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ABSTRACT 
This paper deals with an efficient image segmentation 

algorithm for video images which is quite useful for video 

based traffic surveillance applications. It includes video 

segmentations, morphological operations and labeling. In the 

field of surveillance system, effective video object 

segmentation is a conveyance for video analysis and 

processing. It presents a new algorithm for video object 

segmentation i.e. unsupervised image segmentation based on 

Gaussian mixture model with modified EM procedure. It uses 

the spatial unsupervised GMM clustering technique in which 

the objective function is modified or the prior term is added in 

the Bayesian. Firstly we use EM algorithm to estimate the 

distribution of input image data with which the number of 

mixture components is automatically determined. Secondly 

the segmentation is arrived at by clustering each pixel into the 

appropriate component according to the Minimum Message 

Length (MML) criterion with the help of appropriate priors 

like Dirichlet-Normal-Wishart (DNW) prior. The proposed 

technique automatically decides the best number of clusters 

for images. The best number of clusters is obtained by using 

the cluster validity criterion with the help of Gaussian 

distribution. 

Key words: GMM, EM, MML, DNW, Multinomial 

distribution, Bayesian, Fisher Information 

1. INTRODUCTION 
Many authors have presented different models for recapturing 

the images based on segmentation and to bring out different 

features such as texture, color, shape and other aspects [1-5]. 

Majority of the models focus mainly on two variations: 

Supervised and Unsupervised. In the supervised method [6] of 

learning, few features about the image are known before hand 

and the segmentation is carried out by using these features. 

However in the unsupervised model [7], the features inside 

the image are not known beforehand. In unsupervised data it 

is common to cluster the images so that similar data are 

combined together, from which the required patterns can be 

identified. In order to cluster the data, a number of clustering 

algorithms are discussed in the literature and among all these 

the K-means algorithm is popularly used. Clustering based 

image segmentation methods have been extensively used in 

many applications. Unsupervised clustering has high 

reproducibility, as its results are based on the information of 

image data itself and it does not require either an assumption 

of the model or the distribution of image data. However pixel 

based clustering algorithms cannot segment color texture 

images properly because they depend mainly on the intensity 

distribution of the pixels and ignore their geometric 

information. Due to the noise and intensity in homogeneities 

introduced in imaging process, different color textures at 

different locations have a similar intensity appearance. As a 

result the segmentation results would be totally wrong without 

the spatial information. 

A popular method to include the spatial unsupervised GMM 

clustering technique is to alter the objective function or by 

adding the prior term in the Bayesian formulation. Bayesian 

method is specifically suitable for analyzing limited data as it 

allows updating of information by combining the current 

information with the prior one. Bayesian classification system 

was used by several researchers for different applications. A 

recent application of Bayesian classifier [8] is in the 

implementation of the Bayesian training method to construct a 

series of hybrid Artificial Neural Network (ANN) structures 

to model hot rolling force prediction of real input/output data 

and practical expressions. In [9], the Bayesian estimation, 

based on some prior assumptions on the regions for the range 

image segmentation has been used. Image priors were 

modeled by a new Markov Random Field (MRF) model. 

 Gaussian mixture model GMM [10, 11] has been extensively 

used to clustering, object detection, image segmentation, 

marketing analysis, speaker identification and optical 

character recognition etc [12 - 14]. Learning a GMM includes 

guideline learning for estimating all the unknown guidelines 

and model selection for determining the number k of Gaussian 

components. Guideline learning is usually started under the 

maximum likelihood principle by an expectation 

maximization EM algorithm [11], [15, 16]. A common model 

selection approach is featured by a two-stage implementation. 

With the help of suitable priors like Dirichlet-Normal-Wishart 

prior, efforts have been made on Minimum Message Length 

for learning GMM with automatic model selection. MML 

approach minimizes a two-part message for a statement of 

model and a statement of data encoded by that model 

involving a Fisher information matrix [17, 18]. The MML 

algorithm for GMM with a prior is the product of independent 

which is developed by Wallace et al [19]. 
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We consider GMM with conjugate prior [20], which imposes 

Dirichlet prior on the mixing weights and a joint Normal 

Wishart prior combined as DNW. The algorithm for MML 

[17] is adopted here, with some changes in DNW prior. In 

addition to morphological operations, a labeling unit based on 

a contour tracing technique has been presented which extracts 

features at low extra costs. 

2.GAUSSIAN MIXTURE MODEL (GMM) 
𝒫 𝑥 =  𝜋i

𝑘
𝑖=1 𝒩 x 𝜇𝑖 ,ς捬 ,   

 (1) 

∀𝑘:𝜋𝑖 ≥ 0, 𝜋𝑖 = 1𝐾
𝑘=1      

 

Cost function for fitting a GMM For a point xi 

 

 𝒫(𝑥𝑡) =  𝜋𝑖
𝑘
𝑖=1 𝒩(𝑥𝑡 |𝜇𝑖 ,ς𝑖)    (2) 

 

The likelihood of the GMM for N points (assuming 

independent) is  

 

 𝒫 𝑥t =𝑁
t=1   πk𝒩(xi|𝜇𝑖 ,ς𝑖)

𝑘
𝑖=1

𝑁
t=1     (3) 

 

And the (negative) log-like hood is 

 

 ℒ(𝜃) = − ln πi𝒩 xt 𝜇𝑖 ,ς𝑖 
𝑘
𝑖=1

𝑁
t=1      (4) 

 

To minimize ℒ(𝜃), differentiate first wrt 𝜇𝑖  

 

  䍮ℒ 𝜃 

𝑑𝜇 𝑖
=   

π i𝒩 xt  𝜇 𝑖 ,ς 𝑖 

 π j𝒩
𝐾
𝑗=1  xt  𝜇 𝑗 ,ς𝑗  

ςk
−1 xt − 𝜇𝑖 

𝑁
t=1    (5) 

  

Rearranging    𝛾𝑖𝑡𝜇𝑖
𝑁
t=1 =   𝛾𝑖𝑡x𝑡

𝑁
t=1  

And hence  𝜇𝑖 =
1

𝑟𝑖
 𝛾𝑖𝑡x𝑡
𝑁
t=1    weighted mean 

Where   𝛾𝑖𝑡 =
π i𝒩 xt  𝜇 𝑖 ,ς 𝑖 

 π j𝒩
𝐾
𝑗=1  xt  𝜇 𝑗 ,ς𝑗  

  , ri =  𝛾𝑖𝑡
N
t=1     

𝛾𝑖𝑡Are the responsibilities of mixture component k for vector 

xt. “ri” is the effective number of vectors assigned to 

component k. 𝛾𝑖𝑡   is not binary it lies between 0 ≤ 𝛾𝑖𝑡 ≤ 1 

Differentiating with respect to σi  gives weighted covariance 

ς𝑖 =
1

𝑁𝑖
 𝛾𝑖𝑡
𝑁
t=1 (x𝑡 − 𝜇𝑖)(x𝑡 − 𝜇𝑖)

𝑇  and with respect to 

𝜋𝑖(enforcing the constraints that ς𝑖𝜋𝑖 = 1 with a Lagrange 

multiplier).Gaussian mixture model and EM algorithm with 

the multivariate normal wishart prior GMM [21] assumes that 

an observation .X ∈Rd is distributed as a linear mixture of k 

multivariate Gaussian distributions, i.e. 

𝒫 𝓍t θi = ς𝑖  𝜋𝑖𝒩 𝓍t 𝜇𝑖 ,ς𝑖 = 𝒩 𝓍t 𝜇𝑖 ,ς𝑖   

=
ς

i

n
2

2π
nd
2

exp  −
1

2
 x𝑡 − 𝜇𝑖  ς𝑖(x𝑡 − 𝜇𝑖)

𝑇     

For single variants k multivariate Gaussian distributions, 

 

𝒫 𝓍t θi = ς𝑖  𝜋𝑖𝒩 𝓍t 𝜇𝑖 ,ς𝑖 = 𝒩 𝓍t 𝜇𝑖 ,ς𝑖   

=
ς

i

1
2

2π
d
2

exp  −
1

2
 x𝑡 − 𝜇𝑖  ς𝑖(x𝑡 − 𝜇𝑖)

𝑇     (6) 

 

Where 𝜋𝑖
𝑘
𝑖=1 = 1,𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ∶ 𝜃 =  𝜋, 𝜇,𝜎 ,  

The parameters σ, π fixed, i.e., only estimate µ 

 

Expectation Maximization (EM) Algorithm: 

  

Step 1 Expectation: Compute responsibilities using current 

parameters  𝜋𝑖 ,ς𝑖  for i=1, 2, 3……K and t=1, 2, 3….N,  

 

𝛾𝑖𝑡 =
πi

old 𝒩 𝑥𝑡  𝜇 𝑖
𝑜𝑙𝑑 ,𝜎𝑖

𝑜𝑙𝑑    

 𝜋𝑗𝒩
𝐾
𝑗=1  xt |μ j

old ,σj
old  

   ,  ri =  𝛾𝑖𝑡
N
t=1   (7) 

 

Step 2 Maximization:  Re-estimate parameters using 

computed responsibilities 

 

πi
new =

ri

 rj
k
j=1

     (8) 

 

μi
new =

1

ri
  𝛾𝑖𝑘

N
t=1  xt      (9) 

 

𝜎𝑖
𝑁𝑒𝑤   =

1

ri

 𝛾𝑖𝑡
𝑁
t=1 (xt − μi

old )(xt − μi
old )T       (10) 

Repeat until convergence 

Using EM the parameters representing the Gaussian mixture 

are found. In this we use fixed number of iterations .usually 

the large gradient in the Mixture components learning occur 

with in the first iterations, while as long as the EM reaches its 

convergence only small refinements occur. Then, it is possible 

to maintain a real time process without relying on the 

unknown convergence time of the original EM, with a 

negligible lack of accuracy. 

The EM present several draw backs .particularly, methods that 

require mixture estimates for various numbers of components 

may converge to the boundary of the parameters space. This 

means that, e.g. for Gaussian mixture, the covariance matrix’s 

may become singular. A way to address this problem is to use 

adequate priories for the parameters. We use the dirchilet 

normal wishart prior, because it promotes configurations 

where the prior probability is either 0 or 1. .besides, it also 

speeds-up the components with respect to the other priors like 

Jeffrey’s prior or minimum entropy prior, therefore to a faster 

convergence 
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3. DIRICHLET-NORMAL-WISHART 

PRIOR 
Consider GMM in Eq. (6) with the prior p (θ) on its 

parameters θ = {πj, μj, σj}. The conjugate prior [20], which 

imposes a Dirichlet prior on the mixing weights  

πj, a joint Normal-Wishart prior that consists of a Normal 

distribution on μj conditional on the Wishart distributed σj 

denote this conjugate prior as DNW. The DNW prior is 

expressed by  

 

𝑃 θ = 𝐷𝑃(𝜋|α,β) 𝒩(𝑥𝑡|𝜇𝑖,ς𝑖i=1 /ε)W(σi|φ, ϑ) 11) 

3.1 Fisher information matrix 
Fisher information [22, 23] is a main concept in the theory of 

statistical inference and it is defined as: Let X= 

(X1……….XN) be a random sample, and let P (XN / θ) denote 

the probability density function for some model of the data, 

which has parameter vector θ = (θ 1 θ 2…… θ k). Then the 

Fisher information matrix in F (θ) of sample size n is given by 

the k*k symmetric matrix whose i, iT element is given by the 

covariance between first partial derivatives of the log-

likelihood, F (θ) is the Fisher information matrix 

  

F θ = −E  
∂2 ln p(XN |θ)

∂ θ ∂(θ)T
      (12) 

Due to the difficulty of getting an exact analytical expression 

of F (θ).By following [17] to approximate F (θ) by the 

following block-diagonal complete data Fisher information 

matrix Fc (θ) such that  

 

Fc (θ) − F (θ) is positive definite, 

Fc θ =
N × blockdiag[π1Fc θ1 , π2Fc θ2 … πkFc θk , Fc π ]  (13) 

 

Fc θi ∝ |σi|
−d ,  Fc π   ∝  πi

−1k
i=1      (14) 

 

Where Fc (θi) is the Fisher information of the kth Gaussian 

component and Fc (π) is the Fisher information of the mixing 

weights. It follows from Eqs. (12)– (14) that is given as 

 

 F(θ) ∝ Nk(ρ+1)    πi
ρ−1

   |σi|
−dk

i=1
k
i=1   

P θ ∝  N
k (ρ+1)

2   πi

ρ−1

2    |σi|
−d

2
k
i=1

k
i=1      (15) 

 

Where ρ= d + d (d +1)/2 is the number of free parameters in 

each Gaussian component. 

3.2 Dirichlet distribution 

The Dirichlet distribution [24] forms our first step toward 

understanding the DPM model. The Dirichlet distribution is a 

multi-parameter generalization of the Beta distribution and 

defines a distribution over distributions, i.e. the result of 

sampling a Dirichlet is a distribution on some discrete 

probability space. Let π = (π1, π2……πn) be a probability 

distribution on the discrete space X=(x1, x2 x3 ….xn).  P(X= xt) 

= πi where X is a random variable in the space. The Dirichlet 

distribution on π is given by         the formula  

𝐷𝑃 𝜋 β,α =
Γ 𝛼 

 Γ 𝛼𝛽𝑖 
𝑘
𝑖=1

  𝜋𝑖
𝛼𝛽𝑖−1𝑘

𝑖=1  ,                (16) 

𝛼 > 0, 𝛽𝑖 = 1,

𝑘

𝑖=1

𝛽𝑖 ≥ 0,𝛽 =  𝛽1 ,𝛽2 ,…𝛽𝑘  
𝑇  

Where βi= (β1; β2 …… βn) is the base measure defined on and 

is the mean value of π, and α is precision parameter that say 

show concentrated the distribution is around β. Both π and β 

are normalized, i.e. sum to unity, since they are proper 

probability distributions. α can be regarded as the number of 

pseudo-measurements observed to obtain β, i.e. the number of 

events relating to the random variable X observed a priori. 

The greater the number of pseudo-measurements the more our 

confidence in β, and hence, the more the distribution is 

concentrated around β. 

3.3 Wishart distribution 

The Wishart distribution [25] can be characterized by its 

probability density function, as follows. Let υ be a d× d 

symmetric matrix of random variables that is positive definite. 

Let υ be a (fixed) positive definite matrix of size d × d. Then, 

if ϑ ≥d, σ has a Wishart distribution with d degrees of freedom 

if it has a probability density function given by                            

W(σ
i
 φ, ϑ =

 φ 
ϑ
2    |ς i |

ϑ−d−1
2    2−

dϑ
2

𝜋
d d−1 

4  Γ(𝜗−𝑗+1
2

𝑑
𝑗=1 )

exp  −
1

2
 𝑇𝑟 σiφ     

  φ > 0,𝜗 > 𝑑 − 1             (17) 

  

Where Γ(. )the multivariate gamma is function, 

 4.MINIMUM  MESSAGE LENGTH 
MML is an information theoretic restatement of Occam’s 

razor. Among different models, the one generating the 

shortest overall code length is regarded most likely to be the 

best, Where the code length is  

Length(X, θ) = Length (X| θ) +Length (θ),  

That consists of a statement of the model. As introduced in 

Refs. [17, 18], MML seeks a model θ by maximizing the 

objective function: 

JMML  θ = ln p(XN |θ) + ln p(θ)−
1

2
 ln I(θ)   (18) 

 

In the above equation I (θ) is Fisher information matrix given 

in Equation (12). 

From equations (16)(17) & (12) to consider the following 

JMML (θ) with the DNW prior given in Eq. (11) will gives as 

follows: 

UMML
DNW   θ, ζ = 

ln p( XN  θ + ln DP 𝜋 α, β +𝒩(𝑥𝑡|𝜇𝑖,ς𝑖/ε) 

+ ln W(σ
i
|φ, ϑ)−

1

2
 ln F θ  k

i=1   

      =

ln P( XN  θ +      αβi −
ρ+1

2
 lnπi

k
i=1 +

ϑ

2
  ln ς𝑖 

k
i=1 −

ε

2
    μi −mi 

Tk
i=1 ς𝑖 μi − mi −

1

2
 Tr ς𝑖 φ +k

i=1 ln Γ(α) −

 lnΓ(βi
k
i=1 ) +

kd

2
 ln 2π +

kd

2
−

kdϑ

2
 ln2− k ln Γ  

ϑ

2
 −

kρ

2
ln N       (19) 

http://en.wikipedia.org/wiki/Characterization_%28mathematics%29
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Positive-definite_matrix
http://en.wikipedia.org/wiki/Probability_density_function
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Fix the hyper parameters as α= k/2, each βi =1/k, β =0, υ = 0 

and ϑ =0 

5. SEGMENTATION ALGORITHM OF 

GMM WITH MML- DNW 
The segmentation consists of two steps. The first step is 

mixture estimation. The method is used to estimate the 

mixture parameters and determine the number of Gaussian 

components. The second step is pixel clustering. The 

segmentation is carried out by assigning each pixel into a 

proper cluster according to the Maximum likelihood (ML) 

estimation is: 

E-step: for i=1, 2, 3….k, and γit and ri by equation (7) 

M-step: update the parameters  

 

 θ =   πi  ,μi ,ςi i=1
k  

πi
new =

ri

 rj
k
j=1

,      

 ri =  γit
N
t=1 + αoldβi

old  –
ρ+1

 2
,      

Where  ρ = d +
d(d+1)

2
,    (20)   

               

μi
new =  

1

ri +εold     
     γit

N
t=1 xt + εold mi

old   ,  

 

oit = xt − μi
old ,      (21) 

 

 ςi
new =

1

ri +ϑold   γit
N
t=1 oit oit

T + βold  μi
old −mi

old   μi
old −

mi
old  + φold       (22) 

 

Update the prior hyper-parameters {mi} in the following 

cases: 

 

General case  μi
old = mi

old  

Special case (constrain each mi = m): ∀i, 

 𝑚𝑖
𝑛𝑒𝑤 =    𝜎𝑖

𝑜𝑙𝑑𝑘
𝑖=1  

−1
    𝜎𝑖

𝑜𝑙𝑑𝜇𝑖
𝑜𝑙𝑑𝑘

𝑖=1  ,   

Then update the prior hyper-parameters {α, β, ε, υ, ϑ}: 

 

αi
new =

αi
old ηδαi

  αj
old + ηδαj 

k
j=1

  ,  

δαi = lnπi
old − ψ(βoldαi

old )  +   ψ(βold )  (23) 

 

βnew =  βold + ηδβ,   δβ =  αi
old δαi

k
i=1   (24) 

 

εnew =
kd

  μ i
old −m i

old  
T

    ς i
old (μ i

old −m i
old )k

i=1

   (25) 

 

φnew = kϑold   ςi
old

k

i=1

 , 

𝜗𝑛𝑒𝑤 = 𝜗𝑜𝑙𝑑 + ηδϑ θold , ζold  ,             (26) 

 

δϑ θ, ζ =

 ln ςi  
k
i=1 +  k ln φ − kd  ln2− k ψ 

ϑ+1−j

2
  d

j=1  (27)  

 

Where δ = {α, β, ε, υ, ϑ}, i =1, 2... k do if πi →0 then discard 

component i, let k = k – 1 and  τ = τ + 1; The MML objective 

function as UMML (τ) by Eq. (19). 

6. MORPHOLOGY 
Erosion and Dilation (E&D) are the two foundations in 

mathematical morphology, since most morphologic operations 

can be broken down into these two basic operations [26]. For 

example, operations such as opening, closing, gradient, and 

skeletonization are performed with these two base functions. 

To increase the overall performance of the process, it is also 

desirable that the size of the Structuring Element (SE) can be 

changed, With a flexible SE size comes the ability to 

compensate for different types of noise and to sort out certain 

types of objects in the mask, e.g., high and thin objects 

(standing humans) or wide and low objects (side view of 

cars). In this paper X will represent the binary input image 

and Y the structuring element. If the SE is both reflection 

invariant, i.e. Y = ^Y, and decomposable, i.e. Then the 

following two equations can be derived 

𝑌 = 𝑌1 ⊕  𝑌2  

𝑋 ⊕ 𝑌 =  𝑋⨁𝑌1 ⨁𝑌2 =   𝑋′ ⊖𝑌1 ⊝ 𝑌2 
1
 (28)       

𝑋 ⊖ 𝑌 = 𝑋 ⊝  𝑌1 ⊕  𝑌2 = (𝑋⊝ 𝑌1)⊖𝑌2    (29)        

Where ´ is bit inversion, ⊕ is dilation, and ⊖ is erosion. In 

addition, for a SE to be reflection invariant it has to be 

symmetric both in respect to the x and y direction, e.g., a 

square or a circle. However, one common class of SEs that is 

both decomposable and reflection invariant is rectangles of 

ones. This type of SE is well suited for the opening and 

closing operations that are needed in this system. 

An example of erosion with a decomposed SE is shown in 

Fig. 1.were the SE is decomposed into Y1 and Y2. The input 

is first eroded with Y1 and then Y2. The first position of Y1 

and Y2 that produce a one is shown in the Figure, together 

with location in the output of this one. With a decomposed 

SE, the number of comparisons per output is decreased from 

the number of ones in Y to the number of ones in Y1 plus Y2. 

To perform dilation, the input X and the result is inverted. 

Hence, the same inner kernel can be used for both operations. 

With rectangular Structuring Element of ones, erosion can be 

performed as a summation followed by a comparison. To 

perform binary erosion, bits in X that lies directly below the 

current position of Y are added and compared to the size of Y. 

If the sum is equal to the size of Y the result is one otherwise 

zero. When combining this with decomposition, the 

summation can be broken up into two stages, where the first 

stage compares the number of one’s under Y1 to the width of 

Y1 and the second stage compares the number of one’s under 

Y2 in the result from the first stage to the height of Y2. 
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Fig 1: Input and output to an erosion operation were the 

SE is decomposed into B1 and B2. 

7. LABELING 

After segmentation, a binary frame is produced containing 

connected clusters of pixels that represent different objects. 

Assuming that noise has been removed by the morphology 

unit, the frame now only contains objects of interest that can 

be tracked and classified. To be able to separate and 

distinguish between these clusters, they have to be identified, 

i.e. labeled. Various labeling algorithms have been proposed 

and a survey of various algorithms can be found in [27].A 

common property for all these algorithms are that they are 

memory access intense. Furthermore, all algorithms have to 

handle the same obstacle, i.e. label collisions. In a binary 

image, a typical label collision occurs when a u shaped object 

is encountered. Since an image typically is scanned from top 

to bottom and from left to right, it is not possible to know that 

the two pillars in the u is part of the same object until the 

bottom part of the u is encountered. Two common methods to 

handle this problem are: • Equivalence Table Based 

Algorithms – Two scans with a corresponding equivalence 

table. • Contour Tracing Based Algorithms – A single scan 

with contour tracing. Equivalence table based algorithms [28] 

scan through the memory writing every label collision into an 

equivalence table. The first label scan is completed on the fly 

as the frame is written into the memory by comparing each 

pixel with its neighbors to the left and above. After the first 

scan all pixels are assigned a label and all collisions have been 

detected. The second scan resolves all collisions and reduces 

the number of labels per cluster to one. Contour tracing based 

algorithms [29] is a technique that requires one global scan 

together with some additional random memory accesses for 

the contour tracing procedure. The major advantage is that 

label collisions will never occur since when an unlabeled 

cluster is encountered, the contour of that cluster is labeled 

immediately and every pixel within a label is regarded as part 

of the same cluster. If a cluster with a labeled contour is 

encountered, the scan proceeds without modification 

continuing until an unlabeled pixel is reached, restarting the 

contour tracing procedure, or the last pixel is reached. If a 

cluster has a hole inside its contour, this hole will not be 

traced. Every pixel between two labels can therefore be 

considered a part of an object, cluster holes are filled. 

Extracting properties by post processing in the tracking stage 

or by a general purpose processor can be time consuming, 

thus every property that can be extracted by an algorithm 

without inferring additional hardware complexity should be 

seen as an advantage. 

In comparison, both types of labeling algorithms can extract 

maximum and minimum coordinates and the number of pixels 

in each cluster. In addition, the contour tracing algorithm can 

calculate moments (center of gravity) and fill holes inside the 

clusters. Thus, the contour tracing label algorithm is more 

suitable to be used in a automated surveillance system. 

8. RESULTS &CONCLUSIONS 
A visual traffic surveillance application oriented, probabilistic 

approach based large scale moving objects strategy has been 

presented in this paper. The modified proposal of an 

unsupervised color image segmentation method based on its 

Gaussian mixture model with DNW prior is presented. The 

color image that has been observed was considered as a 

mixture of multivariate normal densities. The segmentation is 

processed by ML estimation with MML Bayesian and DNW 

prior. The advantage of our method lies in two features, first 

by using the K means algorithm we successfully initialized 

the problem of EM algorithm. Second advantage of the 

algorithm is that the amount of segmentation region is 

automatically determined by the MML Bayesian prior with 

DNW, so the algorithm is called unsupervised. This approach 

shows good performance in terms odd adaptability, accuracy 

and robustness. Experimental results show that this method 

has better segmentation results when compared to other 

unsupervised methods. 

The segmentation results in Fig. 2 shows that the proposed 

system determine accurately the object borders between the 

regions that are characterized by similar color compositions 

and it is compared with MML-Jeff, FCR, and CTM. The 

comparison is based on four performance measures namely, 

Probabilistic Rand Index (PRI), the Variation of Information 

(VOI), Global Consistency measure (GCE) and the boundary 

displacement error,(BDE) following [30,31]. PRI calculates 

the consistency between the computed segmentation and the 

ground truth. The VOI measures the amount of randomness in 

segmentation which cannot be explained by other. The GCE 

measures the extent to which one segmentation map can be 

viewed as are refinement of segmentation. BDE measures the 

aver-age displacement error of one boundary pixel and the 

closest boundary pixels in the other segmentation. Table .1 

shows the performance measures for the obtained 

segmentation results by MML-Jeff, FCR, and CTM and the 

MML-DNW on the traffic images presented in Figures 1. 

Higher is better for PRI and lower is better for VOI, GCE and 

BDE. 
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(c)    (d) 

         

  (e)    (f) 

Fig 2: a) original image b) GMM with MML with Jeffries prior Method c) FCR Method 

d) CTM Method e) GMM with MML with DNW f) after morphological operation. 

 

Table 1. Performance of proposed algorithm with    existing algorithms for the given images 

 

 

 

 

  

 

 

 

 

 

METHOD PRI GCE VOI BDI 

MML-DNW 0.892 0.156 1.45 5.32 

MML-JEF 0.885 0.173 1.42 5.27 

FCR 0.782 0.211 2.10 7.54 

CTM 0.76 0.178 1.93 7.62 
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