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ABSTRACT 

Several techniques have been used to generate weather 

forecast texts.   In this paper, case based reasoning (CBR) is 

proposed for weather forecast text generation because similar 

weather conditions occur over time and should have similar 

forecast texts. CBR-METEO, a system for generating weather 

forecast texts was developed using a generic framework 

(jCOLIBRI) which provides modules for the standard 

components of the CBR architecture. The advantage in a CBR 

approach is that systems can be built in minimal time with far 

less human effort after initial consultation with experts.  The 

approach depends heavily on the goodness of the retrieval and 

revision components of the CBR process. We evaluated CBR-

METEO with NIST, an automated metric which has been 

shown to correlate well with human judgements for this 

domain. The system shows comparable performance with 

other NLG systems that perform the same task. 
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1. INTRODUCTION 
In applied Natural Language Generation (NLG), the domain 

of weather forecasting is very popular and has been used to 

test the effectiveness of several text generation techniques 

[1,2,3,4,5,6,7]. Many techniques have been proposed and 

applied to automated generation of weather forecast texts. 

Such techniques include knowledge intensive approaches in 

which explicit rules are elicited from domain experts and 

corpus analysis [6,8] at different stages of the text generation 

process. Machine learning models, especially statistical 

methods, have also been used to design systems that learn 

generation models introspectively from the corpus [7,9]. The 

use of machine learning to build text generation models is 

knowledge-light. 

 

However, weather forecasting and generation of weather 

forecast texts are natural Case Based Reasoning (CBR) 

problems. This is because the basic assumptions in CBR are 

that similar problems occur again and similar problems have 

similar solutions.  When we look at the weather conditions 

for a particular day, we are immediately reminded of similar 

weather conditions in the past.  Therefore, it is expected that 

similar weather conditions should have similar forecast texts 

and it is easier to reuse previous similar forecast texts to 

generate new forecast texts. In this paper, we show how CBR 

as a knowledge-light approach can be used to generate 

weather forecast texts from forecast data and discuss its 

merits and demerits. 

 

Background and related works appear in Section 2 

followed by a description of the CBR architecture and its 

application to text generation in Section 3. Section 4 

discusses our experimental setup and evaluation results 

while our conclusion appears in Section 5. 

2. BACKGROUND 
Automated generation of weather forecast texts has been 

achieved using several techniques. These techniques can be 

divided into two broad categories: knowledge-intensive (KI) 

and knowledge-light (KL) approaches. KI approaches 

require extensive consultation with domain experts during 

corpus analysis and throughout the text generation process.  

On the other hand, KL approaches rely more on the use of 

automated methods which are mainly statistical. 

 

One of the earliest KI systems generated forecast texts by 

inserting numeric values in standard manually-created 

templates [10]. Multiple templates are created for each 

possible scenario and one of them is randomly selected 

during text generation to provide variety.  Other KI systems 

such as ICWF [11], FoG [12] and SumTime [6] developed 

linguistic models using manually-authored rules obtained 

from domain experts and corpus analysis. Some of these 

systems, e.g. FoG and SumTime, used NLG architecture [13] 

where the generation process is separated into different 

modules. The modules in architecture include document 

planning, micro planning and realization.  

 

The KL approach to generate forecast texts typically employs 

machine learning techniques. Trainable systems are built 

using models based on statistical methods such as probabilistic 

context-free grammars and phrase based machine translation 

[14]. The advantage is that systems are built in less time and 

with less human effort as compared to the KI approach.  

Forecast texts generated by KL systems were reported to have 

comparable quality to KI systems when evaluated with 

automated metrics [15]. However, KI systems were better 

when evaluated by humans. 

 

Synergy between CBR and NLG has previously been 

exploited for automatic story plot generation [16,17].  Here, a 

plot structure is obtained by reusing stories from a case base 

of tales and ontology of explicitly declared relevant 

knowledge. NLG techniques are then used to describe the 

story plot in natural language. Although the story generated 

is a complete sketch of the plot, it assists screen writers in 
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fast prototyping of story plots which can easily be developed 

into a story. 

3. CBR APPROACH TO GENERATING 

WEATHER FORECAST TEXTS 
This section gives an insight into the case based reasoning 

(CBR) paradigm and how it is used for generating weather 

forecast texts. The basic concepts and terminology in CBR are 

discussed using examples from the weather forecast domain.  

3.1 Case Based Reasoning 
The basic principles in CBR are that similar problems occur 

again and similar problems have similar solutions. It is 

therefore easier to modify a previous solution to a similar 

problem than solving a new problem from scratch.  The 

technique therefore requires knowledge in the form of 

problem-solving episodes where each episode is called a 

case. Each case consists of a problem and its solution and a set 

of cases form the casebase. The CBR problem-solving 

architecture as shown in Figure 1 typically consists of four 

components: Retrieve, Reuse, Revise and Retain 

commonly referred to as 4Rs [18]. 

 

 
Figure 1: A typical CBR architecture 

The most similar case/cases is/are retrieved from the casebase 

when a new problem (denoted as input or query) is 

encountered.  The information and knowledge in the retrieved 

similar case/cases is/are then reused to solve the current 

problem.   Typically, formulating the proposed solution might 

require modification to the retrieved solution to compensate 

for problem mismatches if the retrieved similar case is not an 

exact match. Adaptation, which is a sub-component of case 

reuse, takes into account the differences between the problems 

(input and retrieved) to guide any adjustment required in the 

proposed solution. The revision component ensures that a 

proposed solution is evaluated for its accuracy by a human or 

generic domain models/rules. The proposed solution is revised 

by such human expert if it does not accurately solve the 

problem at hand. Finally, a new case consisting of the input 

(problem query) and output (revised solution) is reviewed and 

retained while maintaining an efficient case-base by 

excluding redundant or noisy cases. 

3.2 CBR-METEO: A weather forecast text 

generation system 

Our system, which we call CBR-METEO, generates weather 

forecast texts using a repository of previous forecast texts 

available in a casebase. In this domain, a case consists of a 

pair of weather attribute values (for parameters like humidity, 

out- look, wind speeds, wind directions and forecast times) 

and equivalent forecast texts generated by human experts.  We 

restrict our weather data to those related to wind forecasts (i.e. 

wind speeds, directions, gusts and time) and associated 

texts for simplicity. CBR-METEO therefore generates a wind 

forecast text for a new wind input data but can be easily 

extended for other weather parameters.  The system is built 

using jCOLIBRI [19], an existing CBR framework. jCOLIBRI 

provides generic modules for each component of the typical 

CBR architecture (see Figure 1) thereby making development of 

systems easier and faster. 
 
The input or query to CBR-METEO consists of a number of 

weather forecast states during the period (usually a day) in 

which a forecast text is required. Table 1 shows an example of 

the input to our system for wind weather.  An input typically 

has two, three or four states and each wind state has values for 

the following attributes:  wind direction (Wind Dir), 

minimum wind speed (Low Spd) and maximum wind speed 

(High Spd) and a time stamp (Time) indicating for what time 

of the day the data is valid.  Also, minimum gust speed (Lw 

Gst) and maximum gust speed (Hg Gst) sometimes appear in 

input wind states. The speed values for wind and gust are 

measured in nautical miles (Knots). A dash („-‟) is used to show 

that the value of a particular weather attribute is absent. 

 

Table 1: Sample input to CBR-METEO 

State Time Wind 

Dir 

Low 

Spd 

High 

Spd 

Lw 

Gst 

Hg 

Gst 

1 0600 n 6 10 - - 

2 2400 ne 15 20 - - 

 

 
n 10 or less gradually veering ne 15-20 

 
Figure 2: Sample output from CBR-METEO 

 
CBR-METEO‟s output is the forecast text generated from the 

input data. Figure 2 shows an example of a wind forecast text 

generated by the system for the input data in Table 1. Other 

components of the system are discussed below. 

3.3 Retrieval 
The text generation process in CBR-METEO begins with 

the retrieval of a case from the casebase whose weather data 

is most similar to the input (query).  Defining how the 

similarity metric is therefore very important for the retrieval 

component. The best form of similarity minimizes the work 

done by the succeeding components of reuse and revise. 

 

Our similarity computation ensures that a retrieved similar 

weather data must have the same number of states as the 

input. This is because the number of states usually 

determines the number of phrases in the forecast text. Time 

attributes are compared using the differences between time 

stamps in aligned wind states. We then define similarity 

between weather data (i.e. input and each case in the 

casebase) mainly in terms of patterns across wind states.  

The patterns for a  scalar attribute (e.g. wind speed) are 

increasing, decreasing or constant as we move from one state 

to another while veering (clockwise), backing (anti- 

clockwise) or stable patterns are applicable to vectorial 

attributes (e.g. wind direction).  The input and weather data 

in each case in the casebase are transformed into a 

representation showing the pattern transition across wind 

states for each scalar and vectorial attribute. 

Casebase 

Retain 

Revise 

Reuse Retrieve 

Proposed 
Solution 

Output/ 
Revised 
Solution 

Input/
Query 
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Retrieval is done in a step-wise or hierarchical manner in 

which all previous cases having the same number of wind 

states as the input data are first retrieved. Cases within this 

retrieval set whose average time stamp differences from the in- 

put are within a specified threshold are then selected.  

Similarly, cases with the same weather patterns (for wind 

speeds, directions and gusts) as the input across states are 

then selected iteratively from preceding subset of cases. If 

more than one case is retrieved at the end of this iterative 

process, the most similar case is chosen as the one with the 

shortest average distance between its wind states and the 

input‟s. The distance between wind states is computed by first 

converting wind directions into their numeric angular values 

(in degrees). Each pair of wind speed and angular direction is 

taken as a vector quantity which represents a wind state.  

Cosine rule is then used to compute the distance between 

vectors and an average taken across the number of wind states 

in the input. However, if no case is retrieved as the end of the 

iterative process, the system gives no forecast text. The step-

wise retrieval ensures that retrieved cases are semantically 

similar to the input data and therefore minimal modifications are 

carried out by the reuse and revision components. 
 

Table 2: Retrieved case similar to input data 
 

State Time 
Wind 

Dir 

Low 

Spd 

High 

Spd 

Lw 

Gst 

Hg 

Gst 

1 0600 nnw 8 10 - - 

2 2400 nne 13 15 - - 

Forecast Text 

nw-nnw 8-13 gradually veering nne 10-15 

 

Table 2 shows the best case retrieved for the input data in 

Table 1.  The retrieved case is most similar to the query not 

only because they have the same number of states and time 

stamps but the wind speed and direction patterns are also 

similar. The wind direction as we move from state 1 to 2 in 

both the input data (n → ne) and retrieved case (nnw → nne) 

are veering (i.e. clockwise). The increasing wind speed 

pattern is also common to both; an average speed of 8/9 

knots in the early morning (6a.m.) to 17/14 knots by 

midnight in the input/retrieved case respectively. An 

example of how to compute the distance between two wind 

states using cosine rule as the last step in retrieval process is 

shown in Figure 3. The values shown in the example are those 

from the first wind states for the input and the retrieved 

similar wind data. The wind speed shown for each wind state 

is an average of the minimum and maximum wind speeds. 

 
Figure 3: Computing distance between two wind states 

 

3.4 Reuse 
The reuse component of CBR-METEO puts the forecast 

text associated with the retrieved similar wind data in the 

context of the input. To do this, the forecast text is parsed to 

identify attribute values from the retrieved wind data that 

are present in the text. These attribute values are then 

substituted with their equivalent from the input. No action is 

carried out by the reuse component if the retrieved wind data is 

identical to the input. In other words, the forecast text 

associated with retrieved wind data can be returned directly 

for output if the similarity between the input and retrieved 

data equals 1 at every step during the hierarchical computation 

of similarity. 

 

n 6-10 gradually veering ne 15-20 

Figure 4: Sample forecast text by CBR-METEO 

 

An example of the forecast text from the reuse phase is 

shown in Figure 4 with the input and retrieved forecast text in 

Tables 1 and 2 respectively. Here, the wind speeds (8-13 & 

10-15) and directions (nw-nnw & nne) in the retrieved text 

are replaced with those from the input. 

 

3.5 Revision 
The revision component uses expert rules to ensure that 

specific phrases conform to writing conventions in the 

domain. Such rules are learnt during post-edit tasks where 

experts are given input data and forecast texts proposed by 

the reuse component. Figure 5 shows a revised form of the 

forecast text in Figure 4 where one of expert rules is applied 

to revise “6-10” in the reuse forecast text into “10 or less”. 

 
n 10 or less gradually veering ne 15-20 

Figure 5: An example of a revised forecast text 

3.6 Retain 
Retention can be carried out in CBR-METEO where new 

cases consisting of the input and output (generated forecast 

texts) are be added to the casebase after further review by 

experts. Inputs whose forecast texts CBR-METEO was unable 

to generate can also be added after generation by the experts 

or using other techniques. The system thereby evolves over a 

period of time and is able to generate accurate forecast texts 

for most inputs (if not all) when this component is functional. 
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x By cosine rule, 

x2=  82 + 92 – 2*8*9*cos (22.5o)  

x= √(11.96) = 3.46 

Therefore, distance between the 

two wind states= 3.46 knots 

 

9 Knots, 

NNW 
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Figure 6: Generating wind forecast texts with CBR-METEO 

 

3.7 CBR-METEO: A guided illustration 
A summary of the text generation process is illustrated in 

Figure 6. The figure shows the transition between the 

different components (retrieve, reuse, revise and retain) with 

the same examples used in Sections 3.2 to 3.6. Here, the wind 

data is the problem and the forecast text is solution as viewed in 

the CBR context. The wind attributes shown are wind 

direction (Dir), minimum wind speed (LSpd) and maximum 

wind speed (HSpd). The attributes associated with gusts are not 

shown because they are absent in the input used for illustration. 

4. EXPERIMENTAL SETUP 
We employed a five hold-out experimental design identical to 

[14] in our experiments.  We evaluate the forecast text 

generated by CBR-METEO with NIST [20] which correlates 

best with expert judgements in the domain of weather forecast 

text generation [15] as compare to other automated evaluation 

methods such as BLEU [21] and ROUGE [22]. We then 

compare the results with ten existing NLG systems; Sum-

Time hybrid [15] and nine trainable systems [7]. 

 

4.1 Dataset 
Our experiments were evaluated using the wind weather 

corpus described in [23]. The corpus consists of wind 

forecast data and texts divided into five folds where each fold 

is further sub-divided into training and test sets. The training 

has 2104 wind forecasts while there are 221 forecasts in the 

test set across all five fold with duplicates. The test sets 

were used as our queries while each corresponding training 

set is the casebase in our experiments. The wind data was 

parsed from the human-authored forecast text where each 

phrase produces a vector of 7-tuples (i, d, smin, smax, gmin, 

gmax, t) where i is the tuples ID, d is the wind direction, 

smin and smax are the minimum and maximum wind 

speeds, gmin and gmax are the minimum and maximum gust 

speeds, and t is a time stamp (indicating for what time of the 

day the data is valid). If one or more parts of the 7-tuple is 

not realised in a given forecast, a „−1‟ value is shown for 

a timestamp and a „-‟ value for the speed, gust or direction 

attribute. 

 

The forecast texts consist of natural language forecasts from 

human forecasters, Sum-Time hybrid system [15] and nine 

trainable systems [7].   The nine trainable systems include 5 

probabilistic context free grammar (PCFG) systems, 2 

probabilistic synchronous context free grammar (PSCFG) 

systems and 2 phrase-based statistical machine translation 

(PBSMT) systems. The major difference in the trainable 

systems is their mode of generation; PCFG system has five 

modes:  greedy (PCFG-greedy), roulette (PCFG-roule), viterbi 

(PCFG-viterbi), n-gram (PCFG-2gram) and random (PCFG-

rand). Likewise, the PSCFG system modes are semantic 

(PSCFG-sem) and unstructured (PSCFG-unstr) while PBSMT 

system has unstructured (PBSMT-unstr) and structured 

(PBSMT-struc) modes. 

 

 

Problem: 

          Time  Dir   LSpd  HSpd  

Seg1:    6       n       6        10 

Seg2:   24     ne    15        20 

Solution: ? 

 

Query 

Casebase 

Retrieve 

Retrieved Problem: 

          Time  Dir   LSpd  HSpd 

Seg1:    6     nnw    8        10 

Seg2:   24    nne    13       25 

Retrieved Solution:                          

nw-nnw 08-13 gradually 

veering nne 10-15  

 

Reuse/ Replay 

Replayed Solution: 

n 6 - 10 gradually veering ne 

15 - 20  

veering nne 10-15  

 

Retain 

Problem: 

          Time  Dir   LSpd  HSpd  

Seg1:    6       n       6        10 

Seg2:   24     ne    15        20 

Revised Solution:                          
n  10  or less gradually 
veering ne 15 - 20  

 

Revise 
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Figure 7: Graph of average NIST5 scores for CBR-METEO and 10 other NLG systems

4.2 Evaluation results 
Figure 7 shows a graph of average NIST5 scores from 

experiments on the wind forecast corpus with the CBR and 

NLG systems.  The effectiveness of the CBR system is 

comparable to Sum-Time as well as the trainable NLG 

systems as shown on the graph. Although, four trainable 

systems (PBSMT-unstructured, PSCFG-semantic, PSCFG-

unstructured and PCFG-greedy) outperform our CBR system 

according to the results, its performance is very similar to the 

SumTime hybrid system which was ranked as best by human 

evaluators [14]. This indicates that the performance might also 

be ranked high if it were evaluated by humans. The minimal 

hand-coded rules used for revision of the replayed forecast 

text in CBR-METEO were similar to SumTime‟s as they are 

obtained from domain experts and this might account for the 

comparable performance.  

 

The results shown in Figure 7 are averages across the number 

of forecast texts generated by CBR-METEO or available from 

the corpus for the other ten NLG systems.   CBR-METEO is 

only able to generate forecast texts for 137 out of 221 inputs 

(queries) in our test sets. This is because it generates no 

forecast text when the casebase does not contain a case with 

the same wind patterns (for speed and direction) as the input.  

The system was designed this way since matching similar 

wind patterns (rather than exact patterns) requires the 

application of more complex revision rules after the reuse 

phase. However, the revision component of CBR-METEO 

uses only minimal rules to correct the forecast text from the 

reuse phase.  Such minimal rules enable simple revisions such 

as changing the speed in the forecast text from a number 

range into a phrase when it is less than 10.  There is a trade-

off between the similarity definition that determines the 

number of inputs for which CBR-METEO can generate text 

and the complexity of revision rules.  While retrieval of 

similar wind patterns allows the system to generate text for 

more queries, complex expert rules such as the ones used in 

SumTime will be required at the revision stage rather than 

minimal revision rules. 

We made a number of observations during our experiments 

which gave us an insight to why the NIST evaluation rank the 

performance of CBR- METEO lower than some of the 

trainable systems though human evaluators might think 

otherwise. First is that the NIST scoring and trainable systems 

are inherently based on statistical methods; therefore the 

trainable systems are more likely to be ranked high.  Another 

issue is the stylistic variation in forecaster‟s text for time 

phrases and change verbs. For example while some 

forecasters use „increasing‟, others use „rising‟ in their fore- 

cast text.  The same reason applies for the use of „decreasing‟ 

versus „falling‟. Such stylistic variations will be better 

captured by NIST if there are multiple human references for 

each test input as opposed to just one human reference used in 

our experiments.  Another issue with the human reference that 

might affect the evaluation results is the use of wind sub-

directions such as „nw-nnw‟ or „ne-e‟ by forecasters though 

the forecast data contains „nnw‟ or „nne‟. Such change to the 

original forecast data during writing of the text is not 

uncommon as it makes the forecast text more reliable but it is 

not used consistently among forecasters. The ellipsis of the 

time phrase where forecast time phrases are implied in the 

forecast text can also affect the automated evaluation measure. 

For example, some forecasters add „by late evening‟ to the 

forecast phrase for time stamp „2100‟ while others don‟t 

especially if it is the last wind state to be written in the 

forecast text. The observations (i.e. stylistic variation, 

inconsistent usage of wind sub-directions and time phrase 

ellipsis) adversely affect the automated evaluation of CBR-

METEO since CBR-METEO does not take into account the 

profile of different human forecasters during retrieval. The 

errors associated with these observations might be minimized 

by incorporating knowledge about authors‟ of human forecast 

texts; however, this was not available in the dataset. 

In order to improve the performance of our system further, we 

need to allow more ambitious revisions than the current 

system.  This means our retrieval component needs to be 

less strict while matching cases.  For example, a query with 

two time stamps 0600 and 1800 can be matched to a retrieved 

case with 0600 and 2100 but the revision stage will have to 

change phrase “late evening” to “evening“ to account for the 

fuzzy match.  The fuzzy similarity is also applicable when 

matching wind speeds and directions.   However, the fuzzier 

the matching at the retrieval stage, the more revision rules that 

will be required to get the final solution text.  This is obvious 

since the revision component is dependent on retrieval and 

reuse. When fuzzy matching is allowed, the case similarity 

value needs to be propagated to the revision component and 

used to determine the amount of modification required to 

obtain an accurate output.  We are currently working on 

improving our revision component.   One specific direction 

we are working on is to use another casebase usually called 

0
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adaptation casebase [24] to store cases of text revisions made 

by domain experts.  The adaptation casebase will be similar to 

the post-edit corpus currently available in the domain [25]. 

5. CONCLUSION 
In this paper, we presented an approach to generating 

weather forecast texts using CBR technology. This involves 

the retrieval of previous similar weather data in response to 

an input data whose text is required. The forecast text 

associated with the retrieved similar weather data is then 

reused in the context of the new data followed by minimal 

revision. The approach is knowledge-light therefore ensuring 

that systems can be built in little time and with less human 

effort. CBR also allows for a gradual evolution of the 

system since new forecast texts can retained for future use.  

Our system, CBR- METEO, was evaluated against other 

NLG systems performing the same task and showed com- 

parable results. 

The limitation of our current system is that it cannot 

generate forecast texts for all queries if a previous similar 

weather data is not found in the casebase. We intend to 

improve on this by relaxing our similarity constraints to 

retrieve less similar cases. However, this will require the 

use of more complex rules during revision.  We also intend 

to carry out a qualitative evaluation for our system and apply 

the CBR approach to other NLG tasks. Our long term goal is 

to study synergies between NLG and CBR techniques and 

apply them to develop better and more effective AI systems. 

6. ACKNOWLEDGMENTS 
The author will like to thank Nirmalie Wiratunga of The 

Robert Gordon University, UK and Somayajulu Sripada of 

University of Aberdeen, UK for their useful feedback. 

7. REFERENCES 
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