
International Journal of Computer Applications (0975 – 8887)

Volume 44– No.8, April 2012

20

Enhanced Maximum Urgency First Algorithm with
Intelligent Laxity for Real Time Systems

H.S.Behera
Sr.Lecturer

Department Of Computer
Science and Engineering,

Veer Surendra Sai University
Of Technology(VSSUT), Burla

Sambalpur, Odisha, India

Naziya Raffat

Student
Department Of Computer
Science and Engineering,

Veer Surendra Sai University
Of Technology(VSSUT), Burla

Sambalpur, Odisha, India

Minarva Mallik

Student
Department Of Computer
Science and Engineering,

Veer Surendra Sai University
Of Technology(VSSUT), Burla

Sambalpur, Odisha, India

ABSTRACT

In this paper Enhanced Maximum Urgency First (EMUF)

scheduling algorithm with intelligent laxity has been

proposed. This algorithm is a further improvement in MMUF

algorithm [1] and is a mixed priority scheduling algorithm

which combines the advantages of both fixed and dynamic

scheduling for better CPU utilization and throughput. The

prime objective of this paper is to improve modified

maximum urgency first scheduling (MMUF) using intelligent

laxity as the dynamic priority. EMUF algorithm is mainly

suited for real time systems where meeting of deadlines is an

important criterion for scheduling. This proposed algorithm

improves the Modified Maximum Urgency First scheduling

algorithm for real time tasks proposed by V.Salmani et.al [1]

and the experimental analysis shows that the proposed

algorithm(EMUF algorithm) performs better than MMUF [1]

and MUF[6] scheduling algorithm by minimizing average

turnaround time, average waiting time and maximizing the

throughput.

General Terms

Earliest Deadline First scheduling(EDF), Enhanced Maximum

Urgency First scheduling (EMUF), Least Laxity First

scheduling(LLF), Modified Least Laxity First

scheduling(MLLF), Maximum Urgency First scheduling

(MUF), Modified Maximum Urgency First scheduling

(MMUF), Scheduling

Keywords

Context switches, intelligent laxity, laxity, process, real time

system, real time system scheduling, turnaround time,

throughput, waiting time

1. INTRODUCTION
Real time systems are designed to provide results within a

specific time frame. Real time systems are used when

correctness of the outputs as well as the time or the instants at

which these results are produced affect the system‟s

performance. In short, real time systems can say to have well

defined, strict time constraints. A number of scheduling

algorithms are available for scheduling of processes in a real

time system and lot many scheduling algorithms have been

proposed by researchers for real time systems.

 Real time systems are basically divided into three types-

hard, firm and soft.

Hard real time systems are also known as safety-critical

systems [9]. These systems are very much particular about

deadlines. The tasks must adhere to the specified deadlines

very strictly, failing which it may result into a catastrophe.

Here, the critical tasks must meet their deadlines. In soft real

time systems timing constraints are provided but inefficiency

to meet these deadlines wont result into system failures. Here,

critical tasks receive higher priority over other available tasks

and they need to be completed before other noncritical tasks.

Linux supports soft real time system [9]. Some real-time

operating systems have firm real-time requirements. Firm real

time systems allow occasional deadline violations but those

tasks which are not finished by their specified deadlines are

rejected and not scheduled by the processors. [10].

 Space research, video conferencing, weather forecasting,

seismic detection, audio conferencing, money withdrawal,

ATM, railways and flight reservations etc are some of the

applications of real time systems.

 Scheduling is the process of assigning jobs, processes or

tasks to the various processors in a system in an efficient

manner [9]. Scheduling can be classified into 2 types- static

scheduling and dynamic scheduling [11]. In static scheduling,

scheduling decision is made during the compile time before

scheduling begins. Here, priorities in which jobs will be

scheduled, is assigned before the process execution. It

improves the objective function and searches for consistent

schedule. Static scheduling algorithm is often associated with

assignment of fixed priorities and is a subclass of dynamic

priority algorithm as in static scheduling priorities of task

doesn‟t change. Examples are First come first serve, shortest

remaining time next etc. Dynamic scheduling makes

scheduling decision at the time of execution. Various

schedulability tests are available for both uniprocessors as

well as multiprocessors to decide whether a set of tasks meet

their deadlines or not. To check the successful execution of a

process beforehand, schedulability tests are performed. If the

schedulabilty test is successful, then the scheduler can

guarantee the successful execution of the process. Earliest

deadline first algorithm, least laxity first algorithm, modified

least laxity first are few examples of dynamic scheduling.

 Modified Maximum Urgency First scheduling algorithm

has been proposed by V.Salmani et.al [1]. It combines the

advantages of fixed and dynamic scheduling to provide

dynamically changing systems with flexible scheduling. Here

in this paper we are proposing Enhanced Maximum Urgency

first (EMUF) scheduling algorithm for real time systems

where intelligent laxity is the dynamic priority and it has been

calculated for each process of the system. EMUF performs

better than the algorithm proposed by V.Salmani et.al

(MMUF) [1] and MUF [6].

1.1 Preliminaries
An instant of a computer program in execution containing

program code and its activity is called a process. It is made of

multiple threads and these threads run concurrently. The

processes assigned to the processor are organized into a queue

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.8, April 2012

21

known as ready queue. CPU utilization is the process of

keeping the CPU busy with the useful work. Burst time of a

process is defined as the time required by the processor to

execute that particular process. In simple words it is the

execution time of a process. Arrival time is the time at which

the process arrives at the ready queue. Turnaround time is the

time between submissions of a process to its completion.

Waiting time is the amount of time a process spends in the

ready queue. Laxity is the remaining time required to

complete a process. Laxity is calculated by subtracting the

burst time from the deadline. Intelligent laxity is the laxity

which is calculated at a particular instant. It is calculated by

subtracting the current time from the laxity. Response time is

the amount of time it takes from when a request was

submitted until the first response is produced. Throughput is

the number of processes that completes their execution per

unit time. The number of time a CPU switches from one

process to another is the number of context switches [9].

1.2. Organisation of the Paper
Section 2 presents the related work done in this area, various

scheduling policies and the loopholes with each algorithm

which has motivated us towards the development of EMUF.

Section 3 describes the algorithm, pseudo code and flow chart

of the proposed algorithm. In section 4 experimental analysis

of the proposed algorithm (EMUF) and its comparison with

MUF [6] algorithm and MMUF algorithm [1] is presented.

Section 5 and section 6 contain the conclusion and the

references respectively.

2. PRIOR WORK

 The EDF [3] and LLF [4] algorithms are treated as optimal

dynamic priority algorithm. LLF [4] reduces the system

performance as it increases the number of context switches

and hence increases overhead of the system. Hence, modified

least laxity first (MLLF) algorithm is proposed by Oh and

Yang to resolve the drawbacks of LLF algorithm by reducing

the no of context switches [5].

But again, whether it is modified least laxity first [5],

EDF[3] or LLF[4] a transient overload in the system may

cause a critical task to fail. Stewart and Khosla [6] have

designed a mixed priority urgency based scheduling algorithm

which defines a critical set of tasks as critical tasks which is

guaranteed to meet its deadline during a transient overload

[6]. Critical task set is a set of tasks for which CPU utilisation

or CPU load factor is less than 100%. Transient overload in a

system occurs when this CPU load factor exceeds 100%.

MUF as proposed by Stewart et.al [6] uses least laxity as its

dynamic priority. But with MUF algorithm sometimes a

situation may be there where a critical task may fail at the

expense of a non-critical task. This has been explained by

V.Salmani et.al Least laxity first is a dynamic priority

scheduling policy but here we have seen if remaining

execution time of any task „t1‟ is greater than the laxity time

of another task „t2‟ then even t1 is scheduled first since here

the concept applied is that the scheduling should be produced

in such a way that the task having the highest priority should

always be running. This increases the number of deadline

miss for a particular number of processes.

To overcome the deficiencies of MUF a mixed priority

based scheduling algorithm modified maximum urgency first

is proposed by Salmani and Zargar [1]. Here they have

introduced a unique importance parameter to create the

critical set.

2.1 Scheduling policies

2.1.1 Earliest Deadline First scheduling algorithm
EDF is a dynamic priority scheduling algorithm which uses

the deadline of a task as priority while scheduling the tasks.

The task with the earliest or smallest deadline gets higher

priority over other tasks while the task with the latest/longest

deadline has the lowest priority. This algorithm has the

schedulability bound of 100% for all task sets. Schedulabilty

bound is defined by a parameter known as CPU load factor or

CPU utilisation.

CPU utilisation of a task is computed as the ratio of its worst

case computation time Ci to its relative deadline Ti [1] where

relative deadline is obtained by deducting arrival time from

the absolute deadlines of the task.

CPU utilisation for n periodic task is computed as

 U=∑i=0
n Ci/Ti <=1

 If U>1 , then almost no algorithm can successfully schedule

the task set. If U<1 just like EDF, many algorithms are there

to schedule the tasks set successfully. EDF is an optimal

algorithm which attempts to fully utilize the processor and has

less idle time. Even, context switches are less in EDF and

hence system overhead reduces.

 The disadvantage with this algorithm is that often it is seen

that with EDF a critical task may fail at the expense of a lesser

important task in transient overloaded system. Thus, it is very

unpredictable. To keep track of absolute deadlines in long

data structures it requires additional hardware resulting in

implementation overhead. EDF has less control over the

execution of a process that is priority of a process can‟t be

changed by EDF in order to reduce the response time.

2.1.2 Least laxity First algorithm
 LLF is also a dynamic priority scheduling algorithm. It

computes laxity of each task in the system and then selects the

task with the minimum laxity. Laxity is defined as the

difference between the deadlines by which the task must be

finished to the amount of computation time remaining to

finish the task [6]. Deadline of a task is often referred as latest

useful completion time of a process. Laxity of a process

changes over time whereas as pointed earlier deadline of a

process doesn‟t change over time. A task having zero laxity

must be scheduled first and executed without pre-emption or

else it will fail to meet its specified deadline. If the laxity of a

task comes out to be negative then at any cost the task will

miss its deadline. If a process waits for a longer time for

execution, it has the smallest laxity.

 A significant shortcoming is related to laxity ties. Laxity tie

is defined as a condition in which two or more tasks have the

same laxity. Laxity ties results in frequent context switches

among the corresponding task. This increases the system

overhead and ultimately degrades the system‟s performance.

Like EDF, LLF has also a schedulability bound of 100% and

there is no guarantee that all the critical tasks will get

executed in a transient overload situation.

2.1.3 Modified Least Laxity First algorithm
MLLF [5] scheduling algorithm solves the problem of LLF

algorithm by significantly reducing the number of context

switches. The performance of LLF algorithm is challenged

mainly due to laxity ties because when laxity ties occur,

context switching increases. MLLF algorithm is an

optimization of LLF which reduces the context switches and

improves the system‟s performance. If there is no laxity tie,

MLLF schedules the task same as the LLF scheduling. If the

laxity tie occurs, the running task continues to run with no

preemption as far as the deadlines of other tasks are not

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.8, April 2012

22

missed. This not only decreases context switching but also

improves performance. But again, like EDF and LLF [1],

MLLF has a schedulability of 100% and hence it can‟t ensure

that no critical tasks miss its deadline

2.1.4 Maximum urgency first algorithm
 Maximum Urgency First (MUF) [6] scheduling algorithm

resolves the problem of unpredictability of the system during

transient overload that is when CPU load factor exceeds

100%. This algorithm is urgency based scheduling algorithm.

It is a mixed priority scheduling algorithm and employs both

fixed as well as dynamic priority for efficient scheduling of

tasks. With this algorithm, each task is given an urgency

which is defined as a combination of two fixed priorities

(criticality and user priority) and a dynamic priority that is

inversely proportional to the laxity. The critical priority is set

to 1 if tasks are present in the critical set and the CPU load

factor for these tasks is less than 100%.

Critical priority > dynamic priority > user priority

 The MUF algorithm assigns priorities in two phases.

Phase one is concerned with the assignment of static priorities

to tasks. Static priorities are assigned once and do not change

after the system . the MUF scheduling algorithm as mentioned

in V.Salmani et.al paper is as follows[1].

 In phase 1, fixed priorities are defined and the scheduler

sorts the task in increasing order of their periods. First N tasks

having CPU utilization<100% are taken in critical tasks and

the remaining tasks are considered in non-critical task set.

Every task is given a optimal user priority that depends

entirely on the user.

 In phase 2, dynamic priorities are set and in case of MUF

[6], it is MLLF [5]. If there is only 1 critical task the task is

executed. If more than 1 critical task is there, the task with the

minimum laxity is picked up for execution. If there are more

than 1 tasks with the same laxity then the task with the highest

user priority is considered and scheduled.

 Once all the tasks present in the critical set are finished, the

same set of steps are repeated for the tasks in the non-critical

task set.

 The disadvantage with this algorithm has been discussed

by V.Salmani et.al [1]. Whenever a task arrives at the ready

queue, rescheduling occurs [6]. Hence there is a possibility of

failing of a critical task in many situations.

 Here least laxity is considered as the dynamic priority. A task

with minimum laxity may be selected whose remaining

execution time is greater than the remaining execution time to

another task‟s laxity. According to [7], the task having the

highest priority should always be running. We are here citing

an example taken from [1]

Table 1. Table taken from [1] to show disadvantage of [6]

Tasks Remaining

Execution

Time

Deadline Remaining

Laxity Time

T1 6 8 2

T2 3 6 3

 Here, t1 will be selected first having minimum laxity time

and it will run till its execution [7]. Remaining execution time

of t1 is greater than laxity time of t2. As a result t2 will miss

the deadline. MUF orders the task from shortest period to

longest period and then defines the critical task set. It is not

mandatory that the task with the shortest period is always

critical and more important for the system

2.1.5 Modified maximum urgency first algorithm
To overcome the drawbacks of MUF[6], MMUF has been

proposed. Modified maximum urgency first scheduling

algorithm as proposed by V.Salmani et.al [1] is basically a

slight modification in maximum urgency first (MUF)[6]

scheduling algorithm. User priority is set in the beginning

according to the importance of the tasks. Task with the

highest importance are given user priority as 1 and task with

the second highest priority is assigned user priority 2 and so

on. After the user priority has been set first n tasks with CPU

utilization less than 100% are allotted to the critical set and

assigned critical priority as 1. Remaining tasks are allotted to

the non-critical set and critical priority is 0 for these tasks.

Unlike, MUF it is not always that the task with the shortest

period is the most important one. Here EDF is used as the

dynamic priority. Here number of context switches is reduced

to a great extent resulting in an enhanced system performance.

User priority>critical priority> dynamic priority

The MMUF scheduling algorithm as proposed by V.Salmani

et.al is as follows:

The MMUF algorithm consists of two phases with the

following details:

 In phase 1, fixed priorities are defined and the tasks are

arranged in the decreasing order of their user priorities. First

N tasks having CPU utilization<100% are taken in critical

tasks and the remaining tasks are considered in non-critical

task set.

 In phase 2, dynamic priorities are calculated and

accordingly the tasks are selected for execution. If there is

only 1 critical task the task is executed. If more than 1 critical

task is there, the task with the earliest deadline is picked up

for execution. If there is more than 1 task with the same

deadline then the task with the highest importance is

considered and scheduled.

 Once all the tasks present in the critical set are finished,

the same set of steps are repeated for the tasks in the non-

critical task set.

3. PROPOSED APPROACH– ENHANCED

MAXIMUM URGENCY FIRST

ALGORITHM (EMUF)

3.1Motivation
Urgency based scheduling is a very effective scheduling

policy. In real time systems, achieving predictability is

equally important as abiding by the time constraints.

Predictability affects the overall system efficiency, leading to

the successful completion of tasks which are critical for the

system. Predictability in a system is achieved by using

urgency based algorithm like MUF [6], MMUF [1] etc. Thus,

this importance of urgency based scheduling has motivated us

towards the development of EMUF.

3.2 Uniqueness Of The Proposed Algorithm
In modified maximum urgency first scheduling MMUF [1],

always a process having earliest deadline is scheduled first

although that process may has a chance to miss the deadline.

It results into poor utilization of CPU.

With EDF task with earliest deadline is scheduled first but if a

task with earliest deadline and higher execution time is

scheduled it misses its deadline because of the higher

execution time and eventually the task fails. This condition

increases the response time of the remaining processes. But

for an optimal scheduling algorithm response time should be

minimal.

In MUF [6] least laxity first is used as the dynamic priority.

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.8, April 2012

23

But, LLF is not an optimal scheduling algorithm since it

decreases the overall system performance by frequent context

switching. In the proposed algorithm we are overcoming the

disadvantages associated with both MUF [1] and MMUF [6].

Hence we introduce the concept of intelligent-laxity to

enhance CPU utilization and to present a better and unique

algorithm for scheduling of tasks in real time systems. In

EMUF intelligent Laxity is considered as dynamic priority.

Intelligent laxity of each process is calculated for all the

remaining processes at every scheduling event by the

scheduler. This means, intelligent laxity for the remaining

processes is calculated whenever a process arrives at the ready

queue and also at its completion. In case intelligent laxity is

negative for a process, the process is not at all scheduled as it

will definitely miss its deadline. Thus, it prevents unwanted

process from being scheduled and improves CPU utilisation.

Two fixed priorities are assigned to the processes which are

the same priorities as used in MMUF [1] and better than the

priorities of MUF [6]. The dynamic priority used in the

proposed algorithm is intelligent laxity which outperforms

dynamic priorities used in both the previous algorithms.

3.3 Detailed Structure of the Proposed

 Algorithm
EMUF is also a mixed priority scheduling algorithm. Urgency

is defined as a combination of two fixed priorities user

priority and critical priority. User priority is a fixed priority

which is generally set by user. In our proposed algorithm we

have considered the user priority according to the importance

of the tasks. More important processes are given the higher

user priorities. Critical priority is defined as the priority given

to the critical tasks, the tasks which are included in the critical

set. Critical set includes those tasks which are really critical

for the system and they need to be executed for better system

performance. With the MMUF [1] algorithm either EDF [3] or

MLLF [1] can be used to define the dynamic priority but in

EMUF we are considering intelligent laxity (laxity which is

calculated at every scheduling event). And the process with

the minimum intelligent laxity is scheduled first.

Critical priority > dynamic priority > user priority.

Enhanced MUF algorithm consists of two phases with the

following details.

Phase 1: in this phase fixed priorities are defined. These

priorities remain constant throughout the scheduling.

 1) Order the task from most important to least important.

 2) Add the critical tasks as defined before to the critical

set where CPU utilisation factor is less than 100%.

Phase 2: This phase calculates the dynamic priority.

 1)If there is only 1 critical task it will be executed

without any pre-emption

 2) If there is more than 1 critical task, select the task

which has least intelligent laxity.

 a) If there is a tie in intelligent laxity then select the

task with the highest user priority.

 b) After the completion of each task, again intelligent

laxity is calculated for all the remaining processes

and process with least intelligent laxity is selected

for execution.

 3) If there is no critical task in the ready queue select the

task from non-critical set which has the least

intelligent laxity.

 a) If there is a tie in intelligent laxity then select the

task with the highest user priority.

 b) After the completion of each task, again intelligent

laxity is calculated for all the remaining processes

and process with least intelligent laxity is selected

for execution.

Calculate average turnaround time, average waiting time and

throughput of the processes.

 Intelligent laxity for the remaining processes is calculated

whenever a process arrives at the ready queue and also at its

completion. Here in EMUF intelligent least laxity is

calculated every time a process is completed, until the ready

queue is empty. In EMUF tasks with negative intelligent

laxity are not at all executed by the processor as a result it

improves the throughput of the system and prevents the

processor from doing unwanted work.

Intelligent laxity is mathematically calculated by subtracting

remaining execution time and current clock cycle from

relative deadline.

3.4 Pseudo Code of the Proposed Algorithm

1)let n=no of process

Pi = process i.

BTi = Burst time of process i

Di = deadline of process i

RBTi = remaining burs time of process i

CP = critical priority

UP = user priority

ILi = intelligent laxity of process i

 Initialise i=0,avg.TAT=0, avg.WT=0

2) Set CP=1 for process which are in critical set

3) Set user priority according to the importance of the

task

4) // Intelligent -Laxity calculation

 ILi=Di – RBTi - current time

5) while(ready queue!=NULL)

 {

 x=0,y=0;

 for(i=0 to n)

 Arr[i]=100;

 For(i=0 to n)

 {

 If (CPi= =1)

 {

 Calculate ILi

 If(ILi<0)

 Terminate the process from ready queue;

 Else

 {

 Arr[x]=ILi;

 x++;

 }

 }

 Else if(CPi=0 && all critical task completed)

 {

 Calculate ILi;

 If (ILi<0)

 Terminate the process from the ready

queue;

 Else

 {

 Arr[y]=ILi

 y++;

 }

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.8, April 2012

24

 }// else if closed

 }//for loop closed

 }//while loop closed

 6) if (x= =1)

 Execute the process Pi having CP=1;

7) if(y= =1)

 Execute the process Pi having CP=0;

8) if (x>1||y>1)

 min(arr[i]) = minimum of the array arr[i];

 if(ILi == min(arr[i]))

 {

 Execute the process Pi

 }

 Repeat 5,6, 7,8;

9) //calculation of throughput

 Throughput= no of task completed successfully

/totalTAT

10) //calculation of avg.TAT

 Avg.TAT=∑TATi/no of task completed

successfully

11) //calculation of avg.WT

 Avg.WT=∑WTi/no of task completed successfully

3.5 Flow Chart of the Proposed Algorithm

 Yes

 no

No yes

no

 yes

nono no

 no

 yes

 Yes

 no

 yes

 yes

Add task to the
critical set

Critical set is

empty ?

stop

Calculate ILi

Take next

process from the

ready queue

Take next process

from the ready

queue

Calculate ILi

CP=1 ?

If ILi >0

Store ILi in an

array

If i=no. of

remaining

pprocess in RQ

If ILi >0

Store ILi in an

array

If i=no. of

remaining

process in RQ

Take process Pi with

minimum ILi (from

array)

Take process Pi with

minimum ILi (from

array)

Execute the process

Pi

Execute the process

Pi

If Pi finishes

remove task from

CS(critical set)

start

Terminate Pi

Terminate Pi

Ready

queue=null?

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.8, April 2012

25

4. EXPERIMENTAL ANALYSIS

4.1Assumptions

All the experiments are performed is a single processor

environment and all the processes are independent. Attributes

like burst time, priority, numbers of processes are known

before submitting the processes to the processor. All

processes are CPU bound.

4.2 Experimental Frame work
The experiment consists of several input and output

parameters. The input parameters consist of burst time,

deadline, critical task priority, user priority and the number of

processes. The output parameters consist of average waiting

time, average turnaround time and throughput.

4.3 Data Sets
Several experiments have been performed for evaluating

performance of the new proposed algorithm but only two

cases are shown here. The data set have been considered for

different processes with variable burst time and deadlines.

4.4 Performance Metrics
The significance of our performance metrics for experimental

analysis is as follows:

1) Turnaround time (TAT): For the better performance of the

 algorithm, average turnaround time should be less.

2) Waiting time (WT): For the better performance of the

algorithm, average waiting time should be less.

3) Throughput: throughput of the system should be high to

improve CPU utilization.

4.5 Results Obtained
EXAMPLE 1:

We assume five processes arriving at time=0, with burst time

(P1=18,P2=6,P3=23,P4=8,P5=20) and critical task set={P1,P2}

and deadlines {P1=35,P2=20,P3=42,P4=42,P5=80}. Table 2

contains data to be used by MUF [6], MMUF [1] and our

proposed algorithm. Giant charts are drawn for all the three

algorithms. Table 3 shows the comparison among the three

algorithms.

Table 2. Contains data for example1

PI BTI DI CRITICAL

PRIORITY

USER

PRIORITY

LAXITY

P1 18 35 1 1 17

P2 6 20 1 2 14

P3 23 42 0 3 19

P4 8 42 0 4 34

P5 20 80 0 5 60

P2 P4 P1 P3 P5

0 6 14 32 55 75

Fig 1: Gantt chart for MUF

P2 P1 P3 P4 P5

0 6 24 47 55 75

 Fig 2: Gantt chart for MMUF

P2 P1 P4 P5

0 6 24 32 52

 Fig 3: Gantt chart for EMUF

Table 3. Comparison between MUF, MMUF,EMUF

ALGORITHMS AVG.TAT AVG.WT THROUGHPUT

MUF 36.4 21.4 .0533

MMUF 41.4 26.4 .04

EMUF 28.5 15 .0769

EXAMPLE 2:

 We assume five processes arriving at time=0, with burst time

(P1=36,P2=30,P3=25,P4=24,P5=18) and critical task set={P4,P5

} and deadlines {P1=140,P2=90,P3=62,P4=65,P5=30}.Table 4

contains data to be used by MUF [6], MMUF [1] and our

proposed algorithm(EMUF). Giant charts are drawn for all the

three algorithms. Table 5 shows the comparison among the

three algorithms.

Table 4. Contains data for example2

PI BTI DI CRITICAL

PRIORITY

USER

PRIORITY

LAXITY

P1 36 140 0 5 104

P2 30 90 0 4 60

P3 25 62 0 3 37

P4 24 65 1 2 41

P5 18 30 1 1 12

P5 P4 P3 P2 P1

0 18 42 67 97 133

Fig 4: Gantt chart for MUF

P5 P4 P3 P2 P1

0 18 42 67 97 133

 FIG 5

Fig 5: Gantt chart for MMUF

P5 P4 P2 P1

0 18 42 72 108

 Fig 6: Gantt chart for EMUF

 Table 5. Comparison between MUF, MMUF, EMUF

ALGORITHMS AVG.TAT AVG.WT THROUGHPUT

MUF 71.4 44.8 .0150

MMUF 71.4 44.8 .022

EMUF 60 33 .0370

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.8, April 2012

26

0
5

10
15
20
25
30
35
40
45

Burst time

avg

TAT

avg

WT

MUF

MMUF

EMUF

 Fig 7 : comparison between avg WT and avg

TAT of MUF, MMUF, EMUF in EX-1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Burst time

Throughput

MUF

MMUF

EMUF

Fig 8 : comparison between throughput of MUF, MMUF,

EMUF in EX-1

0

20

40

60

80

burst time

avg

TAT

avg WT

MUF

MMUF

EMUF

Fig 7 : comparison between avg WT and avg TAT of

MUF, MMUF, EMUF in EX-2

0

0.01

0.02

0.03

0.04

Burst time

Throughput

comparasion between avg WT and avg TAT of MUF, MMUF, EMUF

MUF

MMUF

EMUF

 Fig 8 : comparison between throughput of MUF, MMUF,

EMUF in EX-2

5. CONCLUSION

It is concluded from the above experiments that the proposed

algorithm (EMUF) performs better than the MUF [6]

algorithm and the algorithm proposed by V.Salmani et.al [1]

MMUF, in terms of performance metrics such as average

waiting time, average turnaround time and throughput. Our

proposed algorithm can be further investigated to be useful in

providing more and more task-oriented results in future.

6. REFERENCES
[1] V.Salmani, S.zargar and M. Naghibzadeh- a modified

maximum urgency first scheduling algorithm for real

time tasks- world academy of science and technology 9

2005

[2] S.Baskiyar and N. Meghanathan: A Survey Of

Contemporary Real Time Operating Systems,

Informatica S. 29 pp 233-240, 2005.

[3] C. L. Liu, and J. W. Layland, “Scheduling Algorithms

for Multiprogramming in a Hard real Time

Environment,” Journal of the Association for Computing

Machinery, vol.20, no.1, pp. 44-61, January 1973.

[4] A. Mok. “Fundamental Design Problems of Distributed

Systems for Hard Real-time Environments”. PhD thesis,

Massachusetts Institute of Technology, Cambridge,

MA, 1983.

[5] S. H. Oh, and S. M. Yang, “A Modified Least-Laxity-First

Scheduling Algorithm for Real-Time Tasks”, in Proc.

Fifth International Conference On Real Time Computing

System And Application,October1998,pp.31-36

[6] D.B.Stewart , and P.K.Khosla,” Real Time Scheduling Of

 Dynamically Reconfigurable Systems,” in proc. IEEE

International Conference on Systems Engineering,

Dayton Ohio, August 1991, pp. 139-142

[7] J. Goossens, and P. Richard, “Overview of real-time

scheduling problems”, in Proc. the ninth international

workshop on project management and scheduling,

Nancy, France, April 2004.

[8] Yaashuwanth .C IEEE Member, Dr.R. Rames

Department of Electrical and Electronics Engineering,

Anna University Chennai, “Design of Real Time

scheduler simulator and Development of Modified

Round Robin architecture ”

[9] Silberschatz, A., P.B. Galvin and G. Gagne, Operating

Systems Concepts. 7th Edn. John Wiley and Sons, USA

[10] J.Goossens, Universit´e Libre de Bruxelles and P.

Richard, Laboratoire d‟Informatique Scientifiq et

Industrielle ENSMA (France), “Overview of real-time

scheduling problems”

[11]S.Chengs, J.A Stankovic and K.Ramamritham:

Scheduling Algorithms for Hard Real Time Systems- A

Brief Survey –„Tutorial: hard real time systems‟(IEEE,

1988)pp.150-173

