
International Journal of Computer Applications (0975 – 8887) 

Volume 44– No.8, April 2012 

32 

A Modified Projected K-Means Clustering Algorithm with 
Effective Distance Measure 

 

                    B. Shanmugapriya            M. Punithavalli 
Lecturer,      Director, 

Department of Computer Science,  Department of Computer Applications 
Sri Ramakrishna College of Arts   Sri Ramakrishna Engineering College, 

and Science for Women,     Coimbatore. India 
Coimbatore. India.                 

        
 

ABSTRACT 
Clustering high dimensional data has been a big issue for 

clustering algorithms because of the intrinsic sparsity of the data 

points. Several recent research results signifies that in case of 

high dimensional data, even the notion of proximity or clustering 

possibly will not be significant. K-Means is one of the basic 

clustering algorithm which is commonly used in several 

applications, but it is not possible to discover subspace clusters. 

The subspaces are explicit to the clusters themselves. In this 

paper, an algorithm called Modified Projected K-Means 

Clustering Algorithm with Effective Distance Measure is 

designed to generalize K-Means algorithm with the objective of 

managing the high dimensional data. The experimental results 

confirm that the proposed algorithm is an efficient algorithm with 

better clustering accuracy and very less execution time than the 

Standard K-Means and General K-Means algorithms. 
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1. INTRODUCTION 
One of the most popular data mining approaches which are 

adequate for numerous applications is clustering. The major 

reason for its wide range of application is the capability of 

clustering technique to work on datasets with least or no previous 

knowledge. This enables clustering as a convenient tool for many 

real world applications. Clustering is a technique of grouping 

comparable objects that are similar to each other and dissimilar to 

the data objects belonging to other clusters based on certain 

features [1].  Clustering is exploited to assemble items that 

appear to come naturally together [2]. Several kinds of clustering 

techniques are available, namely hierarchical vs. partitioned, 

exclusive vs. overlapping vs. fuzzy and complete vs. partial [3]. 

Clustering is a kind of unsupervised learning technique that 

separates data in such a way that comparable data items are 

assembled together in a set which are referred to as clusters. This 

technique is essential for condensing and recognizing patterns in 

data [4]. 

In recent times, high dimensional data has stimulated the 

attention of database researchers because of its significant 

challenges brought to the research community. In huge 

dimensional space, the distance between a record and its nearest 

neighbor can approach its distance to the outermost record [5]. In 

the framework of clustering, the difficulty causes the distance 

among two records of the same cluster to move toward the 

distance among two records of various clusters. Conventional 

clustering approaches possibly will be unsuccessful to recognize 

the accurate clusters. 

Clustering is obviously in need of several techniques to the 

categorization and association learning approach. Subspace 

clustering and projected clustering are current research topics in 

the field of high dimensional space clustering. On the other hand, 

in high dimensional datasets, conventional clustering approaches 

are likely to fail based on both accuracy and efficiency [6]. 

As discussed above, projected clustering has turned out to be a 

hot research topic because of its ability to cluster huge-

dimensional data [7]. Even though, several projected clustering 

approaches are available based on certain significant user 

parameters, when incorrect parameter values are taken into 

consideration, it leads to severe degradation in the performance 

of that particular clustering technique. In fact, accurate parameter 

values are not often recognized in real datasets. 

In this paper, a modified projected K-Means clustering algorithm 

with effective distance measure has been proposed that 

continuously optimizes a comprehensive objective function. In 

the objective function of this proposed algorithm, an effetive 

distance measure is used for providing better clustering results in 

high dimensional data. In order to avoid the value of the objective 

function from decreasing as a consequence of the exclusion of 

dimensions, virtual dimensions are incorporated with the 

objective function.  The two necessities for the data values on 

these virtual dimensions guarantee that the objective function 

attains its minimum when the real subspace clusters or the 

clusters in original space are found [8-10].  The standard K-

Means clustering approach can be considered as a special case of 

GKM.  

The performance of the proposed algorithm is evaluated using the 

two standard datasets of UCI machine learning repository, 

namely Iris and Wine dataset based on the clustering accuracy 

and execution time.  Its confusion matrices are also provided at 

the end of experimental results section. 
 

2.  LITERATURE SURVEY 
Projected clustering has come out as a potential solution to the 

disputes related to clustering in huge dimensional data.  A 

projected cluster is a subset of points in cooperation with a subset 

of features, in a manner that the cluster points project onto a least 

range of values in all the features, and are equally distributed in 

other features. Existing approaches for projected clustering based 

on the constraints whose correct values are hard to fix by the 

user, or are incapable to recognize projected clusters with a small 

number of appropriate features. Moise et al., [11] developed a 

strong algorithm for projected clustering that can efficiently 

determine projected clusters in the data at the same time as 

reducing the number of parameters needed as input. In 

contradiction of all existing techniques, this approach can 

determine, under very common circumstances, the accurate 

number of projected clusters.  

In huge-dimensional data, clusters can be present in subspaces 

that cover themselves from conventional clustering approaches. 
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The clustering accuracy can be considerably reduced if inaccurate 

values are used. In real circumstances, it is not often possible for 

users to provide the parameter values precisely, which causes 

sensible difficulties in implementing these approaches to real 

data. Yip et al., [12] examined the chief confronts of projected 

clustering and recommended that these approaches are required 

to be based deeply on user parameters. According to this 

investigation, a new approach has been developed that utilizes the 

clustering status to change the internal thresholds dynamically 

not including the user parameters. 

Ada Wai-chee Fu et al., [13] recommended the EPC (Efficient 

Projected Clustering) algorithm to determine the sets of 

interrelated dimensions and the position of the clusters. This 

approach is comparatively different from existing techniques and 

has the following merits: (a) there is no condition on the input 

concerning the amount of natural clusters and the average 

cardinality of the subspaces; (b) it can manage clusters of uneven 

shapes; (c) it generates better clustering outputs compared to the 

best existing method; (d) it has better scalability.  

Irrelevant attributes accumulates noise to high-dimensional 

clusters and makes conventional clustering techniques unsuitable. 

In recent times, several approaches that determine projected 

clusters and their related subspaces have been developed. The 

similarity among mining frequent itemsets and determining dense 

projected clusters around random points are considered. 

According to this, Man Lung Yiu et al., [14] developed a 

technique that enhances the effectiveness of a projected 

clustering algorithm (DOC). This method is an optimized 

adaptation of the frequent pattern tree growth technique exploited 

for mining frequent itemsets.  Numerous methods that make use 

of the branch and bound model to effectively determine the 

projected clusters have also been developed.  
 

3. METHODOLOGY 

3.1 The General Objective Function for 

Projected Clustering 
For projected clustering consider 𝑿 = {𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏} as a 

collection of 𝒏 data points in a d-dimensional space ℝ𝒅 with 

dimensions 𝑫 = {𝑫𝟏, 𝑫𝟐, … , 𝑫𝒅}, in which data point 𝑿 =

{𝒙𝟏, 𝒙𝟐, … , 𝒙𝒅}. A subspace of ℝ𝑑  is the space spanned by the 

dimensions in set 𝐷𝑖 , where 𝐷𝑖 ⊆ 𝐷. When the subsets, 𝑋𝑖 ⊆
𝑋, 1 ≤ 𝑖 ≤ 𝑘 satisfy the following condition 𝑋1⋃𝑋2 ⋃…𝑋𝑘 = 𝑋 

and 𝑋𝑖 ∩ 𝑋𝑗 = Φ, 𝑖 ≠ 𝑗 for each 𝑖 and 𝑗, 𝑃 = {𝑋1 , 𝑋2 , … , 𝑋𝑘} is 

called a k–partition of 𝑋. The major objective of projected 

clustering is to obtain a k-partition of 𝑋 in such a way that the 

data points in all data subsets 𝑋𝑖  form a cluster in the subspace 

spanned by the dimensions in 𝐷𝑖  that is related to 𝑋𝑖 . This 𝑋𝑖  is 

considered as a cluster in 𝑋. 

The objective function of the conventional K-Means clustering 

approach is a squared-error function,  

      𝐸 𝐶 =     𝑥𝑗 − 𝑐𝑖𝑗  
2𝑑

𝑗 =1𝑋∈𝑋𝑖

𝑘
𝑖=1  (1) 

                                

where 𝐶𝑖 = (𝑐𝑖1, 𝑐𝑖2, … , 𝑐𝑖𝑑 ) is the average of the data points in 

subset 𝑋𝑖  and 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑘}. The K-Means clustering 

approach focuses on discovering a k-partition of 𝑋 that can 

minimize 𝐸. In this objective function, all dimensions take part in 

the computation. As a result the objective function implies an 

assumption that all clusters locate in original space. 

The distance measurement that is controlled by local and non-

local information is given as  

 

(𝑥𝑗 − 𝑐𝑖𝑗 )2 =  1 − 𝜆𝑗  𝑑𝑙
2 𝑥𝑗 , 𝑐𝑖𝑗  + 𝜆𝑗𝑑𝑛𝑙

2  𝑥𝑗 , 𝑐𝑖𝑗           (2)               

Using the above equation, the squared-error function can be 

modified as,  

  

𝐸 𝐶 =     1 − 𝜆𝑗  𝑑𝑙
2 𝑥𝑗 , 𝑐𝑖𝑗  + 𝜆𝑗𝑑𝑛𝑙

2  𝑥𝑗 , 𝑐𝑖𝑗  
𝑑
𝑗=1𝑋∈𝑋𝑖

𝑘
𝑖=1                                                                  

                                                                               (3) 

where 𝑑𝑙  denotes the distance measurement controlled by local 

information, and 𝑑𝑛𝑙  represents the distance measurement 

controlled by non-local information, 𝜆𝑗  from zero to one, is the 

weighting factor which manages the tradeoff between them. 

For a subspace cluster 𝑿𝒊, the values of data points on an 

irrelevant dimension should not be used to recognize the cluster. 

As a result the squared-error of the data points in 𝑿𝒊 on the 

irrelevant dimensions should not be incorporated in the objective 

function. In order to recognize the clusters which are embedded 

in various subspaces, a weight vector 𝑊𝑖 = (𝑤𝑖1 , 𝑤𝑖2 , … , 𝑤𝑖𝑑 ) is 

integrated with each cluster 𝑋𝑖 , where 

                                    

𝑤𝑖𝑗 =  
1, 𝑖𝑓 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑗 𝑖𝑠 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑡𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑋𝑖  

 0, 𝑖𝑓 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑗 𝑖𝑠 𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑡𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑋𝑖

  

 

Thus a new objective function is obtained as below, 

 

𝐸′ 𝑊, 𝐶 =    𝑤𝑖𝑗  
 1 − 𝜆𝑗  𝑑𝑙

2 𝑥𝑗 , 𝑐𝑖𝑗  

+𝜆𝑗𝑑𝑛𝑙
2  𝑥𝑗 , 𝑐𝑖𝑗  

 𝑑
𝑗=1𝑋∈𝑋𝑖

𝑘
𝑖1                                                                                              

                                                                                 (4) 
 

where 𝑊 = {𝑊1 , 𝑊2, … , 𝑊𝑘}.  It is clear that the value of this 

function will decrease when any weight 𝑤𝑖𝑗  is transformed from 

1 to 0, without considering whether dimension 𝑗 is applicable to 

cluster 𝑋𝑖 . With the intention of solving this difficulty, an idea of 

virtual dimensions for each cluster is introduced. 

For a cluster 𝑋𝑖 , consider 𝐷𝑖
′ as the dimension subset of its 

irrelevant dimensions. The dimensions in 𝐷𝑖
′ are replaced by 

virtual dimensions in set 𝑉𝐷𝑖 , in which  𝑉𝐷𝑖 = |𝐷𝑖
′|. The 

dimensions in 𝑉𝐷𝑖  are called as virtual dimensions because they 

will not be present in the subspace that contains 𝑋𝑖  and the values 

of data points in 𝑋𝑖  on them are allotted artificially. The chief 

purpose of these virtual dimensions is to guarantee that the 

objective function attains its minimum when the clusters are 

exactly identified in their respective subspaces.  

Thus the new objective function is obtained as follows, 

 

𝐸 𝑊, 𝐶 =     𝑤𝑖𝑗   1 − 𝜆𝑗  𝑑𝑙
2 𝑥𝑗 , 𝑐𝑖𝑗  

𝑑

𝑗 =1𝑋∈𝑋𝑖

𝑘

𝑖=1

+ 𝜆𝑗𝑑𝑛𝑙
2  𝑥𝑗 , 𝑐𝑖𝑗   

+  1 − 𝑤𝑖𝑗    1 − 𝜆𝑗
′  𝑑𝑙

′2 𝑥𝑗
′ , 𝑐𝑖𝑗

′  

+ 𝜆𝑗
′ 𝑑′

𝑛𝑙
2

 𝑥𝑗
′ , 𝑐𝑖𝑗

′     

                                                                               (5) 

where 𝑥𝑗
′  of all 𝑋 is a virtual value that is used to avoid 

eliminating relevant dimensions.  Set 𝑥𝑗 = 𝑐𝑖𝑗 = 0, when 𝑤𝑖𝑗 =

1. In fact, this will not produce any consequence in the results of 

the algorithm. 

The function of the second item in 𝐸 𝑊, 𝐶  is to increase the 

value of 𝐸 every time an appropriate dimension of a cluster is 

taken into account as an irrelevant one.  The procedure that 

reduces this objective function to discover accurate relevant 

dimensions for each cluster, 𝐸 𝑊, 𝐶  should satisfy two 

requirements as in [15]. 

1) When dimension 𝐷𝑗  is relevant to cluster 𝑋𝑖 , 
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         1 − 𝜆𝑗  𝑑𝑙
2 𝑥𝑗 , 𝑐𝑖𝑗  + 𝜆𝑗𝑑𝑛𝑙

2  𝑥𝑗 , 𝑐𝑖𝑗  𝑋∈𝑋𝑖
≤

                           1 − 𝜆𝑗
′  𝑑𝑙

′2 𝑥𝑗
′ , 𝑐𝑖𝑗

′  + 𝜆𝑗
′ 𝑑′𝑛𝑙

2  𝑥𝑗
′ , 𝑐𝑖𝑗

′  𝑋∈𝑋𝑖
                

2) When dimension 𝐷𝑗  is irrelevant to cluster 𝑋𝑖 , 

                           1 − 𝜆𝑗  𝑑𝑙
2 𝑥𝑗 , 𝑐𝑖𝑗  + 𝜆𝑗𝑑𝑛𝑙

2  𝑥𝑗 , 𝑐𝑖𝑗  𝑋∈𝑋𝑖
>

                           1 − 𝜆𝑗
′  𝑑′𝑙

2 𝑥𝑗
′ , 𝑐𝑖𝑗

′  + 𝜆𝑗
′ 𝑑𝑛𝑙

′2  𝑥𝑗
′ , 𝑐𝑖𝑗

′  𝑋∈𝑋𝑖
 

 

𝐸(𝑊, 𝐶) is a general objective function as it can be used to 

discover both clusters embedded in subspaces and clusters 

embedded in the original space. This cannot be realized by the 

existing projected clustering algorithms. 
 

3.2 Modified Projected K-Means Clustering 

Algorithm 
3.2.1 Setting Virtual Values 
As perfect irrelevant dimensions of a cluster are represented as 

dimensions on which the projections of data points in the cluster 

distribute uniformly in the complete value range, the irrelevant 

dimensions are given as follows. Suppose already there is a k-

partition, then for every cluster 𝑋𝑖  and each dimension 𝐷𝑗 , 

compute  

        1 − 𝜆𝑗  𝑑𝑙
2 𝑥𝑗 , 𝑐𝑖𝑗  + 𝜆𝑗𝑑𝑛𝑙

2  𝑥𝑗 , 𝑐𝑖𝑗  𝑋∈𝑋𝑖
  

and 

        1 − 𝜆𝑗
′  𝑑′𝑙

2 𝑥𝑗
′ , 𝑐𝑖𝑗

′  + 𝜆𝑗
′ 𝑑′𝑛𝑙

2  𝑥𝑗
′ , 𝑐𝑖𝑗

′  𝑋∈𝑋𝑖
 

 

where 𝑥𝑗  denotes the value of data point 𝑋 on dimension 𝑗, 𝑐𝑖𝑗  

represents the mean of data points in cluster 𝑋𝑖  on dimension 𝐷𝑗 , 

𝑥𝑗
′  indicates the virtual value of data point X on dimension j , 𝑐𝑖𝑗

′  

denotes the virtual mean of data points in cluster 𝑋𝑖  on dimension 

𝐷𝑗 . It is unnecessary to set virtual values for each data point, only 

the sum should be calculated.  If 𝑛𝑖  data points distribute 

uniformly on dimension 𝐷𝑗  in the range of [min,max], the sum is: 

  1 − 𝜆𝑗
′  𝑑𝑙

′2 𝑥𝑗
′ , 𝑐𝑖𝑗

′  + 𝜆𝑗
′𝑑′𝑛𝑙

2  𝑥𝑗
′ , 𝑐𝑖𝑗

′  

𝑋∈𝑋𝑖

=

 
  
 

  
 2  

𝑚𝑎𝑥 − 𝑚𝑖𝑛

𝑛𝑖 − 1
 

2

 0.52 + 1.52 + ⋯ +  
𝑛𝑖 − 1

2
 

2

 ,

𝑤ℎ𝑒𝑛 𝑛𝑖  𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

2  
𝑚𝑎𝑥 − 𝑚𝑖𝑛

𝑛𝑖 − 1
 

2

 12 + 22 + ⋯ +  
𝑛𝑖 − 1

2
 

2

 ,

𝑤ℎ𝑒𝑛 𝑛𝑖  𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟

  

 

If   1 − 𝜆𝑗  𝑑𝑙
2 𝑥𝑗 , 𝑐𝑖𝑗  + 𝜆𝑗𝑑𝑛𝑙

2  𝑥𝑗 , 𝑐𝑖𝑗  𝑋∈𝑋𝑖
<   1 −𝑋∈𝑋𝑖

 𝜆𝑗
′  𝑑𝑙

2 𝑥𝑗
′ , 𝑐𝑖𝑗

′  + 𝜆𝑗
′𝑑𝑛𝑙

2  𝑥𝑗
′ , 𝑐𝑖𝑗

′  , dimension 𝐷𝑗  is relevant to 

cluster 𝑋𝑖 , and if   1 − 𝜆𝑗  𝑑𝑙
2 𝑥𝑗 , 𝑐𝑖𝑗  + 𝜆𝑗𝑑𝑛𝑙

2  𝑥𝑗 , 𝑐𝑖𝑗  𝑋∈𝑋𝑖
=

  1 − 𝜆𝑗
′  𝑑𝑙

2 𝑥𝑗
′ , 𝑐𝑖𝑗

′  + 𝜆𝑗
′ 𝑑𝑛𝑙

2  𝑥𝑗
′ , 𝑐𝑖𝑗

′  𝑋∈𝑋𝑖
, dimension 𝐷𝑗  is 

irrelevant to cluster 𝑋𝑖 . However, in real dataset, the allocation of 

the projections of data points on irrelevant dimension will be 

more complicated than uniform distribution. A parameter 𝜀 is 

introduced to solve this difficulty. If   1 − 𝜆𝑗  𝑑𝑙
2 𝑥𝑗 , 𝑐𝑖𝑗  +𝑋∈𝑋𝑖

𝜆𝑗𝑑𝑛𝑙
2  𝑥𝑗 , 𝑐𝑖𝑗  < 𝜀.   1 − 𝜆𝑗

′  𝑑𝑙
2 𝑥𝑗

′ , 𝑐𝑖𝑗
′  + 𝜆𝑗

′ 𝑑𝑛𝑙
2  𝑥𝑗

′ , 𝑐𝑖𝑗
′  𝑋∈𝑋𝑖

, 

dimension 𝐷𝑗  is appropriate to cluster 𝑋𝑖 , and if   1 −𝑋∈𝑋𝑖

𝜆𝑗  𝑑𝑙
2 𝑥𝑗 , 𝑐𝑖𝑗  + 𝜆𝑗𝑑𝑛𝑙

2  𝑥𝑗 , 𝑐𝑖𝑗  ≥ 𝜀.   1 − 𝜆𝑗
′  𝑑𝑙

2 𝑥𝑗
′ , 𝑐𝑖𝑗

′  +𝑋∈𝑋𝑖

𝜆𝑗
′ 𝑑𝑛𝑙

2  𝑥𝑗
′ , 𝑐𝑖𝑗

′  , dimension 𝐷𝑗  is irrelevant to cluster 𝑋𝑖 . The range 

of 𝜀 is (0,1) . It is simple to select 𝜀. When the sum of squared-

errors of virtual values is set, an appropriate 𝜀 will guarantee that 

𝐸(𝑊, 𝐶) satisfies the two requirements mentioned previously. 
 

3.2.2 The Modified Algorithm 
Similar to conventional K-Means clustering approach, the 

proposed algorithm arbitrarily selects 𝑘 data points in 𝑋 as the 

primary cluster centers. Each cluster center 𝐶𝑖  is related to a 

vector 𝑊𝑖  whose components equal to one. Then the proposed 

algorithm repeats the following two steps to optimize the 

objective function 𝐸(𝑊, 𝐶). 

 

1) Allocate each data point in 𝑋 to the nearest cluster. This 

results in a k-partition. The distance between a data point 

𝑋 and a cluster 𝑋𝑖  is given as below, 

                               

𝑑𝑖𝑠 𝑋, 𝑋𝑖 =

  𝑤𝑖𝑗 [ 1 − 𝜆𝑗  𝑑𝑙
2 𝑥𝑗 , 𝑐𝑖𝑗  + 𝜆𝑗𝑑𝑛𝑙

2  𝑥𝑗 , 𝑐𝑖𝑗  ]𝑑
𝑗 =1  𝑤𝑖𝑗

𝑑
𝑗 =1  

 

2) Update 𝐶𝑖  and 𝑊𝑖  for 𝑋𝑖 , 1 ≤ 𝑖 ≤ 𝑘. 𝑐𝑖𝑗 =  𝑥𝑗 |𝑋𝑖| 𝑋∈𝑋𝑖
, 

1 ≤ 𝑗 ≤ 𝑑, in which |𝑋𝑖| is the number of data points in 

𝑋𝑖 . 𝑤𝑖𝑗 = 1, when   1 − 𝜆𝑗  𝑑𝑙
2 𝑥𝑗 , 𝑐𝑖𝑗  +𝑋∈𝑋𝑖

𝜆𝑗𝑑𝑛𝑙2𝑥𝑗,𝑐𝑖𝑗<𝜀.𝑋∈𝑋𝑖1−𝜆𝑗′𝑑𝑙2𝑥𝑗′,𝑐𝑖𝑗′+𝜆𝑗′𝑑𝑛𝑙2𝑥𝑗′,𝑐𝑖𝑗′; 

𝑤𝑖𝑗 = 0, when   1 − 𝜆𝑗  𝑑𝑙
2 𝑥𝑗 , 𝑐𝑖𝑗  +𝑋∈𝑋𝑖

𝜆𝑗𝑑𝑛𝑙2𝑥𝑗,𝑐𝑖𝑗≥𝜀.𝑋∈𝑋𝑖1−𝜆𝑗′𝑑𝑙2𝑥𝑗′,𝑐𝑖𝑗′+𝜆𝑗′𝑑𝑛𝑙2𝑥𝑗′,𝑐𝑖𝑗′. 

After getting a k-partition, initially the means of the clusters are 

computed. Subsequently the weight vector of each cluster is 

found based on these means. The above mentioned two steps are 

continuously repeated until the partition does not undergo any 

change. 
 

4. EXPERIMENTAL RESULTS 
To evaluate the proposed algorithm (Modified Projected K-

Means with effective distance measure), experiments were 

carried out using UCI Machine Learning Repository. There are 

211 data sets available in the UCI Machine Learning Repository. 

For the purpose of evaluating the proposed algorithm against the 

standard K-Means and General K-Means algorithm, few standard 

data sets were selected from the available UCI machine learning 

repository data sets. Following are the data sets used for the 

evaluation purpose; Iris and Wine dataset.                                                                                                  

The performance of the proposed algorithm is evaluated against 

the Standard K-Means and General K-Means based on the 

following parameters: clustering accuracy and execution time.  

The confusion matrices of all the three approaches are also 

provided. 
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Figure. 1 Comparison of Clustering Accuracy 

 

4.1 Clustering Accuracy 
Clustering accuracy is calculated for Standard K-Means, General 

K-Means and the Modified Projected K-Means using iris and 

wine datasets. Figure.1 shows the comparison of the accuracy of 

clustering results of the three approaches in iris and wine 

datasets. From the figure, it can be observed that for both the 

datasets, the accuracy of clustering results using standard K-

Means and General K-Means is very low than that of the 

Modified Projected K-Means which obtains 100% accuracy in 

iris dataset and 90.249% in wine dataset. It is clear from the 

figure that Modified Projected K-Means with effective distance 

measure is better than the other two approaches. 

 

 

4.2 Execution Time 
Figure. 2 show the execution time taken by the Standard K-

Means, General K-Means and the Modified Projected K-Means 

using iris and wine datasets. It can be observed that the time 

required for execution using the Modified Projected K-Means for 

iris data set is 0.146 seconds and for wine dataset is 0.177 

seconds, whereas, more time is required for other two clustering 

techniques for execution. From Figure.2, it is obvious that the 

proposed algorithm takes very less execution time than the 

Standard K-Means and General K-Means algorithms.  

 

 

Figure. 2 Comparison of Execution Time 
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4.3 Confusion Matrix 
The confusion matrices of the Standard K-Means, General K-

Means and the Modified Projected K-Means with effective 

distance measure for both iris and wine dataset are provided in 

Table 1. 

Table 1. Confusion matrices of three approaches for iris and 

wine datasets 

 
Standard 

K-Means 

General 

K-Means 

Modified 

Projected 

K-Means 

Iris 

Dataset 
 

0 50 0
48 0 2
14 0 36

   
50 0 0
0 50 0
0 11 39

   
50 0 0
0 50 0
0 0 50

  

Wine 

Dataset 
 
13 0 46
20 50 1
29 19 0

   
47 12 0
0 50 21
0 0 48

   
59 0 0
0 68 0
0 11 37

  

 

From the table, it is clear that the confusion matrix of the new 

approach seems to be better than the Standard K-Means and 

General K-Means. From the above results, it is very clear that the 

Modified Projected K-Means provides better clustering results 

with quick execution time. 
 

5. CONCLUSION 
In this paper, a Modified Projected K-Means clustering algorithm 

with effective distance measure has been proposed that can 

identify natural clusters in high dimensional space, regardless of 

whether they are embedded in the original space or subspaces. 

The experimental results confirm that the proposed algorithm is 

an efficient algorithm with better clustering accuracy and very 

less execution time than the Standard K-Means and General K-

Means algorithms. Modified Projected K-Means clustering 

algorithm with effective distance measure makes use of local and 

non-local information and hence provides better clustering 

results.  
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