
International Journal of Computer Applications (0975 – 8887)

Volume 45– No.1, May 2012

19

Compression and Replication of Device Files using
Deduplication Technique

Bharati Ainapure
 Assistant Professor

Department of Computer
Engineering.

MITCOE, Pune University,
India.

Siddhant Agarwal
Abhishek Somani

Department of Computer
Engineering.

MITCOE, Pune University,
India.

Rukmi Patel
Ankita Shingvi

Department of Computer
Engineering.

MITCOE, Pune University,
India.

ABSTRACT
One of the biggest challenges to the data storage community

is how to effectively store data without taking the exact same

data and storing again and again in different locations on the

back end servers. In this paper, we outline the performance

achievements that can be achieved by exploiting block level

data deduplication in File Systems. We have achieved

replication of data by storing a deduplicated copy of the

original data on the backup partition, which can enable us to

access or restore data in case of a system crash.

General Terms

Block Level Deduplication, Secure Hash Algorithm.

Keywords
Deduplication, Replication, Data Storage, VFS (Virtual File

System).

1. INTRODUCTION
The kernel comprises of the following components:

1.1 Virtual File System
The Virtual File System (VFS) acts as an interface between

the Kernel and the different file systems [5]. It is a Kernel

software layer that handles all the system calls related to a

standard UNIX file system. Linux manages multiple file

systems through the use of VFS. It bridges the gap between

different file systems. It provides a common system call

interface to the userspace.

The VFS stores information related to a file system using

several data structures:

1. Superblock: Stores information related to a File

System.

2. Inode: Keeps track of files and stores metadata of

the file.

3. File: Represents an open file for a particular process.

4. Dentry: Stores the recently used file system paths

and inodes.

Thus, the purpose of the VFS is to allow the client

applications to access different types of file Systems

uniformly [5]. It acts as an interface between the kernel and

the file systems.

Fig1. General Kernel components

1.2 Generic Block Layer
The Generic Block Layer is the Kernel component layer that

handles all requests for all the block devices in the system [6].

It helps to put the data buffers in high memory. Disk data is

directly put in the user mode address space without being

copied to kernel memory first using this address layer [4]. It

manages the logical volumes.

1.3 I/O scheduler

The block device drivers is used to transfer a single sector at a

time. But if the block I/O layer perform an individual I/O

operation for each sector, it would lead to very poor disk

performance [7]. So, the block I/O layer clusters several

sectors and perform an operation on this cluster of sectors. It

is done by the I/O scheduler. Whenever I/O operation is

requested by the kernel, the request describes the requested

sectors and the kind of operation to be performed, i.e. read or

write, on them [7]. This request is not performed immediately,

but is actually scheduled at a later time. Whenever new block

data transfer is requested, the kernel checks the previous

requests and if the head moment of the disk is less between

previously stored request and the current one, then performs

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.1, May 2012

20

the operation on the previous and the current one. Thus,

performance is improved using the I/O scheduler.

1.4 Block Device Drivers:

In an I/O operation, the disk controller moves the heads on the

disk surface to reach the correct position which requires

significant amount of time[3]. But if the heads are correctly

placed, the time required decreases and speed of the operation

is increased. This is the key aspect of Block devices. The

block device drivers get the requests from the I/O scheduler,

and do whatever is required to process them. They may

handle several block devices.

The Device Driver is an interface between high level

computer programs and the Hardware device and

communication between the two takes place with the help of

computer bus [5]. Whenever a calling program invokes a

routine in a driver, the driver issues a command to the device.

Drivers are hardware independent and operating system

specific. Drivers can be build either as part of the kernel or as

loadable modules. The advantage of loadable modules is that,

they can be only loaded when necessary thus saving the kernel

memory [5].

Device files contain 3 main parameters:

1. type: block device or character device

2. major number: identifies the device type

3. minor number: identifies a specific device among a

group of devices that share the same major number.

The mknod() is used to create device files. It receives the

name of the device file, its type; it's major and its minor

number.

To support a disk, we first need to register the device driver

with the kernel [11]. For each disk, the driver allocates a

gendisk and a request queue for each gendisk [2]. The gendisk

structure is allocated using the alloc_disk(). The alloc_disk()

allocates the array required for partitions. The partition of the

disk is stored as an array of hd_struct. hd_struct represents the

partition information. The driver needs to fill the partition

information.

A device is read/written as a normal file. The kernel accesses

these devices when the file system on the device is mounted.

Fig2. Relationship between page, BIO and request

In the next section, we will go through the related work of the

paper.

2. RELATED WORK
The references [1] and [7] brief us about the multipath request

processed through the bio and the device mapper in the

kernel. The read and write request is fist sent to the bio and

the to the I/O scheduler for further processing.[2] and [6]

inform us about the secure hash algorithm used to calculate

checksum and deduplication of data. [3] helps us go through

the different events geared towards those who are doing

desktop application and infrastructure development,[4]

explains the generic block layer. It also helps to go through

the documentation file in the kernel. [5] briefs us about the

communication between the user space and kernel space.[9]

shows the linux kernel archives and helps to access the source

code for linux kernel. [10] helps us find out the technologies

for quantum that increases disk performance while reducing

capacity needs. Reference [11] briefs us about the device files

and its information. [12] and [13] help us understand the use

of commands like dm_setup and dm_crypt to create a target

device. The following references inform us about the various

linux commands used for loading and removing modules in

the kernel.

3. PROBLEM STATEMENT
In this paper, we represent our idea of how to get

deduplication of Device Files. Here we show the processing

of a read or write request for a block of data from or to the

device files. The request is further processed through the

various layers of the kernel[4]. To implement deduplication

we then calculate the checksum on every block of data using

the SHA1 algorithm. The checksum calculated is then stored

in a mapping table in order to avoid storage of redundant

blocks of data.

This stores only a single copy of the redundant block hence

resulting in saving the storage space. We have implemented

replication of the deduplicated data by storing it on the backup

partitions. On receiving a block of data from the Generic

Block Layer, a checksum is calculated. Each block device has

a set of functions stored in its f_ops structure[3]. Our

functions are mapped to those pointed by the f_ops, defined

explicitly.. We can get this by using:

 .read = device_read,

 .write = device_write

Thus, the read () function of the device file is mapped by our

read function, i.e., device_read() and the write() function by

our device_write(). Deduplication is then done on the backup

partition, while the original partition stores the entire data.

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.1, May 2012

21

4. IMPLEMENTATION
We now see the implementation of our idea. The

implementation is divided into following steps.

Step1:

We first register the block device driver by following

function:

register_blkdev(major_num, "block_device");

Using insmod, we load the device driver in the kernel[11].

Now our device driver is ready to be used.

We use several data structures so as to efficiently perform the

required operation. We discuss here some of the major data

structures.

1. buffer_head: The buffers are tracked in the kernel using

the buffer_head data structure[4].

Its structure is as shown below:

Struct buffer_head

{

Char b_data; /*pointer to the

 buffer*/

Unsigned long b_blocknr; /*logical

 block number */

Unsigned long b_size; /*block

 size*/

…

 };

Step2:

Whenever a file is requested for an I/O operation, it may

contain the requested stream of data spread over several pages

or several file system blocks[9]. If the data is stored

contiguously on the disk, then the entire request can be

represented by a single data structure, which can be carried

out by the BIO data structure. The pages containing

contiguous data are grouped into a single BIO[3]. The BIO

data structure is used by all layers below VFS to represent the

I/O for a file. Each segment in a BIO is represented by a

bio_vec structure. Its fields are as shown below:

 Struct bio_vec

 {

 Struct page* bv_page; /*pointer to the

 page descriptor of segment's

 page frame*/

 Unsigned int bv_len; /*length of

 segment in bytes*/

 Unsigned int bv_offset; /*offset of

 segment's data in page frame*/

 …

 };

The Generic Block Layer starts a new I/O operation by

allocating a new BIO descriptor through the bio_alloc ()

function. The Kernel keeps track of the bio_vec structures so

that it is able to allocate the segment descriptors to be

allocated in the BIO structure.

Step3:

The list of pending requests is maintained by each block

device in its own request queue. Each physical block device

contains one request queue. To increase the disk performance,

I/O scheduling is performed separately on each request queue.

The request_queue data structure contains the following

fields:

Struct request_queue

 {

 Struct request list rq; /*data structure

 used for allocation of request

 descriptors*/

 Unsigned int bv_offset; /*offset of

 segment's data in page frame*/

 …

 };

The function blk_init_queue() is used to allocate the

request_queue.

The I/O requests are represented by a BIO structure [7]. A

BIO is received for each I/O request.

The BIO manipulations are performed in following ways:

1. Cloning: In this, a copy of the BIO is made[8]. The

clone will have a completion handler, while the

original won't have it[1].

2. Mapping: The cloned BIO is passed to the target

driver. Here, the bi_bdev field is set to the device it

wants to send the BIO to.

3. Completion: The BIO can be remapped or

completed when the completion handler is invoked.

When all the cloned BIO's are completed, the

original BIO is said to be completed.

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.1, May 2012

22

Fig. 3 BIO flow

Step4:

We have included the following data structures so as to store

the checksum of the written data and to retrieve it from the

backup partition.

1. typedef struct hash_lba {

 Unsigned long long hash_key;

 Unsigned long long sect;

}hash_lba_t;

This structure stores the sectornumber in the ‘sect’ ieldand

thechecksuminthe‘hash_key’field.

2. typedef struct hash_pba {

 int address;

 unsigned long long hash_key;

}hash_pba_t;

Thisstructurestoresthechecksuminthe‘hash_key’fieldand

theoffsetofthesectorinthe‘address’field.

3. typedef struct count_pba {

 int cnt;

}count_pba_t;

This structure stores the count of the number of times a block

with the same checksum occurs in the file.

Using these structures, we can read the data from the backup

partition.

Step5:

Now, whenever data is passed block by block into the device

file, checksum will be calculated via our target and

deduplication takes place.

Fig 4. Checksum calculation

In the above figure, there are 4 blocks in memory of which

blocks 1 and 3 are similar and 2 and 4 are similar. So, the

checksum for the similar blocks is same[2]. So, all the blocks

with similar checksum are pointed to a single memory

location. Thus, the blocks 1 and 3 all point to memory

location 0, which is the actual memory location of block 1.

Similarly, the blocks 2 and 4, all point to the memory location

512, which is the memory location of block 2. Thus, out of 4

memory locations, only 2 memory locations are used, thus

saving the memory by almost 50%.

Step6:

In this step, a copy of the deduplicated data is created and

saved on another partition of the disk. This is done in order to

access or recover data in case of a system crash. In replication,

if the data changes in the original copy of the data,

modifications should also be made in the duplicate one. This

should be done properly so that the duplicate data is the exact

replica of original data at any instant of time.

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.1, May 2012

23

5. RESULT AND ANALYSIS:
The following graphs show the comparison in system

performance with deduplication and without deduplication.

Fig 5. Graph for Write Request (Full Deduplicate Data)

Fig.6 Graph for Write Request (Full Non-Deduplicate

Data)

Fig.7 Graph for Write Request (Mixed Data)

Fig 8. Graph for Read Request

6. ADVANTAGES:
1. Data Deduplication can achieve the compression

ratios ranging from 10:1 to 50:1.

2. Deduplication is a good choice for data that is

uncompressed and unencrypted.

3. Compression is useful for extending the life of older

storage systems.
4. Replication can be used in case our system crashes.

So, the crashed data can be recovered.

7. CONCLUSION AND FUTURE SCOPE
Removing the redundant data by removing the duplicate

blocks of data and storing only the unique blocks leads to

improve space efficiency to a great extent. In some cases, the

space efficiency increases to about 80%, then that without

deduplication. Also, if the system crashes, then it is possible

to recover the data from the copy of it we created using

replication. Thus, important data can be kept safe via

replication.

In replication, if the data changes in the original copy of the

data, modifications should also be made in the duplicate one.

This should be done properly so that the duplicate data is the

exact replica of original data at any instant of time. The

Challenge is to achieve maximum dedupe ratio with as little

effect on throughput as possible. Propose effective methods to

estimate the opportunities of data reduction for large-scale

storage systems. Reduce the data center footprint and thus

reduce the power needs.

8. REFERENCES
[1] Request-based Device-mapper multipath and Dynamic

load balancing by kiyoshi Ueda, Jun’ichi Nomura and

Mike Christie.

[2] A Device Mapper based Encryption Layer for TransCrypt

by Sainath Vella.

[3] Edward Goggin, Linux Multipathing Proceedings of the

Linux Symposium, 2005.

[4] Jens Axboe, Notes on the Generic Block Layer Rewrite in

Linux 2.5, Documentation/block/ biodoc.txt, 2007.

[5] Netlink - Communication between kernel and userspace

(PF NETLINK). Manual Page Netlink.

[6] Satyam Sharma, Rajat Moona, and Dheeraj Sanghi.

TransCrypt: A Secure and Transparent Encrypting File

System for Enterprises.

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.1, May 2012

24

[7] Mike Anderson, SCSI Mid-Level Multipath, Proceedings

of the Linux Symposium, 2003.

[8] Daniel Pierre Bovet and Marco Cesati. Understanding the

Linux Kernel. O'Reilly& Associates, Inc., third edition,

2006.

[9] The Linux Kernel Homepage, Website http://www.kernel.

org.

[10] http://www.quantum.com/Solution s/datadeduplication/

Index.aspx.

[11] Dmsetup - low level logical volume management.

Manual Page. Dmsetup.

[12] Red Hat Inc. Device-mapper Resource Page. Website.

http://sources.redhat. com/dm/.

[13] dm-crypt: a device-mapper crypto target for Linux.

Website. http://www.saout.de/misc/dm-crypt/

.

http://www.quantum.com/Solution%20s/datadeduplication/%20Index.aspx
http://www.quantum.com/Solution%20s/datadeduplication/%20Index.aspx
http://www.quantum.com/Solution%20s/datadeduplication/%20Index.aspx
http://sources.redhat/
http://www.saout.de/misc/dm-crypt/

