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ABSTRACT 

In the present study, an analysis is carried out to study two-

dimensional, laminar boundary layer flow and mass transfer 

of a micropolar chemically-reacting fluid past a linearly 

stretching surface embedded in a porous medium. Such a 

study finds important applications in geochemical systems 

and also chemical reactor process engineering. The non-linear 

partial boundary layer differential equations, governing the 

problem under consideration, have been transformed by a 

similarity transformation into a system of ordinary differential 

equations, which is solved numerically by using the galerkin 

finite element method. The numerical outcomes thus obtained 

are depicted graphically to illustrate the effect of different 

controlling parameters on the dimensionless velocity, 

temperature and concentration profiles. Comparisons of finite 

element method and finite difference method is also presented  

in order to test the accuracy of the methods and the results 

obtained are found to have an excellent agreement. Finally, 

the numerical values for quantities of physical interest like 

local Nusselt number and skin friction are also presented in 

tabular form. 
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1. INTRODUCTION 

Flows with chemical reaction has numerous applications in 

many branches of engineering science including hypersonic 

aerodynamics [1,2], geophysics and volcanic systems [3], 

catalytic technologies [4] and chemical engineering processes 

[5]. Many such studies have been done with boundary layer 

theory. Acrivos [6] studied the laminar boundary layer flow 

with fast chemical reactions. Takhar and Soundalgekar [7] 

studied the diffusion of a chemically-reacting species in 

laminar boundary layer flow with suction effects. Later 

Merkin [8] considered isothermal reactive boundary layer 

flows. More recently Shateyi et al [9] has studied chemically-

reactive convective boundary layer flows using asymptotic 

analysis. Little work has been done in analysing the 

chemically-reactive boundary layer flow in porous media, a 

topic of great importance in e.g. packed-bed transport 

processes, geological contamination and also industrial 

materials processing. Pop et al [10] investigated the effects of 

both homogenous and heterogeneous chemical reactions on 

dispersion in porous media using a Darcian formulation. 

Aharonov et al [11] studied the three-dimensional reactive 

flow in porous media with dissolution effects. Later Fogler 

and Fredd [12] analyzed the chemically-reactive flow in 

porous media. In many industrial processes, engineers are 

primarily concerned with flow and transport phenomena over 

accelerating and stretching surfaces. In this regard many 

studies have also been communicated. Sakiadis [13] first 

studied the laminar boundary layer flow past a continuous flat 

surface. Vlegger [14] investigated the boundary layer flow on 

a continuous accelerating plate. Takhar et al [15] examined 

the effects of magnetism and chemical reaction on flow and 

species transfer over a stretching sheet. More recently 

Acharya et al [16] have modeled the coupled heat and mass 

transfer with heat source effects on an accelerating surface.   

Most of these studies were concerned with Newtonian fluids, 

but in various chemical engineering applications, 

biomechanics, slurry technologies etc, however,the flow is not 

newtonian. Keeping all this under consideration, Eringen [17] 

developed the theory of micropolar fluids seeing the 

increasing importance of large number of non-Newtonian 

fluids in processing industries and elsewhere of materials 

whose flow behavior includes rotating elements at the 

microscopic level. The theory can be applied successfully to 

explain the problems of colloidal fluids, liquid crystals, 

lubricants, suspensions, synovial fluid etc. Eringen [18] later 

developed the theory of thermomicropolar fluids to include 

heating effects. Micropolar transport phenomena therefore are 

important to study from the viewpoint of elucidating more 

accurately the flow dynamics occurring in many engineering 

systems. A number of studies in micropolar heat transfer has 

been communicated in the past three decades. Hassanien and 

Gorla [19] studied the boundary flow of a micropolar fluid 

near the stagnation point on a horizontal cylinder. Agarwal et 

al [20] studied the micropolar heat transfer past a stretching 

surface. Bhargava et al [21] examined the micropolar flow 

between rotating discs. Beg .et.al [26] has investigated the 

heat and mass transfer phenomena in porous media using 

microplar fluid, and then they used computational finite 

element technique for a two dimensional problem in channel 

[27]. In this continuation Rawat.et.al [28], has used the above 

technique for the heat and mass transfer phenomena while 

incorporating the soret and duffor effects, hence investigated 

the theremophysical effects using MHD micropolar fluid in 

porous media[29]. Recently Usman.et.al, [30-31] has pointed 

out some aspect while focusing at Unsteady MHD micropolar 

Flow and Mass Transfer Past a Vertical Permeable Plate with 
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Variable Suction and then attempting the problem while 

incorporating the chemical reaction parameter in Radiation-

Convection Flow in Porous Medium but still many later 

studies however did not consider the influence of chemical 

reaction or species transfer on the flow regime. In the present 

study, we consider numerically the buoyancy-induced 

convective flow and mass transfer of a micropolar, 

chemically-reacting fluid over a vertical stretching plane 

embedded in a DF porous medium. The FEM has been 

utilized to solve the mathematical model which constitutes a 

two-point boundary value problem. Such a study finds 

important applications in geochemical systems and also 

chemical reactor process engineering 

2. MATHEMATICAL MODEL 

Consider the two-dimensional, laminar boundary layer flow 

and mass transfer of a micropolar chemically-reacting fluid 

past a vertical stretching surface embedded in a porous 

medium.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Physical Model 

The x-axis is located parallel to the vertical surface and the y-

axis perpendicular to it. We assume constant micropolar fluid 

properties throughout the medium i.e. density, mass 

diffusivity, viscosity and chemical reaction rate are fixed. 

Concentration of species in the free stream i.e. far away from 

the stretching surface, is assumed to be infinitesimal (zero), 

see [14] and defined as C. Temperature in the free stream is 

taken as T. The governing boundary layer equations for the 

flow regime, illustrated in Fig. 1, incorporating a linear 

Darcian drag and a second-order Forchheimer drag, takes the 

following form, under the Boussinesq approximation: 
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The corresponding boundary conditions on the vertical 

surface and in the free stream can be defined now as: 
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where  
1

/      is the apparent kinematic viscosity 

and 
1 1

/ ( 0)  k k  is the coupling constant. Following 

Crane [22], the surface velocity of the stretching plane is 

assumed to vary linearly with distance x (u = U(x) = ax, for a 

> 0 where a denotes a dimensional constant),  is the 

chemical reaction rate parameter. Non-dimensionalizing the 

conservation equations by introducing the following 

transformations:  
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Equation (5.8) reduces the above set of equations (5.1)-(5.5) 

into the following set of ordinary differential equations: 
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Conservation of Angular Momentum:  
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The corresponding boundary conditions (5.6)-(5.7) are 

transformed as follows: 
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The shear stress on the sheet surface at s = 0.5 is defined as: 
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whereas the skin friction coefficient is defined by: 
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The heat flux at the sheet surface may be written using 

Fourier’s law as follows:   
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where k  is the coefficient of thermal conductivity. The heat 

transfer coefficient is given by: 
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The Local Nusselt number can be written as:  
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3. NUMERICAL SOLUTION 

Finite element solution to the governing flow equations (5.9) 

to (5.12) with corresponding boundary conditions (5.14) and 

(5.15) has been obtained. Assuming that 
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the equations (5.9) to (5.12) are therefore reduced to the 

following, where (dash) indicates d/dY: 
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with the corresponding boundary conditions: 
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For computational purposes and without loss of generality, 

  has been fixed as 8, with numerical justification. The 

whole domain is divided into a set of 80 line elements of 

equal width, each element being two-noded. 

3.1 Variation formulation 
The variational form associated with equations (21)-(25) over 

a typical two noded-linear element   is given by 
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w  are arbitrary test functions 

and  may be viewed as the variation in , , ,f U g   and C 

respectively. 

 

3.2 Finite element formulation 
The finite element model may be obtained from 

equations (28)-(32) by substituting finite element 

approximations of the form: 
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Using equations (33) - (35), equations (28) to (32) 
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The finite element model of the equations thus formed is 

given by:    
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where  mn
K

ij
 and    , 1,2, 3, 4, 5 , 1, 2 

m
b m n and i j

i

 

are the matrices of order 2 2  and 2 1  respectively. Also 

 e

i
f , e

i
U , e

i
 , e

i
C  and  e

i
g  are matrices of order 

2 1 .  All these matrices may be defined as follows: 
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Each element matrix given by equation (5.41) is of 

the order10 10 . Here, we divide the whole domain into 80 

equal line elements. A matrix of order 405 405 is attained 

on assembly of all the element equations. The nonlinear 

system obtained after assembly is linearized by incorporating 

the functions f andU , which are assumed to be known. Here 

i
f  and 

i
U  are the value of the functions f  and U  at the ith 

node.  A system of 346 equation left after applying the given 

boundary conditions is solved using an iterative scheme 

maintaining an accuracy of 0.0005 .   

4. RESULTS AND DISCUSSION 

The following parameter values are adopted in the 

computations, viz, Grx = 1.0, Gcx = 1.0,  = 1.0, Dax = 1.0, 

Fnx= 1.0, Rex= 1.0, Pr = 0.7, Sc = 0.1, B1 = 0.01,  = 1,  = 

1 and s = 0.5. The results are computed to see the effect of 

selected important parameters namely Grx, Gcx,  , Dax, Fnx, 

Rex, Pr, Sc, B1,  ,  and s .  
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In Fig. 2, the variation of velocity versus Y, for various values 

of the chemical reaction number () are shown. A rise in  

generates a substantial decrease in velocities. For all values of 

 the profiles descend from unity at the wall (Y = 0), and tend 

asymptotically to zero at the freestream (Y ). Therefore 

clearly chemical reaction induces a deceleration in the flow 

field. In equation (5.12) we observe that the chemical reaction 

term is negative and indeed opposite to the principal diffusion 

terms. Therefore logically, chemical reaction will delay 

diffusive transport which in turn will correspond to retardation 

in the flow field. Therefore maximum velocity values 

correspond to the case of zero chemical reaction i.e.  = 0.  

 

                Fig. 2: Velocity distribution for different χ  

Conversely, we observe that temperature function 

profiles i.e. θ increase with a rise in chemical reaction 

parameter, as depicted in Fig. 3. The profiles are not as widely 

dispersed as for the velocity distributions; however there is a 

clear boost in temperatures especially at intermediate 

separation from the wall. Our results agree quite well for both 

velocity and temperature distributions with those due to Afify 

[23] who considered chemical reaction effects on free 

convective flow and mass transfer of a viscous, 

incompressible and electrically conducting fluid over a 

stretching surface in the presence of a constant transverse 

magnetic field. Temperature profiles generally are lower in 

case with no chemical reaction.  

 

Fig. 3: Temperature distribution for different χ 

The influence of  on the mass transfer function (C) 

is plotted in Fig. 4. As  increases, concentration decreases. 

For the non-reactive case,  = 0, there is approximately a 

linear decay in C from a maximum at the wall to zero at the 

free stream, these end values being a direct result of the 

imposed boundary conditions. As  increases the profiles 

become more monotonic in nature; in particular the gradient 

of the profile becomes much steeper for   = 5 than for lower 

values of the chemical reaction parameter. This steepness in 

the behaviour of C increases in the vicinity of the stretching 

surface for  = 20. Chemical reaction parameter therefore has 

a considerable influence on both magnitude and rate of 

change of species (mass) transfer function at higher values, 

since physically this corresponds to faster rate of reaction.  

 

Fig. 4: Concentration distribution for different χ 

The response of the micro-rotation profile, 

illustrated in Fig. 5, to increasing chemical reaction rate 

parameter is also interesting. We observe that near the wall,  

micro-rotation increases with a rise in reaction parameter; 

however away from the it, all profiles converge and a switch 

over in behaviour occurs, so that micro-rotation is actually 

depressed by increasing chemical reaction parameter for the 

rest of the domain, finally converging to zero.  

 

Fig. 5: Microrotation distribution for different χ 

The effect of Grx and Gcx are shown in Figs. 6 to 8 

and Figs 9 to 10 respectively. Fig. 6 contains variation of 

velocity U for various Grx. This parameter (Grx) embodies the 

ratio of the thermal buoyancy force to the viscous 

hydrodynamic force and therefore is expected to accelerate 

the flow, a trend confirmed by our results. It is observed that a 

rise in Grx corresponds to an increase in velocity. This boost is 

particularly pronounced near the wall, where there is a sharp 

rise from the stretching surface (wall) especially for the cases 

Grx = 5 and 10. Peak velocity for Grx is about 1.5. All profiles 

generally descend smoothly towards zero although the rate of 

descent is greater corresponding to higher Grashof numbers. 
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Schmidt number has been fixed at 0.1 which physically 

corresponds to for e.g. Carbon Dioxide gas diffusing through 

air [24] for which Pr is 0.7.  

 

Fig. 6: Velocity distribution for different Grx 

 

 

Fig. 7 Temperature distribution for different Grx 

 

 

Fig. 8  Microrotation distribution for different Grx 

Temperature distribution θ versus Y is plotted in Fig 7 for 

various Grx. It is observed  that  an increase in Grx decreases 

temperature in the micropolar fluid. This fall is most apparent 

between Y = 1 to 3; all temperatures fall asymptotically to 

zero as Y .  

The micro-rotation profiles also decreases as Grx 

increases (Fig. 8); in fact they switch from positive values for 

Grx = 1, 2 to negative values for Grx = 3, 5, 10. Near to the 

wall, all values converge and then descend smoothly to zero. 

The positive values of micro-rotation indicate spin in one 

direction and negative values indicate a reverse spin. 

Buoyancy effects strongly influences the spin of 

microelements in the micropolar fluid, a feature which is 

important in various chemical reactor designs.  

In Figs. 9 to 10 we have presented the effect of the 

species Grashof number, Gcx, on the velocity and 

concentration profile (in the presence and absence of chemical 

reaction) respectively. As expected, a distinct increase in 

velocity U i.e. f , is observed as Gcx increases.  The general 

trends for the reactive and non-reactive case appear to be 

similar; however Fig. 9 clearly shows that the profiles of 

velocity (U) for the non-reactive case ( 0  ) are greater in 

value across the domain compared with the reactive regime 

case ( 1  ). 

 

Fig. 9: Velocity distribution for different Gcx 

 

 

Fig. 10 Concentration distribution for different Gcx 

Also  species  transfer function C, is  also affected 

by  increasing Gcx (Fig. 10). A rise in Gcx corresponds to an 

decrease in concentration profile. Increasing Gcx therefore 

serves to lower the mass transfer functions throughout the 

flow field.  Such trends are important in environmental flows 

and also industrial transport phenomena indicating that even 

in micropolar fluids, increasing buoyancy only boosts the 

translational velocity but reduces species function. Also the 
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concentration profile is greater for the non-reactive case (

0  ) as compared to the non-reactive case ( 1  ) with 

the variation in Gcx. Chemical reaction therefore clearly 

serves to decelerate the velocity as well as concentration 

profiles, as indicated in the earlier Figs.( 2 and 4.) 

The influence of the bulk matrix parameter, Dax, on 

the flow field is depicted in Figs. 11 to 13. From Fig. 11 it is 

clear that a rise in Dax i.e rise in permeability increases 

considerably the translational velocity. With increasing 

permeability the porous matrix structure becomes less and less 

prominent and in the limiting case when
xDa    values, 

the porosity disappears. The Darcian body force is inversely 

proportional to Dax i.e. larger Dax generate lower porous bulk 

retarding forces. The presence of a porous medium with low 

permeability therefore can be used as a mechanism for 

depressing velocities i.e. decelerating flow in industrial 

applications. 

 

Fig. 11 Velocity distribution for different Dax 

 

Fig 12 Temperature distribution for different Dax 

Conversely we observe that temperature profiles 

decreases (Fig. 12) with a rise in Dax, indicating that 

progressively less solid matrix particles decrease temperatures 

in the domain. Conduction heat transfer clearly decreases as 

solid material vanishes and therefore temperatures for less 

permeable media (Dax = 0.1) are higher than for more 

permeable media (Dax = 5).  

Increasing Darcy number near the wall serves to 

lower the micro-rotation of the micropolar fluid, as depicted 

in Fig. 13. Values of g at the wall (Y = 0), are initially 

decreased as Dax rises; however away from the wall, an 

increase in Darcy number serves to enhance the micro-

rotation values. We may infer that close to the wall, micro-

rotation is inhibited even for more permeable media as the 

particles have difficulty in rotating due to the presence of the 

wall; however away from the wall, with a more permeable 

environment, the micropolar spin is not inhibited and 

microelements can rotate more freely, as demonstrated by the 

slightly larger values of g for Dax = 5 at some distance away 

from the plate.    

 

Fig 13 Microrotation distribution for different Dax 

The influence of the local porous media inertia 

parameter, Fnx, on the flow regime is studied in Fig. 14 to 15, 

for the reactive case. Velocity, (from Fig. 14) evidently falls 

drastically as Fnx increases. In particular, velocity near the 

stretching surface is sufficiently reduced and a flattening of 

the profiles occurs. In the momentum equation (5.9) the 

Forchheimer inertial drag is directly proportional to the Fnx 

number. Therefore for a fixed Dax = 1, large values of Fsx will 

strongly decelerate the flow regime, as justified by our 

computations.   

 

Fig 14 Velocity distribution for different Fnx 

Micro-rotation function g as shown in Fig. 15 

strongly increases in the near-wall region as Fnx increases. 

Forchheimer drag therefore has a positive influence on 

angular velocity, but depresses translational velocities.  
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Fig 15 Microrotation distribution for different Fnx 

The effect of Schmidt number (Sc) on the mass 

transfer function is illustrated for both the reactive flow case 

and the non-reactive flow case, in Figs. 16 and 17. Sc 

quantifies the relative effectiveness of momentum and species 

transfer by diffusion. Smaller Sc values can represent, for 

example hydrogen gas as the species diffusing (Sc = 0.1 to 

0.2). Sc = 1.0 corresponds approximately to Carbon Dioxide 

diffusing in air, Sc = 2.0 implies Benzene diffusing in air, and 

higher values to petroleum derivatives diffusing in air (e.g. 

Ethylbenzene) as indicated by Gebhart et al [24]. 

Computations have been performed for Pr = 0.7, so that Pr  

Sc, and physically this implies that the thermal and species 

diffusion regions are of different extents. As Sc increases, for 

the reactive flow case, Concentration strongly reduces, since 

larger values of Sc are equivalent to a reduction in the 

chemical molecular diffusivity i.e. less diffusion therefore 

takes place by mass transport. All profiles are seen to descend 

from a maximum concentration of 1 at Y = 0 (the wall) to 

zero. However, we observe a sharp decay in concentration 

profiles for high value of Sc, which becomes zero as early as 

Y = 1 approximately. For lower value of Sc, a more gradual 

decay occurs to the free stream. 

 

Fig. 16 Concentration distribution for different Sc 

The influence of Sc on the concentration profiles for 

the non-reactive flow case is illustrated in Fig. 17. Although 

the trends are similar as for the reactive flow case, the profiles 

are less decreased with a rise in Sc, when chemical reaction is 

absent. For Sc = 0.1, there is almost a linear decay in the non-

reactive case, whereas it is considerably parabolic for the 

reactive case, indicating lower values of concentration 

throughout the flow domain for the reactive case. Thus, it can 

be concluded that, in consistency with our earlier 

computations, chemical reaction decreases mass transfer 

markedly throughout the porous medium.  

 

Fig. 17 Concentration distribution for different Sc (for χ = 

0) 
 

 

Fig. 18 Temperature distribution for different Pr 

The influence of Prandtl number Pr, on the 

temperature distribution is plotted in Fig. 18. Pr encapsulates 

the ratio of momentum diffusivity to thermal diffusivity. 

Larger Pr values imply a thinner thermal boundary layer 

thickness and more uniform temperature distributions across 

the boundary layer. For smaller values of Pr, fluids have 

higher thermal conductivy so that heat can diffuse away from 

the vertical surface faster than for higher Pr fluids (thicker 

boundary layers). Physically the lower values of Pr (Pr ~ 0.02, 

0.05) correspond to liquid metals, Pr = 0.7 is accurate for air 

or hydrogen and Pr = 1 for water. The computations indicate 

that a rise in Pr substantially reduces the temperatures in the 

micropolar-fluid-saturated porous regime, a result consistent 

with other studies on coupled heat and mass transfer in porous 

media, see for example Kim [25]. In all cases, θ descends  

steadily to zero  as Y , although the profile for  maximum 

Pr (= 1)  is highly parabolic.  

The influence of surface parameter s, on flow 

profile is indicated in Fig. 19. Micro-rotation is seen to 

increase substantially near the wall, as s increase. s = 0 

implies that micro-rotation at the wall is prohibited explaining 

the zero value of micro-rotation for this case. As s increases, 

the microelements rotate with increasing intensity and this 

leads to the maximum angular velocity g, at s = 1.0 at the 
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wall. All profiles converge to a specific value of Y and since 

this location is far from the wall, the surface parameter, s, 

ceases to have any influence on the micro-rotation field here 

and beyond.  

 

Fig. 19 Microrotation distribution for different s 

A comparision of the results by finite element 

method and finite difference method has been given in Table 

1. It is evident from the table 5.1, that the results obtained by 

the two techniques are in good agreement.     

 

      Table 1. Comparison of FEM and FDM Computations                         
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Table 2. contains the comparison of velocity U and 

temperature , as mentioned there, taking the linear and 

quadratic elements. It can be clearly seen that the results 

obtained using linear element matches to a good degree of 

accuracy, with those obtained by taking quadratic elements.  

 

 

 

 

Y  

U   

Linear Quadratic Linear Quadratic 

0 

0.8 

1.6 

2.4 

3.2 

4 

4.8 

5.6 

6.4 

7.2 

8 

1 

0.673322 

0.453918 

0.297017 

0.191239 

0.121795 

0.075524 

0.043871 

0.022071 

0.007742 

0 

1 

0.673335 

0.453931 

0.297025 

0.191247 

0.121798 

0.075532 

0.043885 

0.022088 

0.007761 

0 

1 

0.679604 

0.369045 

0.170441 

0.070471 

0.027049 

0.009851 

0.003423 

0.001105 

0.000286 

0 

1 

0.679623 

0.369057 

0.170454 

0.070486 

0.027053 

0.009861 

0.003433 

0.001117 

0.000298 

0 
 

Table 2: Comparison of velocity function with linear as 

well as quadratic elements           

1

0.5, 0.1, Pr 0.7, Re 1, 1.0, 1.0,

1, 1, 0.01, 1, 1, 1

x x x

x x

s Sc Da Fn

Gr Gc B  

      
 

       

 

The variation of skin friction and the heat transfer 

parameter with respect to 
,

, 
x x

Gr Gc  and 
x

Da has been given 

in Table 3a and 3b.  
 

s = 0.5, Sc = 0.1, Pr = 0.7, Rex = 1, Dax = 1, Fnx = 1, Gcx = 

1, B1 = 0.01,Λ = 1,  =1,  =1 

x
Gr  ''(0)f  '(0)  

1 

2 

3 

5 

10 

     -  0.51819 

- 0.151025 

0.193374 

0.83536 

2.270969 

0.33434 

0.35892 

0.37878 

0.41037 

0.46629 

s = 0.5, Sc = 0.1, Pr = 0.7, Rex = 1, Dax = 1, Fnx = 1, 

 Grx = 1, B1 = 0.01,   =1, Λ  = 1,   =1 

x
Gc  ''(0)f  '(0)  

0.1 

1 

3 

5 

7 

- 0.906182 

       -  0.51819 

  0.280086 

1.01595 

1.70756 

0.28986 

0.33429 

0.39946 

0.44396 

0.47859 

 

Table 3a. Table for skin friction  { '' 0 }f  and the rate of 

heat transfer  { ' 0 }  with different value of Grashof 

number 
x

Gr  and Buoyancy parameter 
x

Gc  

 

 

0

0.26

0.52

0 4 8

s = 1.0

s = 0.75

s = 0.5

s = 0.25

s = 0.0

          Sc = 0.1, Pr = 0.7, Rex = 1, Dax = 1, Fnx = 1, Grx = 1, Gcx = 1, 

B1 = 0.01, Λ = 1,  = 1,  = 1 

Y

g

            U                                         g 

Y FEM FDM FEM FDM 

0 1 1 0.259095 0.259012 

0.8 0.673322 0.673285 0.148205 0.148164 

1.6 0.453918 0.453893 0.093566 0.093535 

2.4 0.297017 0.297001 0.061379 0.061357 

3.2 0.191239 0.191227 0.040084 0.040072 

4 0.121795 0.121791 0.026326 0.026319 

4.8 0.075524 0.075505 0.017486 0.017467 

5.6 0.043871 0.043843 0.011467 0.011436 

6.4 0.022071 0.022031 0.006937 0.006902 

7.2 0.007742 0.007699 0.003192 0.003145 

8 0 0 0 0 
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s = 0.5,  Sc = 0.1, Pr = 0.7, Rex = 1, Fnx =1,  Grx = 1,  

Gcx = 1,  B1 = 0.01,  =1, Λ  = 1,   =1 

x
Da  ''(0)f  '(0)  

0.1 

0.5 

1 

2 

5 

     - 2.96021 

     - 1.07287 

     - 0.51819 

- 0.118063 

  0.200286 

0.18792 

0.29256 

0.33429 

0.36480 

0.38829 

s = 0.5, Sc = 0.1, Pr = 0.7, Rex = 1, Dax = 1, Fnx = 1, 

Grx = 1, Gcx = 1, B1 = 0.01,  Λ  = 1,   =1 

  ''(0)f  '(0)  

0 

1 

5 

10 

20 

- 0.468036 

- 0.518191 

- 0.599058 

- 0.644068 

- 0.692132 

0.347138 

0.334293 

0.314798 

0.306022 

0.298698 

Table 3b. Table for skin friction  { '' 0 }f  and the rate of 

heat transfer  { ' 0 }  with different value of Chemical 

reaction number   and Darcy number 
x

Da . 
 

It is observed that both the coefficient of skin 

friction and the rate of heat transfer increases with the 

increase in ,
x x

Gr Gc  and
x

Da . However an increase in 

chemical reaction parameter leads to a decrease in coefficient 

of skin friction as well as rate of heat transfer. This implies 

that the parameters 
,

, 
x x

Gr Gc  and 
x

Da are effective not 

only in controlling skin friction, but also rate of heat transfer. 

5. CONCLUSIONS  

The numerical simulations indicate that:        

(a) Translational velocity decreases, temperature 

increases, micro-rotation increases (in the near-field 

and intermediate range from the wall) and mass 

transfer function decreases with a rise in chemical 

reaction parameter (). 

(b) Increasing thermal Grashof number Grx, increases the 

translational velocity, decreases temperature function 

values and decreases micro-rotation, the latter in the 

regime near the wall. 

(c) Increasing species Grashof number Gcx, increases 

translational velocity, decreases temperature, 

decreases mass transfer function and lowers the micro-

rotation at the wall. 

(d) Increasing local Darcy number Dax, increases 

translational velocities but reduces temperature and 

micro-rotation, in the latter case, again the depression 

is maximized at the stretching surface (wall). 

(e) Increasing local Forchheimer number Fnx, reduces 

translational velocities, but boosts the micro-rotation, 

in the latter case especially at the wall and near the 

wall.  

(f) Increasing Schmidt number reduces mass transfer 

function both in the reactive and non-reactive flow 

cases, although mass transfer function values are 

always higher for any Sc value in the non-reactive 

case ( = 0). 

(g) Increasing Prandtl number substantially reduces 

temperature function ( ). 

(h) Increasing the surface parameter substantially 

increases micro-rotation g, particularly at and near the 

wall. 

(i) An increase in ,
x x

Gr Gc  and 
x

Da lead to an increase 

in coefficient of skin friction and the rate of heat 

transfer. 

(j) Coefficient of skin friction and rate of heat transfer 

decreases with the increase in chemical reaction 

parameter.   
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