
International Journal of Computer Applications (0975 – 8887)

Volume 44– No.9, April 2012

23

A Novel Approach for Finding Frequent Item Sets Done

by Comparison based Technique

Meghna Utmal
HOD, MCA

Gyan Ganga College of
Technology, Jabalpur,

(M.P.)Pin-482003 , India

Shailendra Chourasia
M.Tech, Scholar,

 Gyan Ganga College of
Technology, Jabalpur (M.P.)

Pin- 482003, India

Rashmi Vishwakarma
Lecturer, MCA Department,

Gyan Ganga Institute Of
Technology& Sciences,

Jabalpur, (M.P.)Pin-
482003,India

ABSTRACT

Frequent pattern mining has been a focused theme in data

mining research for over a decade. Abundant literature has

been dedicated to this research and tremendous progress has

been made, ranging from efficient and scalable algorithms for

frequent itemset mining in transaction databases to numerous

research frontiers, such as sequential pattern mining,

structured pattern mining, correlation mining, associative

classification, and frequent pattern-based clustering, as well as

their broad applications. In this paper, we develop a new

technique for more efficient pattern mining. Our method find

frequent 1-itemset and then uses the heap tree sorting we are

generating frequent patterns, so that many. We present

efficient techniques to implement the new approach.

Key words
Frequent pattern mining, MAXHEAP, Data mining, Data

Structure..

1. INTRODUCTION

 Agrawal et al. (1993) was the first man who has proposed

frequent pattern mining for market basket analysis in the form

of association rule mining. In this he analyses customers

shopping basket to finding buying habits by finding

associations between the different purchased items by

customers.

In this paper, we perform a high-level overview of frequent

pattern mining methods, extensions and applications. We

proposed new method in the place of FP-Growth tree using

MAXHEAP tree, in this tree we are trying to find most

frequent item which is already sorted and present in root of

heap tree. we organize our discussion into the following three

themes: (1) Efficient and scalable FP-Tree Method for mining

frequent patterns (2) Data Structue (3) Proposed Methods

with example

2. EFFICIENT AND SCALABLE FP-

TREE METHOD FOR MINING

FREQUENT PATTERNS

2.1 Problem Specification

The concept of frequent itemset was first introduced for

mining transaction databases (Agrawal et al. 1993). Let I =

{I1, I2, . . . , In} be a set of all items. A k-itemset α, which

consists of k items from I, is frequent if α occurs in a

transaction database D no lower than θ |D| times, where θ is a

user-specified minimum support threshold (called min_sup) ,

and |D| is the total number of transactions in D. The basic

frequent itemset mining methodology FP-growth is

introduced in next section.

2.2 FP-growth
In order to count the supports of all generated itemsets, FP-

growth uses a combination of the vertical and horizontal

database layout to store the database in main memory. Instead

of storing the cover for every item the database, it stores the

actual transactions from the database in a tree structure and

every item has a linked list going through all transactions that

contain that item. This new data structure is denoted by FP-

tree (Frequent-Pattern tree) and is created as follows Again;

we order the items in the database in support ascending order

for the same reasons as before. First, create the root node of

the tree, labeled with “null”. For each transaction in the

database, the items are processed in reverse order (hence,

support descending) and a branch is created for each

transaction. Every node in the FP-tree additionally stores a

counter which keeps track of the number of transactions that

share that node. Specifically, when considering the branch to

be added for a transaction, the count of each node along the

common prefix is incremented by 1, and nodes for the items

in the transaction following the prefix are created and linked

accordingly. Additionally, an item header table is built so that

each item points to its occurrences in the tree via a chain of

node-links. Each item in this header table also stores its

support. The reason to store transactions in the FP-tree in

support descending order is that in this way, it is hoped that

the FP-tree representation of the database is kept as small as

possible since the more frequently occurring items are

arranged closer to the root of the FP-tree and thus are more

likely to be shared.

Example . Assume we are given a transaction database and a

minimal support threshold of 2. First, the supports of all items

is computed, all infrequent items are removed from the

database and all transactions are reordered according to the

support descending order resulting in the example transaction

database in table .

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.9, April 2012

24

Table 1 An example preprocessed transaction database.

Tid List of Items

100 {Pen, Ink, Rubber}

200 { Pen, Ink, Pencil }

300 {Pencil, Rubber}

400 {Ink, Pencil}

500 {Register, Ink, Pen}

 The FP-tree for this database is shown in Figure

 Fig. Header Table

Item SC Node

Ink 4

Pen 3

Pencil 3

Rubber 2

Register 1

Table 2 Result of fp-growth tree

Item Conditional

Pattern Base

Conditional

FP Tree

Frequent Pattern

Generates

Register {Ink , Pen :1 } - -

Rubber {Ink, Pen : 1}

{Pencil :1)

- -

Pencil {Ink , Pen :1 }

{Ink : 1}

{Ink :2} {Ink , Pencil :2}

Pen {Ink :3 } {Ink :3 } {Ink , Pen :3 }

 Algorithm FP-growth

Input: D,σ, I  I

Output: F[I](D, σ)

1: F[I] := {}

2: for all i  I occurring in D do

3: F[I] := F[I]  {I  {i}}

4: // Create Di

5: Di := {}

6: H := {}

7: for all j  I occurring in D such that j > i do

8: if support(I  {i, j}) ≥ σ then

9: H := H  {j}

10: end if

11: end for

12: for all (tid ,X)  D with i  X do

13: Di := Di  {(tid,X  H)}

14: end for

15: // Depth-first recursion

16: Compute F[I  {i}](Di,σ)

17: F[I] := F[I]  F[I  {i}]

18: end for

3 Data structures

The data structures are user defined data types specifically

created for the manipulation of data in a predefined manner.

There are two types of data structure Linear and Non Linear.

Array, stacks, queues and Linked List are Linear Data

structure whereas trees and graphs are non linear data

structure.

3.1 Tree

Trees are very flexible, versatile and powerful data structures

.A tree is a non linear data structure in which items are

arranged in a sorted sequence. It is used to represent

Hierarchical relationship existing amongst several data
structures.

There are different types of trees like Binary tree, B-Tree,

B+Tree ,AVL Tree, Extended Tree ,Heap Tree etc. All trees

manage data in different types. Here we will explain the
functioning of Heap Tree.

3.2 Heap

The Heap is used in an elegant sorting algorithm called

heapsort. Suppose H is a complete binary tree with n

elements is maintain in memory using the sequential
representation of H. Then H is called the Heap.

Heap is of Two types Max Heap and Min Heap. If root is

greater than or equal to their left and right child then it is

called Max Heap.If root is less than or equal to their left and

right child then it is called Min Heap.

3.2.1 Operations on Max Heap

We can perform different types of operations on Max Heap

i.e. Insertion, Deletion, Sorting, Traversing and Searching.

Once a heap has been built, Heapsort can simply remove the

maximum value (root node) and create the output, sorted array

Ink : 4

Pen : 3

Register :1 Rubber :1

Pencil :1

NULL

Pencil:1

Pencil:1

Rubber :1

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.9, April 2012

25

one item at a time. This process is somewhat akin to the

Selection Sort but much more efficient.

When the root node in a heap is removed to become part of

the final, ordered data set, the last item on the heap is

promoted to fill the vacancy at the root position. Clearly, in

many cases, this last item will now be out of place (that is, it

may be smaller than one of its new children). To ensure that

the modified heap retains the max-heap property it becomes

necessary to ``push down'' the newly promoted root item until

it is back in the right place. This pushing down process entails

examining the node's key value and comparing it with the key

value of the node's greatest child. If the node's greater child is

larger in value than the node itself, a swap is performed. The

process repeats, following the node from the root down

through demotion, until no swap is needed. At this point the

heap is back in order, the new root may be popped off, and the

sorting process can continue.

The process of removing the root, promoting the last node,

and re-heapifying continues until the heap is exhausted.

4 MAX HEAP Pattern Mining Algorithm :

We are introducing a new algorithm for finding the

frequent pattern mining which is based on MAXHEAP.

4.1 Scan :

1. L1 = Scan-Database-for-Support-Count

2. for each ITEM.ID  ITEM

3. {

4. for each transaction t  D

5.{

6. if (id  t)

7. ITEM..ID.count++

8. } ITEM = {ID.count >= min_sup}

9.}

4.2 Algorithm: InsertHeap (TREE, N,

ITEM)

A Heap H with N elements is sorted in the array of structure

TREE and an ITEM of information is given. This procedure

inserts item as a new element of H. PTR gives the location of

ITEM as it rises in the tree, and PAR denotes the location of

the parent of ITEM.

1. [Add new node to H and initialize PTR.]

Set N= N+1 and PTR = N

2. [Find location to insert ITEM]

Repeat Steps 3 to 6 while PTR<1.

3. Set PAR = PTR/2 [Location of parent node]

4. If ITEM = TREE[PAR] then

Set TREE[PTR] = ITEM and Return

[End of If structure]

5. Set TREE[PTR]=TREE[PAR] [Move node down]

6. Set PTR = PAR [Updates PTR]

[End of step 2 loop]

7. [Assign ITEM as the root of H.]

Set TREE[1] = ITEM

8. Return

4.2 Iterative Traversal

 The term traversal means visit/read each node at least

ones. In iterative traversing we will traverse the tree and scan

the frequent itemset according to the iteration.

Consider the following transactional database having

transaction id (tid) and List of items.

Table 3

Tid List of Items

100 {Pen,Ink, Rubber}

200 { Pen,Ink, Pencil }

300 {Pencil,Rubber}

400 {Ink, Pencil}

500 {Register,Ink,Pen}

As our algorithm first we need to scan database for the

Support Count, that will generate following output

Table 4

Item Support Count

Pen 3

Ink 4

Rubber 2

Pencil 3

Register 1

Now we will discard the Items that have support count less

than Minimum Support Count. In our case Minimum Support
Count is 2.

So after discarding Item that has less than 2 support count,

the output will be as follows;

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.9, April 2012

26

Table 5

Item Support Count

Pen 3

Ink 4

Rubber 2

Pencil 3

Now we use InsertHeap(TREE,N,ITEM) procedure to
create Max-Heap.

(i) ITEM = Pen-3

(ii) ITEM = Ink-4

(iii) ITEM = Pencil-3

(iv) ITEM = Rubber-2

Now by Iterative Traversing procedure we generate frequent

n-Itemset where n = 1,2,3 … n by using a this traversing the

output of the following HeapTree will be

1. Frequent 1 Itemset

Fig. HeapTree

Iterative Traversal: The output of the above HeapTree by a
this method will be as follows & find most frequent item;

1. Iteration 1

Frequent 1 Itemset will generate

{Ink-4, Pen-3, Pencil-3,Rubber-2}

2. Iteration 2

Frequent 2 Itemset will generate

{Ink-4 Pen-3, Ink-4 Pencil-3, Pen-3 Rubber-2}

3. Iteration 3

Frequent 3 Itemset will generate

{Ink-4 Pen-3 Pencil-3}

5. CONCLUSION

In this paper, we present a overview of FP-Growth Tree. With

over a decade of extensive research, have been hundreds of

research publications and tremendous research, development

and application activities in this domain. We are trying to

exploring a new approach on the frequent pattern mining. It is

impossible for us to give a complete coverage on this topic

with limited space and our limited knowledge. Hopefully, this

short overview may provide a rough outline of our recent

work and give just idea of a general view of the MAXHEAP

tree by using comparison based technique. In general, we feel

that as a young research field in data mining, frequent pattern

mining has achieved tremendous progress and claimed a good

set of applications. However, in-depth research is still needed

on several critical issues so that the field may have its long

lasting and deep impact in data mining applications.

6. REFERENCES
[1] Afrati FN, Gionis A, Mannila H (2004) Approximating a

collection of frequent sets. In: Proceedings of the 2004

ACM SIGKDD international conference knowledge
discovery in databases (KDD’04), Seattle,WA, pp 12–19.

[2] Agarwal R, Aggarwal CC, Prasad VVV (2001) A tree

projection algorithm for generation of frequent itemsets.

J Parallel Distribut Comput 61:350–371.

[3] Aggarwal CC, Yu PS (1998) A new framework for itemset

generation. In: Proceedings of the 1998 ACM

symposium on principles of database systems
(PODS’98), Seattle,WA, pp 18–24.

[4] Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998)

Automatic subspace clustering of high dimensional data

for data mining applications. In: Proceedings of the 1998

ACM-SIGMOD international conference on

management of data (SIGMOD’98), Seattle, WA, pp 94–
105.

Pen - 3

Ink - 4

Pen - 3

Ink - 4

Pen - 3 Pencil - 3

Ink - 4

Pen - 3 Pencil - 3

Rubber-2

Ink - 4

Pen - 3 Pencil-3

Rubber-2

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.9, April 2012

27

[5] Agrawal R, Imielinski T, Swami A (1993) Mining

association rules between sets of items in large

databases. In: Proceedings of the 1993ACM-

SIGMODinternational conference on management of
data (SIGMOD’93), Washington, DC, pp 207–216.

[6] Agrawal R, Shafer JC (1996) Parallel mining of

association rules: design, implementation, and
experience. IEEE Trans Knowl Data Eng 8:962–969.

[7] Agrawal R, Srikant R (1994) Fast algorithms for mining

association rules. In: Proceedings of the 1994

international conference on very large data bases
(VLDB’94), Santiago, Chile, pp 487–499.

[8] Agrawal R, Srikant R (1995) Mining sequential patterns.

In: Proceedings of the 1995 international conference on
data engineering (ICDE’95), Taipei, Taiwan, pp 3–14.

[9] Ahmed KM, El-Makky NM, Taha Y (2000) A note on

“beyond market basket: generalizing association rules to
correlations”. SIGKDD Explorations 1:46–48.

[10] AsaiT, AbeK,Kawasoe S, ArimuraH,

SatamotoH,Arikawa S (2002) Efficient substructure

discovery from large semi-structured data. In:

Proceedings of the 2002 SIAM international conference

on data mining (SDM’02), Arlington, VA, pp 158–174.

[11] Aumann Y, Lindell Y (1999) A statistical theory for

quantitative association rules. In: Proceeding of the 1999

international conference on knowledge discovery and
data mining (KDD’99), San Diego, CA, pp 261–270.

[12] Bayardo RJ (1998) Efficiently mining long patterns from

databases. In: Proceeding of the 1998 ACM-SIGMOD

international conference on management of data
(SIGMOD’98), Seattle,WA, pp 85–93

[13] Beil F, EsterM, Xu X (2002) Frequent term-based text

clustering. In: Proceeding of the 2002 ACM SIGKDD

international conference on knowledge discovery in

databases (KDD’02), Edmonton, Canada, pp 436–442.

[14] Bettini C, SeanWang X, Jajodia S (1998) Mining

temporal relationships with multiple granularities in time
sequences. Bull Tech Committee Data Eng 21:32–38.

[15] Beyer K, RamakrishnanR(1999) Bottom-up computation

of sparse and iceberg cubes. In: Proceeding of the

1999ACM-SIGMODinternational conference on

management of data (SIGMOD’99), Philadelphia, PA,
pp 359–370.

[16] Blanchard J, Guillet F, Gras R, Briand H (2005) Using

information-theoretic measures to assess association rule

interestingness. In: Proceeding of the 2005 international

conference on data mining (ICDM’05), Houston, TX, pp

66–73.

[17] Frequent pattern mining: current status and future

directions Bonchi F, Giannotti F, Mazzanti A, Pedreschi

D (2003) Exante: anticipated data reduction in

constrained pattern mining. In: Proceeding of the 7th

European conference on principles and pratice of

knowledge discovery in databases (PKDD’03), pp 59–
70.

[18] Bonchi F, Lucchese C (2004) On closed constrained

frequent pattern mining. In: Proceeding of the 2004

international conference on data mining (ICDM’04),

Brighton, UK, pp 35–42

[19] Borgelt C, Berthold MR (2002) Mining molecular

fragments: finding relevant substructures of molecules.

In: Proceeding of the 2002 international conference on
data mining (ICDM’02), Maebashi, Japan, pp 211–218.

[20] Brin S, Motwani R, Silverstein C (1997) Beyond market

basket: generalizing association rules to correlations. In:

Proceeding of the 1997 ACM-SIGMOD international

conference on management of data (SIGMOD’97),
Tucson, AZ, pp 265–276.

[21] Brin S, Motwani R, Ullman JD, Tsur S (1997) Dynamic

itemset counting and implication rules for market basket

analysis. In: Proceeding of the 1997 ACM-SIGMOD

international conference on management of data
(SIGMOD’97), Tucson, AZ, pp 255–264.

[22] Bucila C, Gehrke J, Kifer D, White W (2003)

DualMiner: a dual-pruning algorithm for itemsets with
constraints. Data Min knowl discov 7:241–272.

[23] Burdick D, Calimlim M, Gehrke J (2001) MAFIA: a

maximal frequent itemset algorithm for transactional

databases. In: Proceeding of the 2001 international

conference on data engineering (ICDE’01), Heidelberg,
Germany, pp 443–452.

[24] Calders T,Goethals B (2002) Mining all non-derivable

frequent itemsets. In: Proceeding of the 2002 European

conference on principles and pratice of knowledge

discovery in databases (PKDD’02), Helsinki, Finland, pp
74–85.

[25] Calders T, Goethals B (2005) Depth-first non-derivable

itemset mining. In: Proceeding of the 2005 SIAM

international conference on data mining (SDM’05),

Newport Beach, CA, pp 250–261.

[26] Cao H, Mamoulis N, Cheung DW (2005) Mining

frequent spatio-temporal sequential patterns. In:

Proceeding of the 2005 international conference on data
mining (ICDM’05), Houston, TX, pp 82–89.

[27] Zaki MJ (2002) Efficiently mining frequent trees in a

forest. In: Proceeding of the 2002 ACM SIGKDD

international conference on knowledge discovery in
databases (KDD’02), Edmonton, Canada, pp 71–80

[28] Zaki MJ,Hsiao CJ (2002) CHARM: an efficient

algorithm for closed itemset mining. In: Proceeding of

the 2002SIAMinternational conference on data mining

(SDM’02),Arlington,VA, pp 457–473.

[29] Zaki MJ, Lesh N,OgiharaM(1998) PLANMINE:

sequencemining for plan failures. In: Proceeding of the

1998 international conference on knowledge discovery
and data mining (KDD’98), New York, NY, pp 369–373.

[30] Zaki MJ, Parthasarathy S, Ogihara M, Li W (1997)

Parallel algorithm for discovery of association rules. data

mining knowl discov, 1:343–374.

[31] Zhang X, Mamoulis N, Cheung DW, Shou Y (2004) Fast

mining of spatial collocations. In: Proceeding of the 2004

ACM SIGKDD international conference on knowledge

discovery in databases (KDD’04), Seattle,WA, pp 384–
393.

[32] Zhang H, Padmanabhan B, Tuzhilin A(2004) On the

discovery of significant statistical quantitative rules. In:

Proceeding of the 2004 international conference on

knowledge discovery and data mining (KDD’04),
Seattle,WA, pp 374–383.

[33] Zhu F, Yan X, Han J, Yu PS, Cheng H (2007) Mining

colossal frequent patterns by core pattern fusion. In:

Proceeding of the 2007 international conference on data
engineering (ICDE’07).

