
International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.4, April 2012

22

Genetic Approach for Service Selection Problem in

Composite Web Service

N.Sasikaladevi
Research Scholar,

Dept. of Computer science
St.Joseph’s College,

Trichy, TN, India

 L.Arockiam
Associate Professor,

Dept. of Computer science
St.Joseph’s College,

Trichy, TN, India

ABSTRACT

Services are the basic amass that aims to support the building

of business application in a more flexible and interoperable

manner for enterprise collaboration. Satisfying the needs of

service consumer and to become accustomed to changing

needs, service composition is performed to compose the

various capabilities of available services. With the

proliferation of services presenting similar functionalities

around the web, the task of service selection for service

composition is intricate. It is vital to provide systematic

methodology for selecting required web services according to

their non-functional characteristics or quality of service

(QoS). Various heuristic and meta-heuristic algorithms are

evolving to solve the QoS based service selection problem.

One of the meta-heuristic algorithms is genetic algorithm. In

this paper, the genetic algorithm is developed to maximize the

non-functional Characteristic called the reliability of the

composite web service and the performance of the developed

algorithm is calculated.

General Terms

Service Oriented Architecture, Service Selection Algorithms

Keywords

Genetic Algorithm, MMKP, Fitness

1. INTRODUCTION
The Service Oriented Architecture (SOA) is a “software

architecture that represents software functionality as services

over the network”. Web Services are the predominant

implementation platform for SOA and it uses a set of

standards, SOAP, UDDI, WSDL, which enable a lithe way for

applications to intermingle with each other over networks.

Simple Object Access Protocol (SOAP) is a standard protocol

that allows network communication between services. The

easiest way to publish a web service is to use a SOAP

container. When a software component is published as a web

service, any SOAP-enabled client that knows the network

address of the web service can send a SOAP request and get a

SOAP response. To get the message information, SOAP-

enabled clients read a WSDL file that describes the web

service. Once the Web Services Description Languages

(WSDL) file is read, the client can start sending SOAP

messages to the web service. WSDL describes what a web

service can essentially do, where it resides, and how to invoke

it. Universal Description Discovery and Integration (UDDI) is

a standard that allows information about businesses and

services to be electronically published, queried and stored.

Published information is stored into one or more UDDI

registries, which can be accessed through SOAP.

All these standards are XML-based, which allows applications

to intermingle with each other over networks, regardless of

what languages and platforms they are using. The two

features, self-description and language-platform-

independence, differentiate web services from other

distributed computing technologies, like Common Object

Request Broker Architecture (CORBA) and Distributed

Component Object Model (DCOM). Research in web services

includes many demanding areas starting from service

publication to service mining. The most imperative among

them is web service composition. Web service composition is

needed when a client‟s complex request cannot be answered

by single service, but by combining or composing various

functionalities of available services or more than one services.

Service composition involves three different issues. The first,

called selection of service is fretful with selecting suitable

services to composite that satisfy the user requirement. The

second, called composition synthesis is concerned with

synthesizing a specification of how to coordinate the

component services to fulfill the client request. The third

issue, called as service orchestration is concerned with

achieving the synchronization among services by executing

the specification produced by the composition synthesis.

This paper presents various service selection algorithm and

techniques available for composite web services. The

selection of web service is based on the non-functional

characteristics called reliability. Service reliability estimation

method is proposed. The genetic based service selection

algorithm is developed. The developed algorithm is compared

with the heuristic algorithm based on time complexity.

2. RELATED WORK
Yi Xia et.all [1] derived a QoS-Aware Web Service Selection

Algorithm Based on Clustering. This algorithm is based on

the service clustering which can cluster a lot of atomic

services of each task into a few classes according to their QoS

properties. With the help of service clustering, this algorithm

is capable to reduce the execution time and promise the near-

optimal result as well. Finally, three strategies are provided

for re-selecting atomic services in dynamic environment. In

experiment, they studied the performance of QSSAC

International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.4, April 2012

23

algorithm, and its feasibility had been demonstrated by

simulation.

Maolin Tang et.all [2] proposed a hybrid genetic algorithm for

the optimal constrained web service selection problem in web

service composition. They propose a new hybrid genetic

algorithm for the optimal web service selection problem. The

hybrid genetic algorithm had been implemented and

evaluated. The evaluation results have shown that the hybrid

genetic algorithm outperforms other two existing genetic

algorithms when the number of web services and the number

of constraints are large.

Ping Wang et. All [3] proposed an evidence-based scheme for

web service selection. Their model effectively enables

trickery detection by means of existing bodies of verification,

and therefore excludes the fraudulent evidence of malevolent

evaluators from the selection process. In addition, a quality

index is proposed to help third party examine the body of

evidence and make the outranking result more reliable.

Importantly, the quality index is based not only on the

confidence degree of the evidence, but also on the support

degree, and therefore discovers the effects of intentional

negative assessments. The validity of the approach is

demonstrated numerically by means of two service selection.

Qibo Sun et.all [4] derived a QoS-aware Service Selection

Approach. This work proposes a QoS-aware Service Selection

Approach (QSSA) with particle throng optimization and fuzzy

logic control to support fast and dynamic service selection and

assist users in selecting the most suitable services. The core of

QSSA is decomposing global QoS constrains to local

constraints and then selecting a local optimization with local

selection. Experimental results demonstrate that QSSA can

obtain the most suitable composite service with low cost.

Shangguang Wang et.all [5] proposed a Web Service selection

based on QoS estimation. In this paper, they propose a WS

Selection Approach based on QoS Estimation (WSSAQE).

The aim of WSSAQE is to perform accurate QoS estimation,

and then assuage the deviations between requiring and

receiving QoS in WS selection. Experimental results show

that their proposed WSSAQE is effective and efficient.

Moreover, it significantly improves the QoS-based WS

selection process.

3. SERVICE SELECTION AS AN

OPTIMZATION PROBLEM
 The optimization algorithms can be estranged into two

categories: deterministic algorithms and stochastic algorithms.

Deterministic algorithms go after a meticulous procedure and

its path and values of both design variables and the functions

are repeatable. For example, hill-climbing is a deterministic

algorithm, and for the same initial point, they will follow the

same path whether you execute the program when ever. On

the other hand, the stochastic algorithms forever have some

randomness. Genetic algorithms are a fine example, the

strings or solutions in the population will be dissimilar each

time you run a program since the algorithms use some

pseudorandom numbers, though the final results may be no

huge difference, but the paths of each individual are not

precisely repeatable. Furthermore, there is a third type of

algorithm which is a combination or hybrid of deterministic

and stochastic algorithms. For example, hill-climbing with a

random restart is a fine example. The basic initiative is to use

the deterministic algorithm, but start with different initial

points.

This has persuaded advantages over a simple hill-climbing

technique which may be trapped in a local peak. Nevertheless,

since Heuristics is a solution approach by trial-and-error to

produce acceptable solutions to a complex problem in a

reasonably practical time. The difficulty of the problem of

interest builds it unfeasible to search every possible solution

or combination, the aim is to find good, feasible solutions in

an acceptable timescale. There is no guarantee that the best

solutions can be found, and we even do not know whether an

algorithm will work and why if it does work. The idea is that

an resourceful but realistic algorithm that will work most of

the time and be able to produce fine quality solutions. Among

the found quality solutions, it is expected that some of them

are almost optimal, though there is no guarantee for such

optimality [6].

There is a random component in this hybrid algorithm; we

often categorize it as a sort of stochastic algorithm in the

optimization literature. The majority conventional algorithms

are deterministic. For example, the Simplex method in linear

programming is deterministic. Some deterministic

optimization algorithms used the incline information; they are

called gradient-based algorithms. For example, the well-

known Newton-Raphson algorithm is gradient-based as it uses

the function values and their derivatives, and it works

extremely well for smooth uni modal problems. Nevertheless,

if there is some discontinuity in the objective function, it does

not work well. In this case, a non-gradient algorithm is

preferred. Non-gradient-based or gradient-free algorithms do

not use any derivative, but only the function values. Hooke-

Jeeves pattern search and Nelder-Mead downhill simplex are

examples of gradient-free algorithms.

For stochastic algorithms, we have in universal two types:

heuristic and meta heuristic, though their difference is small.

Loosely speaking, heuristic means 'to find' or 'to discover by

trial and error'. Quality solutions to a hard optimization

problem can be found in a sensible amount of time, but there

is no assurance that optimal solutions are reached. It is

anticipated that these algorithms work most of the time, but

not all the time. This is frequently fine enough when we do

not inescapably desire the finest solutions but rather good

solutions which are simply reachable. Auxiliary development

over the heuristic algorithms is the professed meta heuristic

algorithms. Here meta- means 'beyond' or 'higher level', and

they generally perform better than simple heuristics. In

addition, all meta heuristic algorithms use definite tradeoff of

randomization and local search. It is significance to pointing

out that no agreed definitions of heuristics and meta heuristics

exist in literature, some use 'heuristics' and 'meta heuristics'

http://www.springerlink.com/content/?Author=Ping+Wang

International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.4, April 2012

24

interchangeably. However, recent trends tend to name all

stochastic algorithms with randomization and local search as

meta heuristic. Here we will also use this convention. Ran

domination provides a good way to move away from local

search to the search on the global scale. Therefore, almost all

meta heuristic algorithms intend to be suitable for global

optimization [6].

Most of the meta heuristic algorithms are nature-inspired as

they have been developed based on some abstraction of

nature. Nature has evolved over millions of years and has

found perfect solutions to almost all the problems she met.

We can thus learn the success of problem-solving from nature

and develop nature-inspired heuristic and/or meta heuristic

algorithms. More specifically, some nature-inspired

algorithms are inspired by Darwin's evolutionary theory.

Consequently, they are said to be biology-inspired or simply

bio-inspired.

Two major components of any meta heuristic algorithms are:

selection of the best solutions and randomization. The

selection of the best ensures that the solutions will converge to

the optimality, while the randomization avoids the solutions

being trapped at local optima and, at the same, increase the

diversity of the solutions. The good combination of these two

components will usually ensure that the global optimality is

achievable. Meta heuristic algorithms can be classified in

many ways. One way is to classify them as: population-based

and trajectory-based. For example, genetic algorithms are

population-based as they use a set of strings, so is the particle

swarm optimization (PSO) which uses multiple agents or

particles. PSO is also referred to as agent-based algorithms[7]

3.1 Service Selection Problem in MMKP

Form
The service selection problem is formulated as

Multidimensional Multi choice Knapsack Problem (MMKP)

form. Composite web service consists of number of atomic

services. Numerous web services are evolving today. Web

services with same functionality from different vendors are

available now. Choosing the best service based on reliability

rate is a simple task. But cost of services varies and it is

depends on the service provider. Choose one service from

each group based on the reliability rate and the total cost of

these services should be less than or equal to the cost defined

in Service level agreement (SLA). This is the optimization

problem formulated in MMKP form. For a composite service

that has N service classes () in a work flow plan

and with m QoS constraints, we map the service selection

problem to a 0-1 multidimensional multichoice knapsack

problem (MMKP) [8,9]. MMKP is defined as follows.

Suppose there are N object groups, each has

 objects. Each object has a profit and

required resources . The amount of

resources available in the knapsack is .

MMKP is to select exactly on object from each object group

to be placed in the knapsack so that the total profit is

maximized while the total resources used are less that the

available resources.

The QoS service selection problem is to select one

service candidate from each service class to construct a

composite service that meets users‟ QoS constraints and

maximizes the totol utility[10,11,12,13]. The QoS service

selection problem is mapped to MMKP as follows.

1. Each service class is mapped to an object group in

MMKP.

2. Each atomic service in a service class is mapped to an

object in a group in MMKP.

3. The utility a candidate produces is mapped to the profit

of the object.

4. The users‟ QoS constraints are considered as the resource

available in the knapsack.

Mathematically, the service selection problem is formulated

as follows:

Subject to and

 = 1

where

where is set to 1 if atomic service j is selected for class

and 0 otherwise. is the QoS resource needs

of each atomic service j for class ; the sum of all resources

used by all service must be less that the overall constraints .

The MMKP problem has been shown to be NP-complete [9].

We may solve MMKP by finding optimal results or use

heuristic algorithms to reduce the time complexity.

4. A POPULATION BASED META-

HEURISTIC ALGORITHM-GENETIC

APPROACH
Genetic algorithm (GA) works on the Darwin‟s principle of

natural selection. The theoretical foundations of GAs were

originally developed by Holland. GAs is based on the

evolutionary process of biological organisms in nature.

During the course of evolution, natural populations progress

according to the principle of natural selection and “survival of

the fittest”. Individuals which are more triumphant in adapting

to their environment will have a better chance of surviving

and reproducing, whilst individual which are less fit will be

eliminated.

Genetic Algorithm hoists a couple of significant features. First

it is a stochastic algorithm; randomness as an indispensable

role in genetic algorithms. Both selection and reproduction

needs random procedures. A second very significant point is

International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.4, April 2012

25

that genetic algorithms at all times reflect on a population of

solutions. Keeping in memory more than a single solution at

each iteration presents a lot of benefits. The algorithm can

recombine diverse solutions to get better ones and so, it can

use the benefits of hodgepodge. A population base algorithm

is also very acquiescent for parallelization. The robustness of

the algorithm should also be revealed as somewhat essential

for the algorithm success. Robustness refers to the ability to

perform consistently

4.1 A Genetic Algorithm
An algorithm is a sequence of steps for solving a problem. A

genetic algorithm is a problem solving method that utilizes

genetics as its model of problem solving. It‟s a search

technique to discover approximate solutions to optimization

and search problems. Fundamentally, an optimization problem

seems really simple. One be acquainted with the form of all

possible solutions corresponding to a precise question. The set

of all the solutions that convene this form make up the search

space. The problem consists in finding out the solution that

fits the best, i.e. the one with the most payoffs, from all the

possible solutions. If it‟s promising to quickly itemize all the

solutions, the problem does not hoist much difficulty. But,

when the search space becomes huge, enumeration is soon no

longer feasible merely because it would acquire far surplus

time. In this it‟s required to apply a specific technique to find

the optimal solution. Genetic Algorithms offers one of these

methods. Almost they all work in a similar way, become

accustom with the simple genetics to algorithmic mechanisms.

GA touches a population of possible solutions. Each solution

is symbolized through a chromosome, which is just an

abstract representation. Coding all the possible solutions into

a chromosome is the first part, but certainly not the most

straightforward one of a Genetic Algorithm. A set of

reproduction operators has to be determined, too.

Reproduction operators are applied directly on the

chromosomes, and are used to perform mutations and

recombinations over solutions of the problem. Suitable

depiction and reproduction operators are really something

determinant, as the performance of the GA is extremely ward

on it.

Commonly, it can be awfully hard to find a representation,

which respects the structure of the search space and

reproduction operators, which are consistent and appropriate

according to the properties of the problems.

Selection is believed to be able to evaluate each individual in

the population. Selection is finished by using a fitness

function. Each chromosome has an associated value

corresponding to the fitness of the solution it characterizes.

The fitness should match up to a valuation of how good the

candidate solution is. The optimal solution is the one, which

maximizes the fitness function. Genetic Algorithms pact with

the problems that maximize the fitness function. But, if the

problem consists in minimizing a cost function, the variation

is reasonably easy. Moreover the cost function can be changed

into a fitness function, for example by inverting it; or the

selection can be adapted in such way that they consider

individuals with low evaluation functions as better.

Once the reproduction and the fitness function have been

accurately defined, a Genetic Algorithm is evolved according

to the same basic structure. It commences by generating an

initial population of chromosomes. This first population must

volunteer a wide diversity of genetic materials. The gene pool

should be as huge as possible so that any solution of the

search space can be provoked. Generally, the initial

population is generated randomly. Then, the genetic algorithm

loops over an iteration process to make the population evolve.

Each iteration consists of the following steps:

• SELECTION: The first step consists in selecting individuals

for reproduction. This selection is done randomly with a

probability depending on the relative fitness of the individuals

so that best ones are often chosen for reproduction than poor

ones.

• REPRODUCTION: In the second step, children are breed by

the selected individuals. For generating new chromosomes,

the algorithm can utilize both recombination and mutation.

• EVALUATION: Then the fitness of the new chromosomes

is weighed up.

• REPLACEMENT: During the last step, individuals from the

old population are killed and replaced by the new ones.

The algorithms stopped when the population congregates

toward the optimal solution.

The basic genetic algorithm is as follows:

 [start] Genetic random population of n chromosomes

(suitable solutions for the problem)

 [Fitness] Evaluate the fitness f(x) of each chromosome x

in the population

 [New population] Create a new population by repeating

following steps until the New population is complete

 [Selection] select two parent chromosomes from a

population according to their fitness.

 [crossover] With a crossover probability, cross over the

parents to form new offspring. If no crossover was

performed, offspring is the exact copy of parents.

 [Mutation] With a mutation probability, mutate new

offspring at each locus (position in chromosome)

 [Accepting] Place new offspring in the new population

 [Replace] Use new generated population for a further

sum of the algorithm.

 [Test] If the end condition is satisfied, stop, and return

the best solution in current population.

International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.4, April 2012

26

 [Loop] Go to step2 for fitness evaluation.

4.2 Service Selection Algorithm Using

Genetic approach
Here, we use Genetic Algorithms to solve the MMKP where

one has to maximize the profit of group of objects in a

knapsack without exceeding its capacity[14,15,16].

4.2.1 Encoding of the chromosomes
The chromosomes in GAs symbolize the space of candidate

solutions. Promising chromosomes encodings are binary,

permutation, value, and tree encodings. For the Knapsack

problem, we use binary encoding, where every chromosome is

a string of bits, 0 or 1. A chromosome can be represented in

an array having size equal to the number of the groups (in our

example of size 4). Each element from this array indicates

whether a group is included in the knapsack („1‟) or not („0‟).

For example, the following chromosome: 0 1 2 3 indicates

that the 1st and the 4th groups are included in the knapsack..

To represent the whole population of chromosomes we apply

a three dimensional array (chromosomes [Size][number of

groups][number of items]). Size stands for the number of

chromosomes in a population. The second dimension

represents the groups that may potentially be included in the

knapsack. The third dimension represents the items that may

potentially be included in the knapsack.

4.2.2 Fitness function
GAs necessitates a fitness function which allocates a score to

each chromosome in the current population. Thus, it can

calculate how well the solutions are coded and how well they

solve the problem. We compute the fitness of each

chromosome by summing up the profits of the items that are

included in the knapsack, while making sure that the capacity

of the knapsack is not exceeded. If the volume of the

chromosome is greater than the capacity of the knapsack then

one of the bits in the chromosome whose value is „1‟ is

inverted and the chromosome is checked again.

4.2.3 Group Selection
 The selection process is based on fitness. Chromosomes

that are evaluated with higher values (fitter) will most likely

be selected to reproduce, whereas, those with low values will

be discarded. The fittest chromosomes may be selected

several times, however, the number of chromosomes selected

to reproduce is equal to the population size, therefore, keeping

the size constant for every generation. This phase has an

element of randomness just like the survival of organisms in

nature.

The selection method was implemented in order to increase

the probability of selecting fitter chromosomes to reproduce

more often than chromosomes with lower fitness values.

Array of chromosomes was sorted based on their fitness

values in ascending order. Thus, the indices of the

chromosomes with higher fitness values were at the end of the

array indexes, and the ones with lower fitness will be towards

the beginning of the array. Then, we randomly choose a group

from the first group with 5% probability, from the second

group with 10% probability, from the third group with 15%

probability, from the fourth group with 25% probability and

from the last group with 45% probability. Thus, the fitter a

chromosome is the more chance it has to be chosen for a

parent in the next generation.

4.2.4 Crossover
Crossover is the procedure of combining the bits of one

chromosome with those of another. This is used to create an

offspring for the next generation that accedes to the traits of

both parents. Single point crossover randomly chooses a locus

and exchanges the subsequences before and after that locus

between two chromosomes to create two offspring.

4.2.5 Mutation
Mutation is complete to prevent GAs from droping into a

local extreme. Mutation changes the new offspring by flipping

bits from 1 to 0 or from 0 to 1. Mutation can occur at each bit

position in the string with some probability, usually very

small (e.g. 0.001).

4.2.6 Elitism
Elitism was used where two of the fittest chromosomes are

copied without changes to the new population, so the best

solutions found will not be lost.

4.3 PBSSA
The new population based service selection algorithm

(PBSSA) is developed to optimize the service selection

problem in composite web service environment. PBSSA is

presented here.

Step 1:

Initialize the no improvement counter to 0 and fitness loop

counter to 0

Selection of Initial generations ώ=(x1,x2…xn) and sort the

chromosomes based on the fitness value.

Step 2:

Calculate the maximum fitness of the current generations as

δp

Construct the new generation β with two chromosomes with

largest fitness

Step 3:

Select p1, a single chromosome from the categories of current

generation using random value

Select p2, a single chromosome from the categories of current

generation using random value

Do crossover on p1 and p2

Place the new offspring into the next generation γ

Repeat step 3 for population/2 number of times

Step 4:

Replace the current generation β with the new generation γ

Merge sort the current generation β based on the fitness value

of chromosome

Do the mutation on the current generation β

Set δ as the maximum fitness of current generation.

If δ <= δp then Increment the no improvement count

Else set no improvement count as 0

If improvement count > ρ then exit

International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.4, April 2012

27

Repeat step 2-4 for the maximum number of generations.

Fig. 1 PBSSA Flow chart

4.4 Computational Complexity
Average complexity of the above algorithm is

O(number of generations * number of chromosomes).

Cost is defined as a constraint here. The value of the nodes is

the reliability rate of services. The above algorithm

maximizes the reliability rate of composite web service by

choosing the best service from each group.

5. EXPERIMENTAL RESULT
Web services which are relevant to students information

processing are collected from web. Among these web

services, the fifty most relevant web services for students are

identified. Reliability value is calculated for each of these web

services. Invocation history for these web services is collected

and invocation records are constructed. Totally 10000

invocation records are created for each web service and it is

divided into 100 fragments of size 1000. Reliability status is

calculated on each fragment and time percentage is calculated

using the equation (6). Part of the service invocation registry

is shown below (status value in first 10 time period is

included).

Each of the 10 web services falls in any of the 3 status from

time t1 to t10 where “S” denotes the continuous success, “F”

denotes the continuous failure and “T” denotes the transitory

failure. By using the status information, we calculate how

lone the service is in each of the status and reliability rate.

Time percentage in each status for every web services is

calculated based on the equation (6). Then we calculate the

reliability rate of every web services in each state is estimated.

The following graphs show the results.

Finally, Reliability value is estimated for each service. The

value ranges from 0 to 1. “0” indicates that the service is not

available for long period of time. “1” indicates that the service

is always available. Reliability value for most of the web

services falls between 0 and 1.

Table 1. Test cases results of Service Selection Algorithm

Test

Case

Service

Groups

Service

Candidates

Execution

Time(Sec.)

Optimality

of Results

1 5 2 0.031 97

2 5 4 0.078 97

3 5 6 0.031 98

4 5 8 0.062 97

5 5 10 0.031 98

6 5 12 0.031 97

7 5 14 0.031 98

8 5 16 0.031 98

9 5 18 0.047 98

10 5 20 0.047 98

11 10 2 0.031 89

12 10 4 0.047 84

13 10 6 0.031 84

14 10 8 0.047 84

International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.4, April 2012

28

15 10 10 0.047 90

16 10 12 0.062 93

17 10 14 0.062 95

18 10 16 0.062 96

19 10 18 0.062 96

20 10 20 0.125 97

21 15 2 0.031 71

22 15 4 0.047 93

23 15 6 0.047 90

24 15 8 0.062 89

25 15 10 0.062 85

26 15 12 0.062 96

27 15 14 0.078 91

28 15 16 0.078 95

29 15 18 0.094 97

30 15 20 0.109 97

31 20 2 0.047 73

32 20 4 0.031 96

33 20 6 0.062 91

34 20 8 0.062 88

35 20 10 0.078 85

36 20 12 0.125 96

37 20 14 0.125 93

38 20 16 0.109 93

39 20 18 0.125 91

40 20 20 0.125 94

41 25 2 0.047 74

42 25 4 0.047 90

43 25 6 0.062 82

44 25 8 0.078 81

45 25 10 0.094 86

46 25 12 0.109 84

47 25 14 0.125 86

48 25 16 0.14 88

49 25 18 0.125 74

50 25 20 0.156 93

The genetic algorithm for MMKP as shown in figure is

implemented as win 32 console application in C++. It is

developed in Micosoft Visual C++ express edition and

debugged. The sample output is shown in Fig.2. Total number

of test cases created is 100. The table 4 shows the first 50 test

cases. Fifty set of composite web services are developed.

Candidate services ranges from 10 to 50 in each composite

web services. The execution time is calculated The execution

time of genetic algorithm is calculated. Theses algorithm are

tested with Intel Core Duo CPU.

Time complexity of t this algorithm is analyzed. The

execution time of Genetic algorithm is calculated and shown.

Fig. 2 Service Group ranges from 5 to 25

Fig. 3 Execution time chart of genetic (Candidates ranges
from 2 to 10)

The Fig.3 shows the execution time for genetic algorithm for

service selection problem for varying number of service

candidates ranges from 2 to 20 for service groups ranges from

5 to 25. Time complexity gradually increases for large number

of service candidate.

6. CONCLUSION
With the increasing reliability of Web services as a solution to

enterprise application integration, the QoS parameters offered

by Web services are becoming the chief priority for service

providers and their service consumers. This paper presented a

novel algorithm for web service candidate selection based on

genetic model. The developed algorithm is tested and

validated. In this paper services are selected based on the non-

functional characteristics called reliability rate. In future, the

other QoS metrics can also be considered to select the best

candidate service for web service composition.

International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.4, April 2012

29

7. ACKNOWLEDGMENTS
This research work is being funded by the Department of

Science and Technology (DST), Government of India.

8. REFERENCES

[1] M. Sathya, M. Swarnamugi, P. Dhavachelvan, G.

Sureshkumar, “Evaluation of QoS based Web- Service

Selection Techniques for Service Composition”,

International Journal of Software Engineering (IJSE) ,

2011

[2] Huiyuan Zheng; Jian Yang; Weiliang Zhao; “QoS

Analysis and Service Selection for Composite Services” ,

2010 IEEE International Conference on Services

Computing, pp.122 – 129, 2010

[3] Ping Wang, Kuo-Ming Chao, Chi-Chun Lo and Ray

Farmer, “An evidence-based scheme for web service

selection ”, Special Issue: Advances in E-Business

Engineering, 2010

[4] Matteo Baldon, Cristina Baroglio, Alberto Martelli,

Viviana Patti. “Reasoning about interaction protocols for

customizing web service selection and composition”. The

Journal of Logic and Algebraic Programming, Elsevier,

No. 70, pp. 53 – 73, 2007.

[5] Shangguang Wang; Zibin Zheng; Qibo Sun; Hua

Zou; Fangchun Yang; “Cloud model for service

selection”, 2011 IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS),

pp.666 – 671, 2011

[6] Xin-She Yang, Engineering Optimization: An

Introduction with Metaheuristic Applications, Wiley

Publications, 2010.

[7] E.-G. Talbi, Metaheuristics: From Design to

Implementation, John Wiley Publications,2009.

[8] Kellerer H, Pferschy and Pisinger, Knapsack Problems,

springer-Verlag, 2004

[9] Tao Yu, Yue Zhang, Kwei jay lin,”Efficient Algorithms

for Web Services Selection with End-to-End QoS

Constraints”, ACM Transactions on the Web, Vol. 1, No.

1, Article 6, May 2007.

[10] Yi Xia; Ping Chen; Liang Bao; Meng Wang; Jing

Yang; “A QoS-Aware Web Service Selection Algorithm

Based on Clustering”, 2011 IEEE International

Conference on Web Services(ICWS),pp. 428 – 435,2011.

[11] Chao Lv, Wanchun Dou, Jinjun Chen. “QoS-Aware

Service Selection Using QDG for B2B Collaboration”. In

Proceedings of the fourteenth IEEE International

Conference on Parallel and Distributed Systems, pp. 336

– 343, 2008.

[12] Mobedpour, D.; Chen Ding; Chi-Hung Chi; “A QoS

Query Language for User-Centric Web Service

Selection” , 2010 IEEE International Conference on

Services Computing (SCC), pp.273 – 280, 2010.

[13] Qibo Sun , Shangguang Wang, Hua Zou, Fangchun

Yang, “QSSA: A QoS-aware Service Selection

Approach”, International Journal of Web and Grid

Services, Volume 7, Number 2 , pp.147 - 169 , 2011

[14] Liu Zhi-Zhong; Wang Zhi-Jian; Zhou Xiao-Feng;

Lou Yuan-Sheng; Shang Ling; “A New Algorithm for

QoS-Aware Composite Web Services Selection”, 2nd

International Workshop on Intelligent Systems and

Applications (ISA), pp.1 - 4 ,2010

[15] Chengwen Zhang; Beijing, “Adaptive Genetic

Algorithm for QoS-aware Service Selection”, 2011 IEEE

Workshops of International Conference on Advanced

Information Networking and Applications (WAINA), 273

– 278,2011.

[16] Swarnamugi .M, Sathya .M. “Specification Criteria for

Web Service Selection Approaches”. International

Journal on Computer Engineering and Information
Technology, vol(23), Issue No: 01, pp. 29 – 382010.

http://www.cscjournals.org/csc/manuscriptinfo.php?ManuscriptCode=66.67.76.62.38.42.41.105
http://www.cscjournals.org/csc/manuscriptinfo.php?ManuscriptCode=66.67.76.62.38.42.41.105
http://www.cscjournals.org/csc/manuscriptinfo.php?ManuscriptCode=66.67.76.62.38.42.41.105
http://www.cscjournals.org/csc/manuscriptinfo.php?ManuscriptCode=66.67.76.62.38.42.41.105
http://www.cscjournals.org/csc/manuscriptinfo.php?ManuscriptCode=66.67.76.62.38.42.41.105
http://www.springerlink.com/content/?Author=Ping+Wang
http://www.springerlink.com/content/?Author=Kuo-Ming+Chao
http://www.springerlink.com/content/?Author=Chi-Chun+Lo
http://www.springerlink.com/content/?Author=Ray+Farmer
http://www.springerlink.com/content/?Author=Ray+Farmer
http://www.springerlink.com/content/?Author=Ray+Farmer
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5888675
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5888675
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5888675
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6009137
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6009137
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5556873
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5472913
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5472913
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5472913
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5762827
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5762827
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5762827

