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ABSTRACT  
A theoretical model of an electrocatalytic processes taking 

place at conducting polymer modified electrodes is discussed. 

In this model the diffusion of solution species, charge carriers 

and chemical reaction within the film are taken into account. 

The model involves the system of non-linear non-steady-state 

reaction diffusion equations. Analytical expressions pertaining 

to the concentrations are obtained in terms of second-order 

reaction rate constant. Also simple theoretical expression of 

transient current is derived. In this paper, a powerful 

analytical method, called Homotopy analysis method (HAM) 

is used to obtain approximate solutions for a non-linear partial 

differential equation. The obtained approximate solution in 

comparison with the numerical ones is found to be in 

satisfactory agreement.  
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1. INTRODUCTION 
Non-linear phenomena play a crucial role in applied chemistry 

and physics. Problems of coupled diffusion and non-linear 

chemical reaction are often in practical situations. In such 

systems the diffusion of the chemical species into a phase is 

accompanied by chemical reaction either with species already 

present in the phase, or catalysed by species within the phase. 

Examples include the diffusion and reaction in immobilized 

enzyme membranes, diffusion into living cells and micro-

organisms and  chemical reactions in conducting polymers. 

Polymer-modified electrodes are particularly attractive for 

chemical sensing applications [1-7]. The operation of a 

polymer sensor operating under amperometric conditions is 

simple in concept: the redox-active substrate of interest reacts 

with active receptor sites immobilized within the polymer film 

matrix rather than at the underlying support electrode. 

Electrocatalysis at electrodes, covered with conducting 

polymers and related materials, presents a remarkable 

phenomenon that finds diverse applications, especially in 

sensors and biosensors [8, 9]. It is essential that, within the 

frame of this model, the chemical redox interaction of reactant 

with active centers within the polymer film has been supposed 

to proceed as a simple second-order chemical reaction.  

The conducting polymers in electrocatalytic systems have the 

following  four  simple process [10] . (i) The diffusion of 

reactant from solution into conducting polymer film (ii) A 

chemical reaction between the diffusing species and 

catalytically active centers within the polymer film. (iii) The 

diffusion of charge carriers from the electrode surface to 

reaction zone through polymer layer. (iv) The diffusion of 

reaction products out of a polymer layer into the bulk of 

solution. 

Earlier Ivanauskas et al. [10, 11] presented a model of 

electrocatalytic processes at conducting polymer modified 

electrodes. Ivanauskas and co-workers obtained the 

concentration of reactant, reaction product and charge carrier, 

using the finite difference technique [10, 11]. To our 

knowledge, no general theoretical expressions for the 

concentrations and current have been reported for all values of 

the rate constant k . The purpose of this paper is to derive an 

analytical expression for the concentrations of chemical 

species and current for all values of the rate constant k   and 

time t using Homotopy analysis method (HAM). 

2. MATHEMATICAL   FORMULATION 

OF THE PROBLEM  
Building upon earlier works, Ivanauskas et. al [10] presented 

a concise assumption, discussion and derivation of the mass 

transport equations for this model which is summarized 

briefly below. In modeling of electrocatalysis at conducting 

polymer coated electrode [11], it is assumed that a flat surface 

of electrode is covered with a uniform layer of a conducting 

polymer of a definite thickness d. The schematic 

representation of the polymer modified electrode is given in 

Fig. 1.  

 

The electrochemical charge transfer process was performed 

assuming the following reduction scheme [ 11 ]: 

PnR
k

                                                             (1) 

where R and P are reactant and reaction product, respectively, 

and n is a charge carrier, i.e., an electron for cathodic 

reduction, or for anodic oxidation processes and k is a second-

order rate constant for the chemical reaction. The non-steady-

state reaction-diffusion equations governing the transport of 

electroactive species for the reaction scheme (1) are as follows 

[11]: 
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where x  and t  stand for space and time, respectively. 

),( txR
, 

),( txP
 and 

),( txn
 denote the concentrations 

of the reactant, product and charge carrier. D  is the diffusion 

coefficient for reactant/product and nD
 is the diffusion 

coefficients for charge carrier within polymer film. Now the 

initial and boundary conditions become [11]: 

       dxnxnxPRxR ,0  0 , ,00 , ,0 , 00  (5) 
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The current density is given as follows [11]: 
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where en
 is the number of electrons involved in a charge 

transfer and F  is the Faraday constant. By combining the 

Eq. (2) and (3) and using the initial and boundary conditions 

Eqs. (5) – (7), we can obtain the following relation between 

reactant and product 

    0 , , RtxPtxR 
                     (9) 

3. ANALYTICAL EXPRESSION OF 

CONCENTRATIONS AND CURRENT 

     Eqs. (2) - (4) are the system of non-linear reaction 

diffusion equations. Liao [12-20] introduced the HAM to 

solve the non-linear equations. Using this method, we can 

obtain the concentrations of reactant, product and charge 

carriers (see Appendix A) as follows: 
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Using Eq. (8) the current response is given by  
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Eqs. (10)- (12) represent the concentrations for reactant, 

product and charge carriers for all values of k . Eq. (13) 

represents the general new analytical expression of current for 

all time.  The first term in Eq. (13) represents the steady-state 

current and second term denotes the transient component of 

the current.    

 4. NUMERICAL SIMULATION 

 The non-linear differential Eqs. (2) - (7) are also solved 

numerically. The function pdepe in MATLAB/SCILAB 

software is used to solve boundary value problems (BVPs) for 

partial differential equations. Figs. 2- 4 illustrate the 

comparison of analytical result obtained in this work with the 

numerical result. The MATLAB/SCILAB program is also 

given in Appendix B. Upon comparison, it is evident that both 

results give excellent agreement. 

5. DISCUSSION 

The objectives of this study are to investigate the 

characteristics and behavior of polymer modified electrode. 

These objectives can be achieved explicitly by studying the 

effects of second-order rate constant k , effects of thickness 

of a polymer layer d  and the effects of diffusion co-

efficients nD
 and D .  Table 1 summarizes the possible 

values for parameters used in this work and Ivanauskas et al. 

[10].   Concentration of reactant, reaction product and charge 

carrier depend upon the rate constant k .  

      Figs. 2 to 4 represent the concentrations of the reactant 

 txR   ,
, product 

 txP   ,
, and charge carrier 

 txn   ,
 

against the distance x for various values of the rate constant. 

From Fig. 2, it is inferred that, when k  less than 0.1,  the 

concentration of reactant is uniform 
  1 , .. txRei

 for all 

time. Also the concentration of reactant decreases when both 

time t and rate constant k  increases. The concentration of 

reactant has the minimum value at the electrode/polymer 

boundary 0x . 

         From the Fig.3, it is inferred that the concentration of 

product  
 txP  ,

 increases when time t  increases and 

reaches the steady-state value when .5st   The 

concentration of charge carrier 
 txn  ,

 is constant for all 

small values of  t  
 st 01.0

 (see Fig. 4). For steady-

state, the minimum value of the reactant 

DdnkhRRxRss 2/)( 2

000 
 at the film boundary 

of electrode/polymer film. It is also verified in the Fig. 2a-c. 

From this relation we can also find the diffusion coefficient of 
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reactant. Similarly the maximum value of charge carrier is 

nss DdnkhRnxn 2/)( 2

000 
  at the 

polymer/solution interface ( dx  ). This is also confirmed 

in the Fig. 4a-c. Fig. 5 is the concentrations of reaction, 

product and charge carrier. From this figure, we can see that 

    1 , ,  txPtxR
 for all time. 

5.1. EFFECTS OF SECOND-ORDER 

RATE CONSTANT k  

       Second-order rate constant k  is defined as the 

dimensional rate constant for the chemical reaction. In this 

analysis, the value of k   is varied from 
110 mol/s .m3

 

to 10 m3. mol/s . Fig. 6a shows that when the process is 

reaction rate controlled, constant current can be predicted for 

higher time. However, the current increases rapidly when the 

value of rate constant increases.  

5.2. EFFECTS OF THICKNESS OF A 

POLYMER LAYER d   

        Fig. 6b illustrates the effects of thickness of a polymer 

layer d on dimensional current as a function of time. It shows 

that current decreases slowly with increasing thickness of a 

polymer layer until it reaches asymptotically constant. 

5.3. EFFECTS OF DIFFUSION CO-

EFFICIENT nD  

      Three values for the diffusion co-efficient of charge 

carriers nD
 of 

910

, 
1010

 and 
1110

 /sm2

 have been 

considered.  Fig. 6c shows the effects of diffusion co-efficient 

on the current as a function of  time st /  for  

.mol/sm 5 3k . From Fig. 6c, it is confirmed that the 

current increases when the diffusion co-efficient nD
 

increases. When 
8nD

 the current attains the zero value.  

 

 
Fig. 2. Influence of  time t on the concentration profile of 

reactant ) ,( txR  obtained from our analytical result (Eq. 

(10), solid line) and simulation result (‘+’) for 

m10 4d  and μm10 8D . (a) 

mol/s l. 102k  (b) mol/s l. 103k  (c) 

mol/s l. 104k . 
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Fig.3. Influence of  time t on the concentration profile of 

product ) ,( txP  obtained from our analytical result (Eq. 

(11), solid line) and simulation result (‘+’) for 

m10 4d  and μm10 8D .  (a) 

mol/s l. 102k  (b) mol/s l. 103k   (c) 

mol/s l. 104k . 

   
 

 
 

 
 

Fig. 4. Influence of  time t on the concentration profile of 

charge carrier ) ,( txn  obtained from our analytical 

result (Eq. (12), solid line) and simulation result (‘+’) for 

m10 4d  and μm10 8D .(a) mol/s l. 102k  

(b) mol/s l. 103k  (c) mol/s l. 104k . 

                                                   

Fig. 5.  Concentration profiles for the reactant  txR  , , 

product  txP  , , and charge carrier  txn  ,  against the 

distance x  for m10 4d , μm10 8D  and 

mol/s l. 104k  
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Fig. 6a.  Influence of second-order reaction rate constant k 

on the current density nFi / obtained from our 

analytical result presented in this work (Eq. (13) ) for the 

values of  m10 4d  and μm10 8nD . 

 
Fig. 6b.  Influence of thickness of a polymer layer d  on 

the current density nFi / obtained from our analytical 

solution presented in this work (Eq. (13)) . 

 
Fig. 6c.  Influence of diffusion co-efficient nD  on the 

current density nFi / obtained from our analytical 

solution presented in this work (Eq. (13)) 

 

6. CONCLUSIONS 

In this work, we have presented approximate analytical 

expressions of concentration profiles for all values of rate 

constant k . Time-dependent non-linear reaction diffusion 

equations have been solved analytically. The closed analytical 

expressions of concentrations and current are obtained using 

Homotopy analysis method. An agreement with the numerical 

result is noted. These analytical results will be useful to 

optimization of reaction parameters and to find the optimum 

efficiency of reactant to product conversion. 
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APPENDIX A   

Basic idea of Liao’s [20] Homotopy analysis method (HAM) 

Consider the following differential equation [20]: 

0)]([ tuN
                                                 (A1) 

where, Ν is a nonlinear operator, t denotes an independent 

variable, u(t) is an unknown function. For simplicity, we 

ignore all boundary or initial conditions, which can be treated 

in the similar way. By means of generalizing the conventional 

homotopy method, Liao constructed the so-called zero-order 

deformation equation as: 

)];,([)()]();,([)1( 0 ptxNtphHtuptxLp  

                                                                                (A2) 

where p  [0,1] is the embedding parameter, h ≠ 0 is a 

nonzero auxiliary parameter,    H(t) ≠ 0 is an auxiliary 

function, L is an auxiliary linear operator, 
),(0 txR

 is an 

initial guess of 
),( txR

and 
):,( ptx

 is an unknown 

function. It is important, that one has great freedom to choose 

auxiliary unknowns in HAM. Obviously, when 
0p

 

and
1p

, it holds: 

),()0;,( 0 txRtx 
and 
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                                  (A3) 

 respectively. Thus, as p increases from 0 to 1, the solution 

);,( ptx
varies from the initial guess 

),(0 txR
 to the 

solution 
),( txR

. Expanding 
);,( ptx

 in Taylor series 

with respect to p, we 

have: 
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If the auxiliary linear operator, the initial guess, the auxiliary 

parameter h, and the auxiliary function are so properly 

chosen, the series (A4) converges at p =1 then we have: 
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Define the vector 

},...,,{ 10 nn RRRR 


                                 (A7) 

Differentiating Eq. (A.2) for m times with respect to the 

embedding parameter p, and then setting p = 0 and finally 

dividing them by m!, we will have the so-called mth-order 

deformation equation as: 

)()(][ 11 
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and 
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Applying 
1L  on both side of equation (A8), we get 
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In this way, it is easily to obtain mu
 for 

,1m
 at 

thM  

order, we have 





M

m

m txRtxR
0

),(),(

                                  (A12)        

When M , we get an accurate approximation of the 

original equation (A1). For the convergence of the above 

method we refer the reader to Liao [20]. If equation (A1) 

admits unique solution, then this method will produce the 

unique solution. If equation (A1) does not possess unique 

solution, the HAM will give a solution among many other 

(possible) solutions. 

 APPENDIX B 

Approximate solutions of the Eqs. (2) and (4) using 

Homotopy analysis method 

          In order to solve Eqs. (2)  and (4) by means of the 

HAM, we first construct the zeroth-order deformation 

equation by taking 
1)( tH

, 
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where  p  [0,1] is an embedding parameter and h ≠ 0 is the 

so-called convergence control parameter . Using Eqs. (5) to 

(7) we have 
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By using Laplace transform method and using the boundary 

conditions (B3) to (B5) the solution of the above equation 

becomes 

0)0 ; ,( Rtx 
                                  (B8) 

0)0 ; ,( ntx 
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When 
1p

 the Eqs. (B3) and (B4) is equivalent to Eqs. 

(B1) and (B2), thus it holds 
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Expanding 
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where 
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and  
 ) ,( txRm  and 

 ) ,( txnm  
 1,2,...m

 will be 

determined later. Note that the above series contains the 

convergence control parameter h. Assuming that h is chosen 

so properly that the above series is convergent at
1p

. We 

have the solution series as 
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Substituting Eq. (B14) and Eq. (B15) into the zeroth-order 

deformation Eqs. (B1) and (B2) and equating the co-efficient 

of the like powers of p we have, 

1p
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subject to the boundary conditions 
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and so on.  Taking Laplace transform to the equations (B.17) 

and (B.18) and using the boundary conditions (B.19)- (B.21) 

we get  
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By using inverse Laplace transform technique, we get the 

solution Eqs. (19) – (21) in the text. The accuracy of the 



International Journal of Computer Applications (0975 – 8887) 

 Volume 44– No.8, April 2012 

18 

function 
),( txR

 and 
),( txn

 discussed above can be still 

improved by considering the higher-order approximation.  

 

APPENDIX C 

 

Numerical simulation 

Numerical simulation for the solution of the differential 

equations (2) to (4)  

function pdex4 

m = 0; 

x = linspace(0,1); 

t=linspace(0,0.1);           % Units s  

sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 

u1 = sol(:,:,1); 

u2 = sol(:,:,2); 

u3=sol(:,:,3); 

figure 

plot(x,u1(end,:)) 

title('u1(x,t)') 

xlabel('Distance x') 

ylabel('u1(x,2)') 

%------------------------------------------------------------------ 

figure 

plot(x,u2(end,:)) 

title('u2(x,t)') 

xlabel('Distance x') 

ylabel('u2(x,2)') 

% -------------------------------------------------------------- 

figure 

plot(x,u3(end,:)) 

title('u3(x,t)') 

xlabel('Distance x') 

ylabel('u3(x,2)') 

% -------------------------------------------------------------- 

function [c,f,s] = pdex4pde(x,t,u,DuDx) 

c = [1; 1; 1];  

f = [1; 1; 1] .* DuDx;  

D=10^(-9);       % Units sm /2
 

k=10^(-1);        % Units smolm /.3
 

F=-k*u(1)*u(3); 

F1=k*u(1)*u(3); 

F2=-k*u(1)*u(3); 

s=[F; F1; F2]; 

% -------------------------------------------------------------- 

function u0 = pdex4ic(x);                                                     

%create a initial conditions 

u0 = [1; 0; 1];  

% -------------------------------------------------------------- 

function [pl,ql,pr,qr]=pdex4bc(xl,ul,xr,ur,t)                %create 

a boundary conditions 

pl = [0; 0; ul(3)-1];  

ql = [1; 1; 0];  

pr = [ur(1)-1; ur(2); 0];  

qr = [0; 0; 1]; 

 

APPENDIX D 

 

Matlab program to find the sum of the series of Eq. (12) 

function u10 =p(x,t) 

x=linspace(0,1); 

t=0.1; 

k=10; 

s=0; 

N=100; 

R0=1; 

n0=1; 

d=1; 

D=1; 

h=-0.165; 

for n=0:1:N+1; 

    s1=s1+((-1)^n/((2*n+1)^3))*(exp(-

((2*n+1)^2*pi^2*D*t)/(4*d^2))*cos((2*n+1)/(2*d)*pi*x)) 

end 

u=k*h*R0*n0*(1/(2*D)*(x.^2-d^2)+(16*d^2)/(pi^3*D)*s1); 

plot(x,u) 
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NOMENCLATURE 

 

Symbols                         Meaning 

R           Concentration of reactant (mol m-3) 

P                Concentration of  product (mol m-3) 

n           Concentration of  charge carrier (mol m-3) 

x                      Thickness of a modifying layer (  m ) 

t                        time (s) 

d            Thickness of a modifying layer (  m) 

D            Diffusion coefficient for reactant and product (m2s-1 ) 

nD            Diffusion coefficient for charge carrier within polymer film (m2s-1 ) 

k                      Second-order reaction rate constant (m3.mol s-1) 

0R                    Concentration of reactant in the bulk solution ( mol m-3) 

0n                    Concentration of charge carrier within polymer film ( mol m-3) 

I                        Current density (a.u.)   

 

 

Table 1: Possible numerical values for parameters used in this work and Ivanauskas et al. [10] work. 

 

 

Parameter                                                                              Dimension             Numerical values                                   

Figures 

 

d (thickness of a polymer layer)                                                     ( m )                        
456 10 ,10  ,10 

                               Fig. 2-5 

and Fig. 6b 

D  (diffusion coefficient for reactant and  product)                       )μm(                      
810

                                                       Fig. 2-

4 and Fig.5    

nD (diffusion coefficient for charge carrier within polymer film )μm(                      
789 10 ,10  ,10 

                                Fig. 4, 

5 and Fig. 6a-c 

k (second order reaction rate constant)                                     mol/s) l. (                   
101 10 ,10  ,10 

                                   Fig. 2-

6 

0R (concentration of reactant in the bulk solution)                    ) mol/l (                     
010                                                         Fig. 2-6 

0n (concentration of charge carrier within polymer film)           ) mol/l (                    
010                                                        Fig. 2-6 

t (time)                                                                                                 (s)                            0.01-100                                               Fig. 2-6   

 

    


