t)' The space A*
is partially ordered by the usual pointwise ordering of

functions, i.e. F<G if and only if F()<G(t) for all t in R. The
maximal element for A" in this order is the distribution

function & given by
o if t<0
0|1 if t>0

Finally, we prove the Hyers-Ulam stability of the functional
equation (1.1), (1.2), (1.3) and (1.4) respectively in random
normed space. We also prove some corollaries in the sense of
Hyers-Ulam-Rassias stability.

2. PRELIMINARIES

Definition 2.1. A mapping T: [0, 1]x[0, 1] —[0, 1] is a
continuous triangular norm (briefly a t — norm) if T satisfies
the following conditions :

(@) T is commutative and associative;

(b) T is continuous;

(c) T(a, 1) =aforall ag[0, 1];

(d) T(a, b)<T(c, d) whenever a <cand b <d for all

a, b, c,de[0, 1]. (see [3])
Typical examples of continuous t-norm are T(a, b) = ab,
T(a, b) = max(at+b-1,0) and T(a, b) = min(a, b)

Definition 2.2. [2] A Random Normed space (briefly RN-
space) is a triple (X, g, T), where X is a vector space, T is a
continuous t-norm, and g is a mapping from X into D* such
that the following conditions hold:

(PN1) g, (t) =&,(t) forallt>0ifand only if x = 0;
(PN2) w1, (t)=p,(t/|a]) forallxinX, a=0andallt>0;

(PN3) g, (t+5) = T((t), 1, (s)) forall x,yeX
andallt,s>0

Definition 2.3. Let (X, « T) be an RN- space

Q) A sequence {x,} in X is said to be convergent to x in
X if, for every t > 0 and ¢ > 0, there exists a positive integer N
such that x, ,(t) > 1-ewhenever n>N.

) A sequence {x,} in X is said to be Cauchy sequence
if, for every t > 0 and ¢ > 0, there exists a positive integer N
such that 4, , (t) > 1-ewhenever n=m2N.
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3) An RN- space (X, g, T) is said to be complete if and
only if every Cauchy sequence in X is convergent to a point in
X.

Theorem 2.4. If (X, g T) is an RN-space and {x,} is a
sequence such that x,—> X, then Lim, __z, (t) = z4,(t) . [3]

Lemma 2.5. Let (X, 4, min) be an RN- space and define
E,.: X —>R" {0} by

E, .00 =inf{t>0: 11 (1) >1-1}, (2.1)
forall A €]0,1, xeX. Then, one has
El,y(xl - Xn) < El,y(xl - Xz) +.ot E;.,,,(XnA - Xn) ) (2-2)

for all x, ...,x, € X and the sequence {x,} is convergent to x
with respect to random norm p if and only if
E, ,(x,—x)—>0as n—w. Also, the sequence {Xx,} is a

A
Cauchy sequence with respect to random norm p if and only if
it is a Cauchy sequence with E, . [10]

3. MAIN RESULTS

In the following theorems, by using the idea of Baktash, Cho,
Saadati and Vaezpour (see[10]), we will prove the Hyers —
Ulam — Rassias stability of the functional equations (1.1) and
(1.2) in Random Normed spaces.

3.1 Stability of Cubic Functional Equation
(1.1) in RN- space

Theorem 3.1:- Let X be a linear space, (Z, /&, min) an RN-
space. Let ¢: X x X — Z be a function such that for some

O<a<27
'u;(oﬁy) (t) > :“iqﬁ(o,y) ® (3.1)
f(0)=0and Lim,_, 4, 4 »,27"(t) =1, forall x, yeX and

all t> 0. Let (Y, g min) be a complete RN-space. If
f : X =Y is a mapping such that

1
ﬂf(x+3y)—3f(x+y)+3f(x—y)—f(x—3y)—48f(y)(t) 2 Iu¢(X,Y)(t) 1 (3.2)
forall x, yeX and all t>0

Then there exists a unique cubic mapping C: X —Y such
that

Hiycon® 2 120 7.0 (48(27 — D) 3.3)

for all yeX and all t > 0.

Proof: - By using the Lemma 2.5, equation (3.2) implies that,
Em (f(x+3y)=3f (x+y)+3f(x—y)— f(x—=3y)—48f(y))
=Nt > 05 245 (aayyoar eyyeat (emy)-f (cay)-ast (v (D) > 1-4}
<inf{t>0; f,,,() > 1-1}

= Ewl (6(x,y)) forall x, yeX, 1€(0, 1) (3.4)

Now substituting y = -y, we have

EM (f(x=3y)=3f(x—y)+3f(x+Yy)— f(x+3y)—48f (-y))
<E, . @(x-Y)) (3.5)

A p

Adding (3.4) and (3.5), we get

E, . (-481(y)-481(-y))
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SE . @yt E, . #(x-y)
S2E, . (6xy) B, (F(W+T(-y)

INA

1

o5 Eus GO0 (3.6)

From equation (3.2) and (3.4). Let us fix x = 0, then we get
iyt (st oyt a8ty (0 2 ﬂ;(o,y)(t)'

forally e Xand all t > 0.

E.. (fRBY)=3f(y)+3f(-y) - f(-3y)—-48f(y))
<E,, (40.y) (37)
Solving (3.6) and (3.7), we get
E.. 2f@Ry)-541(y))
B . (F@N+ (B -3(f M+ f(-y) + E, , (#(0.Y)
E, . (#0.y)+ E,, (f@By)+f(-3y)

+EL () + F(-y)

1
S E,. GO+ 57 E, . (03)+ % E.. (40,)
from (3.6)

< e L GO E . 603

E,, [ 180 )j

IA

IN

SLEL GO + 2 E L 603M)] 69

Now, it follows from

FEY) gy = Z{ ) f(3ky)j 7

27" =\ 27 27
f3"y) fE*y) @Yy
Elvu (T_ f(y) El u ; 27+ 27k
n-1 f (3k+1 y) f (3k y)
< E -
- é Au [ 27k+l 27k

<1nl1 [E 03y)+~ E 0,3
L kgoﬁ[ L BOIW 2 E L (GOIPY)]

(3.9)
Again for any positive integer m, dividing (3.9) by 27™ and
replacing y with 3™y to obtain that

e [f@™y) f@E"Y)
g o7mm 27m

w1 [E,, (0 3k*'"y))+— E,» #037"y)]

(3.10)
This shows that {f (3"y)/27"} is a Cauchy sequence in (Y,
4, min) because the right hand side of (3.10) converges to zero
when m — oo. Since (Y, g min) is a complete RN-space , this
sequence converges to some points C(y)eY. Fixy € X and put
m =0 in (3.10) then we obtain

E,, ( &y f(y)]

27"
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< kw1, O3 E,, (03]
K=027K
(3.11)
So, we get

E..(C(Y)-f(y)
{C(y) f(@ y)] (f(s Vg )]

_ f@3"y) 1 nl1 K 1
<E., [C(y) T j%& kéoﬁ [E,; @03Y)+—

E, . @0,37y)] 3.12)

Taking the limit as n—oo, we get

E..(CY)-T(¥)

<L g LIE, GOFN)r, £, GOIY)]
K=027%
i © i PN
<4 Z[E] o GO+ o Z(Ej E, . #0.y))
127 1 o«
18 274 E,. @0 y)+ % 775 B (0, y))
27
<E, . (0) [48(2%} (3.13)
that is,
inf{t>03 sy 1 (1) >1-4}
<inf {t>0; /‘1¢(0.y)(27+a)(48(27_a)t) >1-} (3.14)
Then, we get
ety 100 Z 10 orea (4827 = D) (3.15)

Now, for uniqueness let there exist a cubic mapping
D: X —Y which satisfies (3.3) then, clearly C(3"y) = 27"C(y)
and D(3"y) = 27"D(y) for all neN. It follows from (3.3) that

Her-op® = LM b )o@ gz ()
e yyram-oeyizm ®
2 MIN{ By ramy-ce @ gyrzm D s B yyam @iz /2

N 27" (27 - a)t)
= ooy 2T (2T —a)t) = Z pio y)[ I

Since 2727 -a))/ " = oo, we get

ﬂ*):y

Lim ¢(0‘y)(27 27-a)t)/a" = 1. Therefore, it follows that

Heiyy-oy® = 1 forall t > 0 and so C(y) = D(y). This
completes the proof.

Corollary 3.2:- Let X be a linear space, (Z, 4, min) an RN-
space and (Y, & min) a complete RN-space. Let p, q be non-
negative real numbers and let z, € Z. If f:X >Yis a
mapping such that

it (x+3y)=3F (x+y)+3F (x=y)—f (x=3y)—48f (y) ® =

! (3.16
H iy (3.16)
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forall x,y e Xandallt>0 f(0)=0
and p, g<3, then there exists a unique cubic mapping
C: X =Y such that

Higcon(®) 2 (48(27 —a)t) . (3.17)

1
H sy @rra)
forally e Xandallt>0

Proof: Define ¢(x,y) =6(|x|" +|y|*) and applying the Theorem
(3.1) we get the desired result where o= 39

Example 3.1:- Let (X, Il l)) be a Banach Algebra and

max{l—M,O} if t>0
(1) = t

0 if t<0

for every x, yeX, let

. max{l—w,o}if t>0

Hyey (1) =
0 if t<0

We know that norm is a distribution function and
Lim, 27"(t)=1 for every x, yeX and t > 0. By the

by )
definition (2.2) (X, x4, T) is a RN-space. In fact, , (ty=1for all
t>0 :Mzo for all t > 0 = x = 0 and certainly (PN2)
t

10,,() = p, [%) for all xeX and t > 0. Therefore, for every X,

yeX and t, s>0, we obtain

,tu(t+s):max{l—M,o}:max{l— Xty ,O} =

t+s t+s

max{l_ Xy ,o}zmax{l_HEH_HzH,o} > T (u,(8),11,(5))
t+s t+s t t

Also RN- space (X, g, T) is complete for

021 (y e X t>0)
e t

and hence (X, Il.l) is complete.

Let us define a mapping T : X=X, f (x)= x®+IxIix, , where

Xo 1S a unit vector in X. Now by using a simple calculation,
we get

[f(x+3y)=3f (x+y)+3f(x—y) - f(x—-3y)-48f(y)|

=|xc+3y]~3fx +y]-+ 3%yl ~[}x -3y~ 48]l
< agy|<4g]s] + s]y] for all x, yeX.

1
Hence ,uf(x+3y)—3f(x+y)+3f(x—y)—f(x—3y)—48f(y)(t)Zlulp(x,y)(t) for all

X, yeX and t>0

Now let

48|y|
fu:?(o‘a" 27" (27— a)t = max{l—%,o} )
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where 0< <27 = Lim, . 405, 27" (27 - a)t =1

which implies that all the conditions of Theorem (3.1) hold.

Since

p 48(27 — a)t — maxJ1— 27+ a)HyH ol,
YO0 (27 + @) @7-a)t '’

We deduce that C(x) = x is the unique cubic mapping C:
X — X such that

27 +a)|y
a2 a1 M o} forally e Xand £ 0

4.1 Stability of Cubic- Quadratic Type
Functional Equation (1.2) in RN -spaces

Theorem 4.1:- Let X be a real linear space, (Z, 4, min) an
RN-space. Let ¢:X xX —Zbe a function such that for

some O<a<4

ﬂ;(zx,zn(t) 2 luzlz;b(x,x) ® (4.1)
and
ﬂ;(o.Zx) ) = le(o‘x)(t) (4.2)
f(0)=0and . =1, forall x,y e X
LMoot anx 20y 410

and all t > 0. Let (Y, & min) be a complete RN-space. If
f : X =>Y aneven function satisfying the inequality

1
Hot (x1y)-61 (x—y)+4f (3y)-3f (x+2y)+3f (x-2y)-9f (2y) t)= Hyix.y) ® .43

for all x, yeX and all t > 0.Then there exists a unique
quadratic mapping C: X —Y such that

Hi-c00(©) 2ty BA—a)) + 1150, B(4—)) , (4.4)
forall x € Xand all t > 0.

Proof:- By using Lemma 2.5, equation (4.3) follows that
Em (6f(x+y)-6f(x—y)+4f(3y)-3f(x+2y)+3f(x-2y)-9f(2y))
=INHE> 00 o oy st epprat@n-at cozatczy sty ) >1-4}
<inf{t>0; s, ,(t) >1-2}

= Ewl (P(x,y)), forall x,y € X, 1€(0, 1) (4.5)

Putting x = 0, and then replace y by x we get

E, . (6(x)-6f(-x)+4f(3x)-3f(2x)+3f (-2x)-9f (2X))
E, . (#(0,%)

E,, (4T(3x)-9f(2x)) < E, . (#(0,x)), forall x e X
(4.6)

IN

Putting y = x in (4.5) we get

B, (T3 +3f(0-31(2X) < E, , (4(xX) 47

Now from (4.6) and (4.7), we get
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E, . Bf(2x)-12f(x))

IN

E,, (4f(3x)+12f(x)-12f(2x) +4f(3x) -9f(2x))

IN

E,, (4f(30)+12f(0—-12(2x) +E, , (41 (30)-9f (X))

IA

E,, 4fB)+3F(x)-3f(2x)+ E,, (4T (3x)-9f(2x))

IN

E,. (F3)+3f()-3f(2x) +E,, (4f(3)—9f (2X))

<4 EM1 #(x,x) + Eml #(0,X)

Ew(f(jx) f( )j Z[4E, , 40 * E, , #0.0]
48)

Now replacing x by 2x in (4.8) and then dividing by 4, the
resulting inequality with (4.8) gives

£ (@ 120
T 4

Si [4E, . 4(2x,2)+E, . $(0,24)]

E,, [f(zzx) f()J

1
1 [E/L’ul4¢(2x,2x) + E/L M¢(0’2X)]+

[EN
N

4

% {E/Lﬂ14¢5(x,x)+ E/1 l¢(0,x)]

for all xeX . By induction we can write

g%mmf@

Ll E, ,40(2'%2'%)+E, ,4(0,2'X) (4.9)
<5 ‘ , .

;5 )

for all xeX. We divide (4.9) by 4™ and replacing x with 2™,
we get

£ ( f(2""x) f(zmx)J
p 4+m - 4m

E]

IN

e

4 [EW 49(22"x,22"X) + E, ,4(0, 2i2'“x)}
4i+m

E

<

N

9 [EAY#,4¢(2'*mx,2'*mx)+EM11¢(0,2'”"X)] (4.10)
4i+m

-0

This implies that {f (2"x)/4"} is a Cauchy sequence in X by
taking the Limit m—oo since (Y, g min) is a complete
RN -Space it follows that the sequence {f(2"x)/4"}

converges in (Y, # min). Taking m = 0 in the equation (4.10),
we get

E.. ( f(j: X)_ f(x)j

Ll E, ,40(2'x,2'%) +E, ,4(0,2'x)
12 20: 4

So that
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£(2"
Ml[C(X) Q@] y [ 2 f(X)j

n 1 .. iy o i
E., (c ) f(j" x)] = Z [EM4¢(2 X2%)+E, (0,2 x)]

E.. (C)— (%)

IN

4

Now taking the limit as n — oo, we get

E,, (COO—f(x)< 1 5 E, +44(2'x,2')+E, ,4(0.2'x)
' 12 =

- 4
L3 sy L% g0
12 i 4 12 =4
411
<E 1¢(><><)3(4 ) 1¢(0)3(4 ) (4.11)
that is

inf{t>0; Hex-1(x) >1-1}
Sinf {t>07 14,0304~ a)O) + 10,034~ )() >1-1} (4.12)

then, we get
Hex-t(0 ®= /lzlt¢(x‘x)3(4 —a)(t) + /li(o‘x)3(4 —a)(t) (4.13)

Now, for uniqueness let there exist a quadratic mapping
T : X —Y which satisfies (4.3) then, clearly C(2"x) = 4"C(x)
and T(2"x) = 4"T(x), for all neN. It follows from (4.3) that

Hieoron® = LMo gt on iy ran ©
‘LI(C(Z" X)/4")—(T (2" x)/4") (t)
> min{

He(enx)1am)—(f (2nx)14n)

44—t
2 /ulga(o‘z" X) (4n (4 - a)t) 2 'ulaﬁ(O.x) [ a"

t/2)’ ﬂ(T(Z"X)/4")—(f(2"x)/4n)(t/z) }

Since Lim,_,,, (4"(4—a)t)/ a" = oo, we get Limp_e,
Neg_ n=1. Therefore it follows that

e ¢(le)(4 (4—a)t)la

Hey-too(®) =1 forall t>0and so C(x) = T(x). This

completes the proof.

Theorem 4.2:- Let X be a real linear space, (Z, £, min) an
RN-space. Let ¢p: X x X — Z be a function such that for

some 0<a<8

Hiiaxzn®) 2 Moy () (4.14)
and
Hy020®) 2 Loyio.0(t) (4.15)

f (0)=0and Lim

t > 0. Let (Y, g min) be a complete RN- space. If
f:X —>Yan odd function satisfies the inequality

1 =
N7 y)g;f‘(t) 1, for all x, yeX and all

1
/’l6f(x+y)—6f(xfy)+4f (By)-3f (x+2y)+3f(x-2y)-9f(2y) (t) 2 ﬂ¢(x‘y) (t)
(4.16)

forall x, y € X and all t > 0. Then there exists a unique cubic
mapping C: X —Y such that
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Hey-1(t) 2 Hignny 3@ —)() + 15,0 3@— )(t) + (4.17)

forallx e Xandallt>0

Proof:- By using the Lemma (2.5) equation (4.16) implies
that

EM (6F(x+y)-6f(x-y)+4f(3y)-3f (x+2y)+3f (x-2y)-9f(2y))
=NHE> 00 L )61 e yyrat @yt o2y ot 2y or (an)(8) 21743
<inf{t>0; s, ,(t) > 1-1}

;”1 (#(x,y)) forall x,y € X and 2€(0,1) (4.18)

Putting x =0, and replace y by x, we get

E,, (6T ()—6f(—x)+4f(30)—3f (2x) +3f (-2x) -9 (2x)
< E, . (4(0,x)

B, @2f(x)+4f(3x)-15f(2x))< E, . (4(0.),
forall x e X. (4.19)

Putting y = x in (4.18) we get
E,, Bf()—f(Bx)+3f(2x) < E, . #(xx)), (4.20)
for all x e X. Now from (4.19) and (4.20), we have

E, (241 (x)-3f(2x))
< E,”ﬂ(lzf (X)+4f(3x)—-15f (2x) —12f (x) -4 f (3x) +12f (2x))
<E,,(2f(x)+4f(3x)-15f (2x)) + 4E, ,(3f (x) -  (3x) +3f (2x))

<4E, p(xX) + E, ,4(0.%), Ew(f(gx) f(x)j
< % [4E, .4(xX) + E, (0] (4.21)

for all x € X. Now replacing x with 2x in (4.21) and then
dividing by 8, the resulting inequality with (4.21) gives

<l [4E, ”1¢(2x,2x) +E, ,¢(0,2x) ],
192 ' i

E,. ( f(2°x) f(2x)]
8 8

(2010

1 (E, ,4¢(2x20)+E, ,402x)) 1
Sz [ il 3 A ]+ 2 [EW4¢(X, x)+EW¢(o,X)J

for all xeX. By induction on ‘n’ we can write

24 Z g

E,(1@%_ )< 1w (E L 4@x20+E, 402
8" i=0
for all xeX. (4.22)

We divide (4.22) by 8™ and replacing x with 2™x, we get

E, (f(z"mx) ~ f(2mx)]

8n+m 8m
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<1 Eﬁ_vﬂl4¢(2‘2'“x,2‘2mx)+Ellﬂi¢(0,2i2mx)
24 = 8|+m

< 1 E, +46(2""%,2" ") +E, ,4(0,2""x) (4.23)
24 = 8i+m

This implies that {f (2"x)/8"} is a Cauchy sequence in X by
taking the Lim m—»o0 since (Y, &, min) is a complete RN
— Space it follows that the sequence {f (2"x)/8"} converges
in (Y, & min). Taking m = 0 in (4.23), we get

E,, (f(znx) f(x)] i4 Z [E} LA2% 2% +E, .4(0,2X )]

8I
Now taking
E.. C)—T(x)

S [C( . f(2"x)j .\ Em[f(z X) f(X)J
" 1 n1 i

SEM{C(X) f(82 X))y ﬂ [ 4¢2X2x+E ¢(o,2x)l
E., (CO)-f(x) < % : [ 4‘#14¢(2'X,2'>;)i+Ewl¢(0,2ix)J
<1 240'! E, s#(xX) 4 i Z E, ,4(0.%)

24 8
< E, 49(x%) 3(8 " E, 4#(0.%) 3(8 2 (4.24)
that is

INf{t>0; tepy ) >1-4}
<inf {t> 07 2,368~ + 1,38~ )() >1-7} (4.25)

then, we have

Heiy-100 0 Ly 38 = @)(1) + 0,38~ a)(t) (4-20)
Now, To prove uniqueness, let there exists another cubic
mapping T : X —Y which satisfies the equation (4.16), then
clearly C(2"x) = 2"C(x) and T(2"x) = 2"T(x) for all n € N.
Then it follows from (4.16)

=Li n—o
Hcoy-ton ®) im ,U(C (2nx)/8N)—(T (2nx)/8N) ©

Hec@ - @ xien ®

LR 7SR (74 R TRRIN (V28

n 8"(8—a)t
SN CHCE LT [ (a” ) ]

Since Lim,_,,, (8"(8—a)t)/a" =, we get Limn_.e,
K y0,0(8"B—a)t)/ " = 1. Therefore it follows that

He(x) -T(x)(t) =1 forallt>0and so C(x) = T(x).

Corollary 4.3:- Let X be a linear space, (Z, 4, min) be a RN

space, and (Y, ', min) be a complete RN-space. If
f : X =Y be a mapping such that
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ﬂ6f(x+y)—6f(xfy)+4f(3y)f3f(x+2y)+3f(x72y)—9f(2y) (t) Zﬂl(HxHMHyH”)(t) 1

(4.30)

forallx,y e X,vt>0, f(0)=0,60>0andp<2, then

there exists a unique cubic mapping C: X —Y and a unique
quadratic mapping Q: X —Y such that

#t9-c(9-Q®
> 4-2Pyt 8-3P\t) (4.31)
Happp 2P0+ 15, pE-30)0)

forall x e Xand all t > 0.

Proof: - Define ¢(x,y) =0(|x|" +|y|") and applying Theorem
(4.3) we get the desired result.

5.1 Stability of Jensen-Type Quadratic
Functional Equations (1.3) and (1.4) in RN-
space

We prove the Hyers-Ulam-Rassias stability of equation (1.3)
in random normed space.

Theorem 5.1:- Let X be a linear space, (Z, &, min) an RN-
space, and let ¢: X x X — Z be a function such that for some

O<a<4
/u;(ZX,U) t) = /u(lw(x,O) O] (5.1)
f(0)=0 and Lim 4(t)=1 , for all x, y € X and all

t>0. Let (Y, & min) be a complete RN-space. If f: X —»VY is
a mapping such that

1
sk y 0y

1
;u(2(><+y)/2+2f (x=y)/2—f(x)-f(y)) (t) 2 :u¢(><,y) (t) ’
forall x,y e Xand allt>0 (5.2)

Then there exists a unique cubic mapping C: X —Y such

that 42, () = Haggoo(4—a)(t) forall x e X and all t> 0.
(63)

Proof: - By using the Lemma (2.5) and inequality (5.2),

implies that

E.. @E((x+y)/2)+2T((x=y)/2)— T () f(y))

=inf{t> 00 Lot (xryyrzratxoyyrz—to—t vy (1) > 1-2}

<inf{t>0; ,u;(x’y)(t) > 1-1}

= Ez.;ﬂ (g(x,y)) forall x,y € X, 4 € (0, 1) (5.4)

Putting y = 0 and replacing x with 2x, we get

E., 2f((2)/2)+2f((29/2) - 1(2x)) < E, , (#(2x0)
E., @f(0+2f()—f(2¥) < E,, (#(2x0))
B (AT 1(29) < E, . (4(2x,0)

E.. ( f(jX) _ f(x)] < % E, . (4(2x,0)

Replacing x with 2x and dividing by 4, we have

f22 f29) | 1 )
Eiu {TTJ =47 B 0@x0)
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% E, . (p(2x0)+ % E, . (4(2x,0))

for all x € X. By induction on ‘n’ we can write

E,, ( f(j:x) - f(x)] < Z 4i E,, (62%0) (55)

Again replacing x with 2™x and dividing by 4™ in (5.5), we
obtain

fe ") f@x) oy 1 i+m
EW[ o ]S 2, g Eup (H27X0)

This implies that the sequence {f(2"x)/4"}is a Cauchy
sequence as m—»oo, since {Y, W, min} is complete random
normed space, thus the sequence {f(2"x)/4"}is convergent
in {Y, 4, min}. Taking m = 0, we get

EA,#[f(j: X f(x)j <Y L E, 6@x0) (68

SO,
E,., (C0— f(X)
sa¢@wrﬁawﬂ+Ew[”T”—u@]

4" 4"
Using above equation (5.6), we get

E,, (C)-T(x)
<E,, [C(X)— f(j:X)J ;

Taking n — oo, we get

> 4 E (02%0)

= i
B CO-T(x) < 7 B (#(2'x,0)) <
i1

© ai © a i
> 7 E, . (p(x0)= > (—] E o @(x0) =
o 4 ' i=1 4 #

E 0) -2 5.7

e (P(x.0)) o (5.7
thatis, Inf{t>0: sy 12021 0eyyiz-2im-2ty® >1-4}

<inf{t>0; 4, ) >1-1} (5.8)

then, we get

He -1 (x) ® Zﬂ,lm(x,o) (4-a)(t) (5.9)

Now, to prove uniqueness of the quadratic mapping C, let us
consider another quadratic equation T : X —Y which satisfies
(5.2). Fix x € X then we have C(2"x) = 4"C(x) and T(2"x) =
4"T(x) for all neN. It follows from (5.2) that

He-T(0 (t) =Lim N— ”(C(z" X)/4")—(T (2" x)/4”)(t)
> .
'u(C(Z“x)/A”)—(T(z” x)/4”)(t) - mm{ #(C(Z"X)IA")f(f(Z"x)IA”)(tlz)'

#(T(Z”X)M“)—(f(2“x)/4”)(t/2)}
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n 4"(4 -t
= ﬂ1¢(znx’0)(4 (4-o)t)2 ﬂl¢(x‘o)( (an ) j
Since Limy_,,, (4"(4—a)t)/a") = o, we get Limp o
ey (@ (4= a)t)/a" = 1. Therefore, it follows that 4, .., ()
=1 forall t>0and so C(x) = T(x). This

completes the proof.

Corollary 5.2:- Let X be a linear space, (Z, 4, min) an RN-
space and (Y, & min) a complete RN-space. Let
@: X x X —Z afunction such that some 0<a<9

ﬂ;(3x,0) t) = /uiaﬁ(x,o) ® (5.10)

f(0)=0 and Lim
allt>0.If f:X —Y isamapping such that

9"(t)=1, for all x, y € X and

1
n~>ao/u¢(3ﬂ x,3"y)

Hia(xayy 12421 (x-y)12- £ ()£ (v)) ®= ﬂ;(x,y)(t) ) (5.11)

for all x, y € X and all t > 0. Then there exists a unique cubic
mapping C: X —Y such that

Hioycoo® = Mogno(O—a)(t), forallx e Xand all t>0

(5.12)
Proof:-Taking the value of « from 0 to 9 and using the
Theorem (5.1) we get the required result.

Now, we prove the Hyers-Ulam stability of equation (1.4)
in random normed space.

Theorem 5.3:- Let X be a linear space, (Z, &, min) an RN-
space and (Y, x& min) be a complete RN-space. Let
¢ X x X = Z a function such that some 0<a<4 a’, a
#(x1/2)

'u;(ax,o) ) = /u(lw(x,O) ® (5.13)

f(0)=0 and Lim
allt>0.If f:X —Y isamapping such that

a®(t)=1,forallx,y € X and

1
hoollyany any)

Ht (axaay)+ f (ax—ay)—2a2 f (x)—2a2 (y)) (t) > ity @)
(5.14)

for all x, y € X and all t > 0. Then there exists a unique

quadratic mapping C: X —Y such that

Uiy e ® 2 My, 02(@° —a)(t), forallx e Xand all t >0
(5.15)

Proof: - By using Lemma (2.5) and inequality (5.14), implies

that

E,,. (f(ax+ay)+ f(ax—ay)—2a*f(x)-2a*f (y))

=inf{t>0: ,u( f (ax+ay)+ f (ax—ay)—2a? f (x)—2a2 f (y)) (t) >1-1}

<inf{t>0: 4, (> 1-4}= E, , (4(xy)) (5.16)

forallx,y € X, 1 € (0, 1).

Putting y = 0, we get

(f(ax)+ f(ax)—2a°f(x)—2a*f (0)) <E, . (4(x,0))

- Au
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E,.. @f(@)-2af(x)) <E,_, (#(x0)

Ew(f(ax)_f(x)j zi L (P0)

Replacing x with a x and dividing by a*, we get

E,, [M f(ix)] < LE (a0
a a 2a* A

Ew(f(a X) Ctx )}
a

< LE (G@0) + oE,, ($X0)
a ¢ 2a “

for all x e X. By induction we can write

f(a X) 12 :
E( ~ f(x)} 22 = B 0@x0)

i=0

(5.17)

Again replacing x by a™ x and dividing by a*™ , we have

2|+2m+2 ),,”1 (¢(ai+mxlo))

(5.18)
This implies that the sequence {f(a"x)/a*'}is a Cauchy
sequence as m—oo, since {Y, W, min} is complete random
normed space, thus the sequence {f (a"x)/a*"}is convergent
in {Y, Y, min}. Taking m = 0, we get
f(a X) 13 1 i
EM( AT f(x )] 2 7 E, . (#(@x.0)

i=0

f@@""x) f(a"x) ! et
Al E

2n+2m 2m
a a

(5.19)
and so,

E,. (COO-T(x)
(C( - f@" x)] N EL#(f(aa x)_f( )]

Using above equation (5.19), we get

E.u (C)— (%)

<E., [C<X)— e X)] 23 e, a0

Taking n — oo, we get

E. CO-T(x) <

ai

—n7 B, (#(x.0))
a

r\JIr—-

> 7 B ax0)

i=0

IN
N |-
M

I
o

A

= Eﬂ,yl (¢(X,O)) ﬁ (520)

that is,

Inf {t >0 'u(f (ax+ay)+ f (ax—ay)—2a% f (x)—-2a2 f (y)) (t) > 1-1}
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<inf{t>0; 4, (1) >1-2} (5.21)
then, e get 11, (1) = Hyp02(8° —a)t (5.22)

Now, to prove uniqueness of the quadratic mapping C, let us
consider another quadratic mapping T :X —Y which

satisfies (5.14). Fix xeX then we have C(a"x) =a*" C(x) and
T(a"x) =a®" T(x) for all n € N. It follows from (5.14) that

HepoTen (t) =Lim = ‘u(C(a"X)/az")*(T(a“x)/az")(t)

‘u(C(a”x)/az")—(T(a"x)laz")(t) 2 min{ ﬂ(C(a"x)/az")—(f(a"x)laz“)(t/2)’
’u(T(a”x)/az”)—(f (a"x)/a?") (t/2) }

\ a(@’ —alt
> 0 @@ )2 uz(x.o{( o) ]
Since Lim,_,,, (@*"(@° —a)t)/a" = o, we get Limp_e
0@ (@ —a)t) " = 1. Therefore it follows that
Hey 109 (M) =1 forall t>0and so C(x) = T(X).
This completes the proof.
Corollary 5.4:- Let X be a linear space, (Z, 4, min) be a RN-
space and (Y, x& min) be a complete RN-space. Let

¢ X x X — Z a function such that some o> 4 a*, a
# (£1/2)

oo ® = Moy ®) (5.23)

f(0)=0 and Limn%ﬂ;(anx any)aZ”(t) =1, forallx,y e Xand

allt>0.If f:X —Y isamapping such that

1
'Ll(f (ax+ay)—+ f (ax—ay)—2a? f (x)—2a? f (y)) (t) 2 'uti’(xvy)(t) !
(5.24)

for all x, y € X and all t > 0. Then there exists a unique
quadratic mapping C: X —Y such that

Hrgo-con® = M0 2(@° —a)(t), forallx e Xand all t>0
(5.25)
Proof: - Applying Theorem (5.3) we get the desired result.
Example 5.1:- Let (X, Il l) be a Banach Algebra and
max{l—m,o} if t>0
(1) = t

0 if t<0

forevery x,y € Xand a € R, let

2 2
1 max 1_(2a+2a )|IX||+ (28 + 2a )HyH’O i £50
Hyinyy () = t

0 if t<0

We know that norm is a distribution function and

Limn%y;(anx‘any)az"(t):1 for every x, y € X and t > 0. As we

know that (X, 4, T) is a RN-space. In fact, , (t)=1for all t
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>0 :Mzo forall t > 0 = x = 0 and certainly (PN2)

t

, ®) =1, [%] for all n € X and t > 0. Next for every x, yeX

and t, s > 0 we obtain

Xty

HX yH =
,uxw(tJrS)—maX{l P ,0 max {1 P

]

,o} > T (44, (1), 14,(5))

.

X
RIS
t+s t+s

,Hz
t

:max{l—

2 max{l— %

Also RN-space (X, x4, T) is complete for

u (t)zl_HX_yH (X,yeX,t>0)
-y t

and hence (X, IL1)) is complete.

Let us define a mapping T : X—>X, f (x) = x®+Ixlx, , where

Xo 1S a unit vector in X. Now by using a simple calculation,
we get

| f (ax+ay) + f (ax—ay) —2a°f (x) - 28’ F (y)|

= lax-+ ay] +ax— ay] - 22|

x| -2a? y]] I
< |(2a—-2a%) x| + (22 + 22%) ||| x|
< |(2a-+2a%) |+ (2a-+2a%) ||

1
forall x,y e X. Hence 'uf(ax+ay)+f(axfay)fzazf(x)fzaZf(y)(t) = fuf/'(x‘y)(t)

for all x, yeX and t>0

Now let
(2a+2a%)|a"x

a’(@ -ajt ' }

y;(anxyo)azn (@® — )t = max {1
where 0<q<4a’ a # (+1/2)

H 1 2| 2
= Lim 20 00 "@-a)t=1

which shows that all the conditions of Theorem (5.3) hold.
Since

2
luqlﬁ(x.O)Z(az _a)t = max{l—(za-'—za)xlo} ,

2(a® —a)t

We deduce that C(x) = x? is the unique cubic mapping C: X —
X such that

@)yl 0},

t) > max41 )
tuf(x)—C(x)( ) { (az —a)t

forally e Xand t> 0.

4. CONCLUSION

Throughout this paper we introduced the following results:

(i) In the subsection 3.1, using the Hyers-Ulam approach we
proved the stability of functioan equation (1.1) in random
normed space.

(ii) In the subsection 4.1, we proved the stability of functional
equation (1.2).
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(iii) Further, in subsection 5.1 we proved the stability of
equation (1.3) and (1.4) using an example and also introduced
some corollaries for different conditions.
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