
International Journal of Computer Applications (0975 – 8887) 

 Volume 44– No.4, April 2012 

22 

Genetic Approach for Service Selection Problem in 

Composite Web Service 

N.Sasikaladevi 
Research Scholar,  

Dept. of Computer science 
St.Joseph’s College, 

Trichy, TN, India 

 

      L.Arockiam 
Associate Professor,  

Dept. of Computer science 
St.Joseph’s College, 

Trichy, TN, India 

 

 
ABSTRACT 

Services are the basic amass that aims to support the building 

of business application in a more flexible and interoperable 

manner for enterprise collaboration. Satisfying the needs of 

service consumer and to become accustomed to changing 

needs, service composition is performed to compose the 

various capabilities of available services. With the 

proliferation of services presenting similar functionalities 

around the web, the task of service selection for service 

composition is intricate. It is vital to provide systematic 

methodology for selecting required web services according to 

their non-functional characteristics or quality of service 

(QoS). Various heuristic and meta-heuristic algorithms are 

evolving to solve the QoS based service selection problem. 

One of the meta-heuristic algorithms is genetic algorithm. In 

this paper, the genetic algorithm is developed to maximize the 

non-functional Characteristic called the reliability of the 

composite web service and the performance of the developed 

algorithm is calculated. 

General Terms 

Service Oriented Architecture, Service Selection Algorithms 

Keywords 

Genetic Algorithm, MMKP, Fitness 

1. INTRODUCTION 
The Service Oriented Architecture (SOA) is a “software 

architecture that represents software functionality as services 

over the network”. Web Services are the predominant 

implementation platform for SOA and it uses a set of 

standards, SOAP, UDDI, WSDL, which enable a lithe way for 

applications to intermingle with each other over networks. 

Simple Object Access Protocol (SOAP) is a standard protocol 

that allows network communication between services. The 

easiest way to publish a web service is to use a SOAP 

container. When a software component is published as a web 

service, any SOAP-enabled client that knows the network 

address of the web service can send a SOAP request and get a 

SOAP response. To get the message information, SOAP- 

enabled clients read a WSDL file that describes the web 

service. Once the Web Services Description Languages 

(WSDL) file is read, the client can start sending SOAP 

messages to the web service. WSDL describes what a web 

service can essentially do, where it resides, and how to invoke 

it. Universal Description Discovery and Integration (UDDI) is 

a standard that allows information about businesses and 

services to be electronically published, queried and stored. 

Published information is stored into one or more UDDI 

registries, which can be accessed through SOAP. 

All these standards are XML-based, which allows applications 

to intermingle with each other over networks, regardless of 

what languages and platforms they are using. The two 

features, self-description and language-platform-

independence, differentiate web services from other 

distributed computing technologies, like Common Object 

Request Broker Architecture (CORBA) and Distributed 

Component Object Model (DCOM). Research in web services 

includes many demanding areas starting from service 

publication to service mining. The most imperative among 

them is web service composition. Web service composition is 

needed when a client‟s complex request cannot be answered 

by single service, but by combining or composing various 

functionalities of available services or more than one services. 

Service composition involves three different issues. The first, 

called selection of service is fretful with selecting suitable 

services to composite that satisfy the user requirement. The 

second, called composition synthesis is concerned with 

synthesizing a specification of how to coordinate the 

component services to fulfill the client request. The third 

issue, called as service orchestration is concerned with 

achieving the synchronization among services by executing 

the specification produced by the composition synthesis. 

This paper presents various service selection algorithm and 

techniques available for composite web services. The 

selection of web service is based on the non-functional 

characteristics called reliability. Service reliability estimation 

method is proposed. The genetic based service selection 

algorithm is developed. The developed algorithm is compared 

with the heuristic algorithm based on time complexity. 

2. RELATED WORK 
Yi Xia et.all [1] derived a QoS-Aware Web Service Selection 

Algorithm Based on Clustering. This algorithm is based on 

the service clustering which can cluster a lot of atomic 

services of each task into a few classes according to their QoS 

properties. With the help of service clustering, this algorithm 

is capable to reduce the execution time and promise the near-

optimal result as well. Finally, three strategies are provided 

for re-selecting atomic services in dynamic environment. In 

experiment, they studied the performance of QSSAC 
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algorithm, and its feasibility had been demonstrated by 

simulation. 

Maolin Tang et.all [2] proposed a hybrid genetic algorithm for 

the optimal constrained web service selection problem in web 

service composition. They propose a new hybrid genetic 

algorithm for the optimal web service selection problem. The 

hybrid genetic algorithm had been implemented and 

evaluated. The evaluation results have shown that the hybrid 

genetic algorithm outperforms other two existing genetic 

algorithms when the number of web services and the number 

of constraints are large. 

Ping Wang et. All [3] proposed an evidence-based scheme for 

web service selection. Their model effectively enables 

trickery detection by means of existing bodies of verification, 

and therefore excludes the fraudulent evidence of malevolent 

evaluators from the selection process. In addition, a quality 

index is proposed to help third party examine the body of 

evidence and make the outranking result more reliable. 

Importantly, the quality index is based not only on the 

confidence degree of the evidence, but also on the support 

degree, and therefore discovers the effects of intentional 

negative assessments. The validity of the approach is 

demonstrated numerically by means of two service selection. 

Qibo Sun et.all [4] derived a QoS-aware Service Selection 

Approach. This work proposes a QoS-aware Service Selection 

Approach (QSSA) with particle throng optimization and fuzzy 

logic control to support fast and dynamic service selection and 

assist users in selecting the most suitable services. The core of 

QSSA is decomposing global QoS constrains to local 

constraints and then selecting a local optimization with local 

selection. Experimental results demonstrate that QSSA can 

obtain the most suitable composite service with low cost. 

Shangguang Wang et.all [5] proposed a Web Service selection 

based on QoS estimation. In this paper, they propose a WS 

Selection Approach based on QoS Estimation (WSSAQE). 

The aim of WSSAQE is to perform accurate QoS estimation, 

and then assuage the deviations between requiring and 

receiving QoS in WS selection. Experimental results show 

that their proposed WSSAQE is effective and efficient. 

Moreover, it significantly improves the QoS-based WS 

selection process. 

3. SERVICE SELECTION AS AN 

OPTIMZATION PROBLEM 
 The optimization algorithms can be estranged into two 

categories: deterministic algorithms and stochastic algorithms. 

Deterministic algorithms go after a meticulous procedure and 

its path and values of both design variables and the functions 

are repeatable. For example, hill-climbing is a deterministic 

algorithm, and for the same initial point, they will follow the 

same path whether you execute the program when ever. On 

the other hand, the stochastic algorithms forever have some 

randomness. Genetic algorithms are a fine example, the 

strings or solutions in the population will be dissimilar each 

time you run a program since the algorithms use some 

pseudorandom numbers, though the final results may be no 

huge difference, but the paths of each individual are not 

precisely repeatable. Furthermore, there is a third type of 

algorithm which is a combination or hybrid of deterministic 

and stochastic algorithms. For example, hill-climbing with a 

random restart is a fine example. The basic initiative is to use 

the deterministic algorithm, but start with different initial 

points.  

This has persuaded advantages over a simple hill-climbing 

technique which may be trapped in a local peak. Nevertheless, 

since Heuristics is a solution approach by trial-and-error to 

produce acceptable solutions to a complex problem in a 

reasonably practical time. The difficulty of the problem of 

interest builds it unfeasible to search every possible solution 

or combination, the aim is to find good, feasible solutions in 

an acceptable timescale. There is no guarantee that the best 

solutions can be found, and we even do not know whether an 

algorithm will work and why if it does work. The idea is that 

an resourceful but realistic algorithm that will work most of 

the time and be able to produce fine quality solutions. Among 

the found quality solutions, it is expected that some of them 

are almost optimal, though there is no guarantee for such 

optimality [6]. 

There is a random component in this hybrid algorithm; we 

often categorize it as a sort of stochastic algorithm in the 

optimization literature. The majority conventional algorithms 

are deterministic. For example, the Simplex method in linear 

programming is deterministic. Some deterministic 

optimization algorithms used the incline information; they are 

called gradient-based algorithms. For example, the well-

known Newton-Raphson algorithm is gradient-based as it uses 

the function values and their derivatives, and it works 

extremely well for smooth uni modal problems. Nevertheless, 

if there is some discontinuity in the objective function, it does 

not work well. In this case, a non-gradient algorithm is 

preferred. Non-gradient-based or gradient-free algorithms do 

not use any derivative, but only the function values. Hooke-

Jeeves pattern search and Nelder-Mead downhill simplex are 

examples of gradient-free algorithms. 

For stochastic algorithms, we have in universal two types: 

heuristic and meta heuristic, though their difference is small. 

Loosely speaking, heuristic means 'to find' or 'to discover by 

trial and error'. Quality solutions to a hard optimization 

problem can be found in a sensible amount of time, but there 

is no assurance that optimal solutions are reached. It is 

anticipated that these algorithms work most of the time, but 

not all the time. This is frequently fine enough when we do 

not inescapably desire the finest solutions but rather good 

solutions which are simply reachable. Auxiliary development 

over the heuristic algorithms is the professed meta heuristic 

algorithms. Here meta- means 'beyond' or 'higher level', and 

they generally perform better than simple heuristics. In 

addition, all meta heuristic algorithms use definite tradeoff of 

randomization and local search. It is significance to pointing 

out that no agreed definitions of heuristics and meta heuristics 

exist in literature, some use 'heuristics' and 'meta heuristics' 

http://www.springerlink.com/content/?Author=Ping+Wang
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interchangeably. However, recent trends tend to name all 

stochastic algorithms with randomization and local search as 

meta heuristic. Here we will also use this convention. Ran 

domination provides a good way to move away from local 

search to the search on the global scale. Therefore, almost all 

meta heuristic algorithms intend to be suitable for global 

optimization [6]. 

Most of the meta heuristic algorithms are nature-inspired as 

they have been developed based on some abstraction of 

nature. Nature has evolved over millions of years and has 

found perfect solutions to almost all the problems she met. 

We can thus learn the success of problem-solving from nature 

and develop nature-inspired heuristic and/or meta heuristic 

algorithms. More specifically, some nature-inspired 

algorithms are inspired by Darwin's evolutionary theory. 

Consequently, they are said to be biology-inspired or simply 

bio-inspired. 

Two major components of any meta heuristic algorithms are: 

selection of the best solutions and randomization. The 

selection of the best ensures that the solutions will converge to 

the optimality, while the randomization avoids the solutions 

being trapped at local optima and, at the same, increase the 

diversity of the solutions. The good combination of these two 

components will usually ensure that the global optimality is 

achievable. Meta heuristic algorithms can be classified in 

many ways. One way is to classify them as: population-based 

and trajectory-based. For example, genetic algorithms are 

population-based as they use a set of strings, so is the particle 

swarm optimization (PSO) which uses multiple agents or 

particles. PSO is also referred to as agent-based algorithms[7] 

3.1 Service Selection Problem in MMKP 

Form 
The service selection problem is formulated as 

Multidimensional Multi choice Knapsack Problem (MMKP) 

form. Composite web service consists of number of atomic 

services. Numerous web services are evolving today. Web 

services with same functionality from different vendors are 

available now. Choosing the best service based on reliability 

rate is a simple task. But cost of services varies and it is 

depends on the service provider. Choose one service from 

each group based on the reliability rate and the total cost of 

these services should be less than or equal to the cost defined 

in Service level agreement (SLA). This is the optimization 

problem formulated in MMKP form. For a composite service 

that has N service classes ( ) in a work flow plan 

and with m QoS constraints, we map the service selection 

problem to a 0-1 multidimensional multichoice knapsack 

problem (MMKP) [8,9].  MMKP is defined as follows. 

Suppose there are N object groups, each has 

 objects. Each object has a profit and 

required resources . The amount of 

resources available in the knapsack is . 

MMKP is to select exactly on object from each object group 

to be placed in the knapsack so that the total profit is 

maximized while the total resources used are less that the 

available resources. 

The QoS service selection problem is to select one 

service candidate from each service class to construct a 

composite service that meets users‟ QoS constraints and 

maximizes the totol utility[10,11,12,13]. The QoS service 

selection problem is mapped to MMKP as follows. 

1. Each service class is mapped to an object group in 

MMKP. 

2. Each atomic service in a service class is mapped to an 

object in a group in MMKP. 

3. The utility a candidate produces is mapped to the profit 

of the object. 

4. The users‟ QoS constraints are considered as the resource 

available in the knapsack. 

Mathematically, the service selection problem is formulated 

as follows: 

 

Subject to    and  

 = 1 

where   

where is set to 1 if atomic service j is selected for class  

and 0 otherwise.  is the QoS resource needs 

of each atomic service j for class ; the sum of all resources 

used by all service must be less that the overall constraints . 

The MMKP problem has been shown to be NP-complete [9]. 

We may solve MMKP by finding optimal results or use 

heuristic algorithms to reduce the time complexity. 

4. A POPULATION BASED META-

HEURISTIC ALGORITHM-GENETIC 

APPROACH 
Genetic algorithm (GA) works on the Darwin‟s principle of 

natural selection. The theoretical foundations of GAs were 

originally developed by Holland. GAs is based on the 

evolutionary process of biological organisms in nature. 

During the course of evolution, natural populations progress 

according to the principle of natural selection and “survival of 

the fittest”. Individuals which are more triumphant in adapting 

to their environment will have a better chance of surviving 

and reproducing, whilst individual which are less fit will be 

eliminated. 

Genetic Algorithm hoists a couple of significant features. First 

it is a stochastic algorithm; randomness as an indispensable 

role in genetic algorithms. Both selection and reproduction 

needs random procedures. A second very significant point is 
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that genetic algorithms at all times reflect on a population of 

solutions. Keeping in memory more than a single solution at 

each iteration presents a lot of benefits. The algorithm can 

recombine diverse solutions to get better ones and so, it can 

use the benefits of hodgepodge. A population base algorithm 

is also very acquiescent for parallelization. The robustness of 

the algorithm should also be revealed as somewhat essential 

for the algorithm success. Robustness refers to the ability to 

perform consistently 

4.1 A Genetic Algorithm 
An algorithm is a sequence of steps for solving a problem. A 

genetic algorithm is a problem solving method that utilizes 

genetics as its model of problem solving. It‟s a search 

technique to discover approximate solutions to optimization 

and search problems. Fundamentally, an optimization problem 

seems really simple. One be acquainted with the form of all 

possible solutions corresponding to a precise question. The set 

of all the solutions that convene this form make up the search 

space. The problem consists in finding out the solution that 

fits the best, i.e. the one with the most payoffs, from all the 

possible solutions. If it‟s promising to quickly itemize all the 

solutions, the problem does not hoist much difficulty. But, 

when the search space becomes huge, enumeration is soon no 

longer feasible merely because it would acquire far surplus 

time. In this it‟s required to apply a specific technique to find 

the optimal solution. Genetic Algorithms offers one of these 

methods. Almost they all work in a similar way, become 

accustom with the simple genetics to algorithmic mechanisms.  

GA touches a population of possible solutions. Each solution 

is symbolized through a chromosome, which is just an 

abstract representation. Coding all the possible solutions into 

a chromosome is the first part, but certainly not the most 

straightforward one of a Genetic Algorithm. A set of 

reproduction operators has to be determined, too. 

Reproduction operators are applied directly on the 

chromosomes, and are used to perform mutations and 

recombinations over solutions of the problem. Suitable 

depiction and reproduction operators are really something 

determinant, as the performance of the GA is extremely ward 

on it. 

Commonly, it can be awfully hard to find a representation, 

which respects the structure of the search space and 

reproduction operators, which are consistent and appropriate 

according to the properties of the problems. 

Selection is believed to be able to evaluate each individual in 

the population. Selection is finished by using a fitness 

function. Each chromosome has an associated value 

corresponding to the fitness of the solution it characterizes. 

The fitness should match up to a valuation of how good the 

candidate solution is. The optimal solution is the one, which 

maximizes the fitness function. Genetic Algorithms pact with 

the problems that maximize the fitness function. But, if the 

problem consists in minimizing a cost function, the variation 

is reasonably easy. Moreover the cost function can be changed 

into a fitness function, for example by inverting it; or the 

selection can be adapted in such way that they consider 

individuals with low evaluation functions as better. 

Once the reproduction and the fitness function have been 

accurately defined, a Genetic Algorithm is evolved according 

to the same basic structure. It commences by generating an 

initial population of chromosomes. This first population must 

volunteer a wide diversity of genetic materials. The gene pool 

should be as huge as possible so that any solution of the 

search space can be provoked. Generally, the initial 

population is generated randomly. Then, the genetic algorithm 

loops over an iteration process to make the population evolve. 

Each iteration consists of the following steps: 

• SELECTION: The first step consists in selecting individuals 

for reproduction. This selection is done randomly with a 

probability depending on the relative fitness of the individuals 

so that best ones are often chosen for reproduction than poor 

ones. 

• REPRODUCTION: In the second step, children are breed by 

the selected individuals. For generating new chromosomes, 

the algorithm can utilize both recombination and mutation. 

• EVALUATION: Then the fitness of the new chromosomes 

is weighed up. 

• REPLACEMENT: During the last step, individuals from the 

old population are killed and replaced by the new ones. 

 

The algorithms stopped when the population congregates 

toward the optimal solution. 

The basic genetic algorithm is as follows: 

 [start] Genetic random population of n chromosomes 

(suitable solutions for the problem) 

 [Fitness] Evaluate the fitness f(x) of each chromosome x 

in the population 

 [New population] Create a new population by repeating 

following steps until the New population is complete 

 [Selection] select two parent chromosomes from a 

population according to their fitness. 

 [crossover] With a crossover probability, cross over the 

parents to form new offspring. If no crossover was 

performed, offspring is the exact copy of parents. 

 [Mutation] With a mutation probability, mutate new 

offspring at each locus (position in chromosome) 

 [Accepting] Place new offspring in the new population  

 [Replace] Use new generated population for a further 

sum of the algorithm. 

 [Test] If the end condition is satisfied, stop, and return 

the best solution in current population. 
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 [Loop] Go to step2 for fitness evaluation.  

4.2 Service Selection Algorithm Using 

Genetic approach 
Here, we use Genetic Algorithms to solve the MMKP where 

one has to maximize the profit of group of objects in a 

knapsack without exceeding its capacity[14,15,16]. 

4.2.1 Encoding of the chromosomes 
The chromosomes in GAs symbolize the space of candidate 

solutions. Promising chromosomes encodings are binary, 

permutation, value, and tree encodings. For the Knapsack 

problem, we use binary encoding, where every chromosome is 

a string of bits, 0 or 1. A chromosome can be represented in 

an array having size equal to the number of the groups (in our 

example of size 4). Each element from this array indicates 

whether a group is included in the knapsack („1‟) or not („0‟). 

For example, the following chromosome: 0 1 2 3 indicates 

that the 1st and the 4th groups are included in the knapsack.. 

To represent the whole population of chromosomes we apply 

a three dimensional array (chromosomes [Size][number of 

groups][number of items]). Size stands for the number of 

chromosomes in a population. The second dimension 

represents the groups that may potentially be included in the 

knapsack. The third dimension represents the items that may 

potentially be included in the knapsack. 

4.2.2 Fitness function 
GAs necessitates a fitness function which allocates a score to 

each chromosome in the current population. Thus, it can 

calculate how well the solutions are coded and how well they 

solve the problem. We compute the fitness of each 

chromosome by summing up the profits of the items that are 

included in the knapsack, while making sure that the capacity 

of the knapsack is not exceeded. If the volume of the 

chromosome is greater than the capacity of the knapsack then 

one of the bits in the chromosome whose value is „1‟ is 

inverted and the chromosome is checked again. 

4.2.3 Group Selection 
     The selection process is based on fitness. Chromosomes 

that are evaluated with higher values (fitter) will most likely 

be selected to reproduce, whereas, those with low values will 

be discarded. The fittest chromosomes may be selected 

several times, however, the number of chromosomes selected 

to reproduce is equal to the population size, therefore, keeping 

the size constant for every generation. This phase has an 

element of randomness just like the survival of organisms in 

nature. 

The selection method was implemented in order to increase 

the probability of selecting fitter chromosomes to reproduce 

more often than chromosomes with lower fitness values. 

Array of chromosomes was sorted based on their fitness 

values in ascending order. Thus, the indices of the 

chromosomes with higher fitness values were at the end of the 

array indexes, and the ones with lower fitness will be towards 

the beginning of the array. Then, we randomly choose a group 

from the first group with 5% probability, from the second 

group with 10% probability, from the third group with 15% 

probability, from the fourth group with 25% probability and 

from the last group with 45% probability. Thus, the fitter a 

chromosome is the more chance it has to be chosen for a 

parent in the next generation. 

4.2.4  Crossover 
Crossover is the procedure of combining the bits of one 

chromosome with those of another. This is used to create an 

offspring for the next generation that accedes to the traits of 

both parents. Single point crossover randomly chooses a locus 

and exchanges the subsequences before and after that locus 

between two chromosomes to create two offspring. 

4.2.5 Mutation 
Mutation is complete to prevent GAs from droping into a 

local extreme. Mutation changes the new offspring by flipping 

bits from 1 to 0 or from 0 to 1. Mutation can occur at each bit 

position in the string with some probability, usually very 

small (e.g. 0.001).  

4.2.6 Elitism 
Elitism was used where two of the fittest chromosomes are 

copied without changes to the new population, so the best 

solutions found will not be lost. 

4.3 PBSSA 
The new population based service selection algorithm 

(PBSSA) is developed to optimize the service selection 

problem in composite web service environment. PBSSA is 

presented here. 

Step 1:  

Initialize the no improvement counter to 0 and fitness loop 

counter to 0 

Selection of Initial generations ώ=(x1,x2…xn) and sort the 

chromosomes based on the fitness value. 

Step 2:  

Calculate the maximum fitness of the current generations as 

δp 

Construct the new generation   β with two chromosomes with 

largest fitness 

Step 3: 

Select p1, a single chromosome from the categories of current 

generation using random value 

Select p2, a single chromosome from the categories of current 

generation using random value 

Do crossover on p1 and p2 

Place the new offspring into the next generation γ 

Repeat step 3 for population/2 number of times 

Step 4: 

Replace the current generation β with the new generation γ 

Merge sort the current generation β based on the fitness value 

of chromosome 

Do the mutation on the current generation β 

Set δ as the maximum fitness of current generation. 

If δ <= δp then Increment the no improvement count 

Else set no improvement count as 0 

If improvement count > ρ then exit 
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Repeat step 2-4 for the maximum number of generations. 

 

 
Fig. 1 PBSSA Flow chart 

 

4.4 Computational Complexity 
Average complexity of the above algorithm is  

O(number of generations * number of chromosomes). 

Cost is defined as a constraint here. The value of the nodes is 

the reliability rate of services. The above algorithm 

maximizes the reliability rate of composite web service by 

choosing the best service from each group. 

 

5. EXPERIMENTAL RESULT  
Web services which are relevant to students information 

processing are collected from web. Among these web 

services, the fifty most relevant web services for students are 

identified. Reliability value is calculated for each of these web 

services. Invocation history for these web services is collected 

and invocation records are constructed. Totally 10000 

invocation records are created for each web service and it is 

divided into 100 fragments of size 1000. Reliability status is 

calculated on each fragment and time percentage is calculated 

using the equation (6). Part of the service invocation registry 

is shown below (status value in first 10 time period is 

included).   

Each of the 10 web services falls in any of the 3 status from 

time t1 to t10 where “S” denotes the continuous success, “F” 

denotes the continuous failure and “T” denotes the transitory 

failure. By using the status information, we calculate how 

lone the service is in each of the status and reliability rate. 

Time percentage in each status for every web services is 

calculated based on the equation (6). Then we calculate the 

reliability rate of every web services in each state is estimated. 

The following graphs show the results. 

Finally, Reliability value is estimated for each service.  The 

value ranges from 0 to 1. “0” indicates that the service is not 

available for long period of time. “1” indicates that the service 

is always available.  Reliability value for most of the web 

services falls between 0 and 1.  

Table 1. Test cases results of Service Selection Algorithm 

Test 

Case 

Service 

Groups 

Service 

Candidates 

Execution 

Time(Sec.) 

Optimality 

of Results 

1 5 2 0.031 97 

2 5 4 0.078 97 

3 5 6 0.031 98 

4 5 8 0.062 97 

5 5 10 0.031 98 

6 5 12 0.031 97 

7 5 14 0.031 98 

8 5 16 0.031 98 

9 5 18 0.047 98 

10 5 20 0.047 98 

11 10 2 0.031 89 

12 10 4 0.047 84 

13 10 6 0.031 84 

14 10 8 0.047 84 
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15 10 10 0.047 90 

16 10 12 0.062 93 

17 10 14 0.062 95 

18 10 16 0.062 96 

19 10 18 0.062 96 

20 10 20 0.125 97 

21 15 2 0.031 71 

22 15 4 0.047 93 

23 15 6 0.047 90 

24 15 8 0.062 89 

25 15 10 0.062 85 

26 15 12 0.062 96 

27 15 14 0.078 91 

28 15 16 0.078 95 

29 15 18 0.094 97 

30 15 20 0.109 97 

31 20 2 0.047 73 

32 20 4 0.031 96 

33 20 6 0.062 91 

34 20 8 0.062 88 

35 20 10 0.078 85 

36 20 12 0.125 96 

37 20 14 0.125 93 

38 20 16 0.109 93 

39 20 18 0.125 91 

40 20 20 0.125 94 

41 25 2 0.047 74 

42 25 4 0.047 90 

43 25 6 0.062 82 

44 25 8 0.078 81 

45 25 10 0.094 86 

46 25 12 0.109 84 

47 25 14 0.125 86 

48 25 16 0.14 88 

49 25 18 0.125 74 

50 25 20 0.156 93 

 

 

The genetic algorithm for MMKP as shown in figure is 

implemented as win 32 console  application in C++. It is 

developed in Micosoft Visual C++ express edition and 

debugged. The sample output is shown in Fig.2. Total number 

of test cases created is 100. The table 4 shows the first 50 test 

cases.  Fifty set of composite web services are developed. 

Candidate services ranges from 10 to 50 in each composite 

web services. The execution time is calculated The execution 

time of genetic algorithm is calculated. Theses algorithm are 

tested with Intel Core Duo CPU. 

Time complexity of t this algorithm is analyzed. The 

execution time of Genetic algorithm is calculated and shown.  

Fig. 2 Service Group ranges from 5 to 25 

 

Fig. 3 Execution time chart of genetic (Candidates ranges 
from 2 to 10) 

 

The Fig.3 shows the execution time for genetic algorithm for 

service selection problem for varying number of service 

candidates ranges from 2 to 20 for service groups ranges from 

5 to 25. Time complexity gradually increases for large number 

of service candidate. 

6. CONCLUSION 
With the increasing reliability of Web services as a solution to 

enterprise application integration, the QoS parameters offered 

by Web services are becoming the chief priority for service 

providers and their service consumers. This paper presented a 

novel algorithm for web service candidate selection based on 

genetic model. The developed algorithm is tested and 

validated. In this paper services are selected based on the non-

functional characteristics called reliability rate. In future, the 

other QoS metrics can also be considered to select the best 

candidate service for web service composition. 
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