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ABSTRACT  

This paper proposes the extension of generalized internal model 

control (GIMC) based diagnosis and fault tolerant control to 

singularly perturbed system. This control method consists of two 

parts: a controller which guaranties nominal performance and 

works in the fault free case and a robustness controller to 

compensate the fault when a sensor failure is detected. This work 

describes the way to design such controllers for singularly 

perturbed systems so that the performance with the nominal 

controller may be guaranteed in the case of sensor failure. 
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1. INTRODUCTION 
Dynamics of many physical systems contain the interaction of 

slow and fast phenomena. Such systems are called singularly 

perturbed systems. Singular perturbation problems involving 

several small parameters can be found in many areas like 

engineering and applied mathematics communities. This is due to 

the difficulty of these problems and in part to their wide 

applicability in power system dynamics, control of large scale 

systems, chemical reactors and similar settings. Small singular 

perturbation parameters typically represent unmodelled parasitic 

capacitances, time and inertia constants . . . . Controller design for 

such systems often suffers from high dimensionality and ill-

conditioning, it is considerably simplified if a decomposition of 

fast and slow dynamics can be achieved [1, 2, 3, 4, 5]. Those 

systems, like other automated systems, are vulnerable to faults 

which must be detected and isolated; when a fault occurs in the 

system, the controller, the sensor or in the actuator, it can be 

amplified by the closed-loop control systems, and causes 

malfunction of the loop [6, 7, 8, 9, 10]. In order to overcome the 

limitation of conventional feedback, fault tolerant control systems 

are implemented in order to tolerate the presence of faults  [11, 

12]. There are two main classes of fault tolerant control 

approaches: active and passive methods. In active approaches, the 

principle is to use a block to detect and isolate faults in the 

control system. Once the diagnosis block detects and isolates a 

fault, the parameters and eventually the structure of the 

reconfigurable controller will be modified to guarantee the 

nominal system performance. In the passive approach, also called 

reliable control, a fixed controller is designed taking into account 

the characteristics of the fault. Usually, robust control techniques 

will be used without the need for system reconfiguration and fault 

detection [13, 14]. Several approaches have been developed to 

design a reliable controller, such that the resulting design 

guarantees closed-loop stability not only when all control 

components are operational, but also when faults occur [15, 16, 

17, 18, 19, 20]. Veillette (1995) employed the algebraic Riccati 

equation approach to develop a procedure for the design of state-

feedback controllers, which could tolerate the outage within a 

selected subset of actuators while retaining the stability and the 

known quadratic performance bound. Yang et al. (2001) and 

Veillette et al. (1992) studied the design of controllers that could 

guarantee locally asymptotic stability and H∞ performance even 

when some components failed. This method was extended in [21, 

22] to the study of reliable control of SPS. Li et al. (2002) studied 

in [23] the reliable linear quadratic state-feedback control for two 

time scale singularly perturbed systems using slow and fast 

subsystems to design composite control law stabilising the full-

order closed loop system despite actuator outages. The existing 

approaches to the design of fault-tolerant controllers are mostly 

based on robust control techniques. A single controller is usually 

designed using robust control methods by assuming the possible 

failures as model uncertainties. The resulting controller is always 

active in the presence or absence of faults.  This is the worst case 

design which may perform poorly compared with a non-fault 

tolerant control system when there are no failures [24, 25].  Zhou 

et al. (2001) propose new controller architecture called 

generalized internal model control (GIMC) and based on coprime 

factorization. The performance controller make it possible to 

maintain the system performances in the model uncertainties and 

external disturbances case; the robustification controller will then 

be active when there are model uncertainties or external 

disturbances. This architecture is then applied to the fault tolerant 

control so that the first controller is designed to satisfy the system 

performance and the second will be active if faults occur. 

Campos-Delgado (2003) et al. applied the GIMC to MIMO 

systems and tested this structure to a gyroscope experiment. The 

main goal of this work is to extend results in [24, 25] to the study 

of the fault tolerant control problem for singularly perturbed 

systems. 

2. MODELLING AND REDUCTION OF 

TWO TIME SCALES SINGULARLY 

PERTURBED SYSTEMS 
The singularly perturbed systems are systems presenting a strong 

inter-connection between their dynamics. Their models, in a 

continuous case, have the following form [26]: 
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where: 
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x1  n1, x2  n2, u  p, y  m, x1(t0) = x10 and  x2(t0) = x20. 

x1(t) and x2(t) are respectively  the slow variables and the fast 

variables of the system and µ is a positive scalar taking values 

between 0 and 1. Two examples of physical systems being able to 

be modelled using the singularly perturbed systems are, on the 

one hand, electric motors with their loads and, on the other hand, 

robots with flexible articulations.   

The SPS presenting two time scales can be de-coupled in two 

sub-models associated with the fast variables and slow variables 

in order to simplify the analysis and synthesis of high-ordered 

systems. The procedure of reduction is carried out by neglecting 

the fast transients against the variation time of dominant slow 

variables. The slow variables determine the dynamics of the 

system [27]. 

The slow subsystem (SS) is obtained by considering that the fast 

variables in x2 reached their established regime, which 

corresponds to the assumption µ = 0.  This leads then to the 

following slow subsystem of dimension [26]: 

  

    

1l
l 1l l l

l l 1l l l

dx
= A x + B u

dt

y = C x + D u


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
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where: 
-1

l 11 12 22 21A = A - A A A ,
-1

l 1 12 22 2B = B - A A B , 

-1
l 1 2 22 21C = C -C A A  and 

-1
l 2 22 2D = D -C A B  

If A22 is non-singular, the slow model provides an approximation 

of the SPS behaviour. This will be valid for t ≥ t0 if the following 

approximation is considered x1l (t0) ≈ x10.  

The fast subsystem is obtained by assuming that the slow 

variables are constant during fast transients. This leads then to the 

following reduced model of dimension n2 : 
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where ur and ul are respectively  the fast and the slow parts of the 

input u, so that : u = ur + ul. 

  
The parameterization of the singularly perturbed system GIMC 

makes use of stable coprime factorization studied in [2]. 

3. SPS COPRIME FACTORIZATION 
Consider the following linear time invariant SPS 
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 1 2C = C C  

The transfer function G(s,µ) of this system is: 

-1G(s,µ)= C (s I - A(µ)) B(µ)+D                            (5) 

where ‘s’ is Laplace variable. 

G(s,µ) is two-frequency scale transfer function (TFSTF) if each 

term can be expanded as [2] : 

k
1 2

k
1 2

n (s,µ)+s n (µ s,µ)
g(s,µ)=

d (s,µ)+s d (µ s,µ)
                                  (6) 

 

where  

a- n1, n2, d1 and d2 are polynomials with coefficients 

analytic at µ = 0. 

b- 1 1deg d (s,µ) = deg d (s,0) = k  

c- 2 2deg d (p,µ) = deg d (p,0)  

d-    1deg n (s,µ) k  

e-   2 2deg n (p,µ) deg d (p,µ)  

f- the constant term of n2(p,µ) and d2(p,µ) are both zero. 

 

The transfer functions of the slow and fast submodels are 

respectively expressed as:  

 
-1

l l l l lG (s)= C (s I - A ) B +D = G(s,0)                   (7) 

and 

-1
r 2 22 2

µ=0

p
G (p = µ s)= C (s I - A ) B +D = G( ,µ)

µ
 (8)  

where p = µs  is the high-frequency scale corresponding to the 

fast time scale τ = t/µ  in the time domain representation. The 

transfer functions Gl(s) and Gr(p) are called the low-frequency 

(slow) and high-frequency (fast) approximations of G(s,µ), 

respectively. The TFSTF G(s,µ) can be approximated by [2]: 

l r lG(s,µ) G (s)+G (p)-G ( )                                  (9) 

where  

l rG ( )= G (0)                                                          (10) 

 

Next, the coprime factorizations of the slow subsystem, fast 

subsystem and the full SPS will be defined. 

The slow and fast subsystems have the state-space realizations 

(Al, Bl, Cl, Dl) and (A22, B2, C2, D), repectively. Assuming that 

(Al,Bl) and (A22, B2) are stabilizable and (Cl, Al) and (C2, A22) are 

detectable. There exist matrices Fl, Kl, F2 and K2 such that (Al - Bl 

Fl), (Al - Kl Cl), (A22 –B2 F2) and (A22 –K2 C2) are Hurwitz 

matrices. For the slow subsystem, define  

 

1( ( ))l l l l l lM I F sI A B F B    , 

1( ( ))l l l l l l l lN C sI A B F B D M    , 

1( ( ))l l l l l lM I C sI A K C K    , 

1( ( ))l l l l l l l lN C sI A K C B M D      

1( ( ))l l l l l l l lY I F sI A K C B X D     , 

1( ( ))l l l l l lX F sI A B F K    , 

1( ( ))l l l l l l l lY I C sI A B F K D X      , 

1( ( ))l l l l l lX F sI A K C K    , 

Then the coprime factorization of the slow subsystem is:  

1 1( )l l l l lG s N M M N                                           (11) 

where all eight matrices are stable and satisfy the generalized 

Bezout identity 
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In the same way the coprime factorization of the fast subsystem 

and the full SPS are obtained as following: 

1 1( )r r r r rG p N M M N                                          (13) 

and 

1 1( , ) ( , ) ( , ) ( , ) ( , )G s µ N s µ M s µ M s µ N s µ       (14) 

The selection of matrices F and K such that (A –B F) and (A –K 

C) are Hurwitz matrices is a pole placement problem which has 

been thoroughly investigated for singularly perturbed systems [4]. 

It is well known that if Fl, Kl, F2 and K2 such that (Al - Bl Fl), (Al - 

Kl Cl), (A22 –B2 F2) and (A22 –K2 C2) are Hurwitz matrices, then F 

and K are chosen as [4]: 

1 2[ ]F F F  and 
1

2 /

K
K

K µ

 
  
 

  

where 
1 1

1 2 22 2 2 22 21( ) lF I F A B F F A A                            (15) 

and  

1 1
1 2 22 2 12 22 2( )lK K I C A K A A K

 
                    (16) 

4. RESIDUAL GENERATION 
If a plant model is available, we use the redundancy of 

information provided by the latter to generate signals, called 

residuals, carrying information on the faults. The residual should 

remain close to zero in fault-free case and become different from 

zero when a fault appears.  

In presence of fault d(t), the output becomes : 

( ) ( , ) ( ) ( ) ( )dy s G s µ u s G s d s               (17) 

Where Gd(s) is the transfer function between the output and the 

fault. Using the equation (14), the relation (17) will be 

transformed as: 

 

-1
dy(s)- M (s,µ)N(s,µ)u(s)= G (s)d(s)                    (18) 

After multiplying the above equation with M(s,µ) : 

dM(s,µ) y(s) - N(s,µ)u(s) = M(s,µ)G (s)d(s)  
        

 (19) 

In the fault free case, the expression keeps a null value; in the 

occurrence of fault, the expression will be different from zero. 

Then the following residual can be defined:   

 

( , ) ( , ) ( ) ( , ) ( )

( , ) ( ) ( )

r s µ M s µ y s N s µ u s

M s µ G s d sd

 



 


           (20) 

The principle is illustrated in the following figure:  

 

 

 

 

 

 

 

 

 

 

To generate a diagnosis algorithm independent of the singularly 

perturbation parameter µ, we will use the slow parts of the 

coprime factors, such that [4] : 

 

( , ) ( ) (0)

( , ) ( ) (0)

slow l r

slow l r

M s µ M s M

N s µ N s N

 




  

  
               (21)  

( , ) slowM s µ  and ( , ) slowN s µ  are slow parts of ( , )M s µ  and 

( , )N s µ , respectively. ( )lM s and ( )lN s  are the slow 

subsystem coprime factors ; ( )rM s  et ( )rN s are the fast 

subsystem coprime factors. An approximation of the residual 

r(s,µ) is given by :   

 

l r l rr(s) = M (s) M (0) y(s) - N (s) N (0) u(s)               (22) 

 

The residual r(s) is independent of the singularly perturbation 

parameter µ, it is a good approximation of the residual r(s,µ). 

5. FTC FOR SINGULARLY PERTURBED 

SYSTEMS USING GIMC 
This control structure was developed by [24, 25] to resolve the 

performance and robustness problems, then it was applied to fault 

tolerant control. This control system consists of two parts: a 

nominal performance controller which works in the fault free 

case and a fault tolerant controller to compensate the effect of a 

sensor failure. The reconfiguration step is guaranteed by adding a 

fault tolerant loop to overcome the fault effect. The method for 

linear systems is presented below. 

Consider the linear plant P with a nominal model P0 and K0 the 

corresponding linear stabilizing controller. Define the following 

coprime factorizations of K0 and P0: 
1

0K V U    and 

1
0P M N   . Then all controllers K0 that internally stabilizes 

P0 can be represented as following: 

1( ) ( )K V Q N U Q M       such that 

det ( ( ) ( ) ( )) 0V Q N       for Q H . This new 

controller parameterization called GIMC is illustrated in figure 2 

and proposed in [24, 25]. The controller Q(s) will be active only 

in the fault occurrence, i.e., when the residual signal defined in 

(22) is different from zero.  Other ways, the system will be 

controlled using the performance controller K0.   

   

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. FTC based on GIMC structure. 

 

The GIMC structure will be now extended to fault tolerant 

control of singularly perturbed systems. Consider P(s,µ) a TFSTF 

of the singularly perturbed system (1): 

1( , ) ( ( )) ( )P s µ C s I A µ B µ D                            (23)  

It is shown in [2] that the coprime factors of  P(s,µ) are:  

1 1( , ) ( , ) ( , ) ( , ) ( , )P s µ N s µ M s µ M s µ N s µ        (24) 
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Fig 1 : Residual generation 
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and there exists 
*µ 0  such that for all positive 

*µ µ , the 

high-frequency transfer function approximation coincides with 

the corresponding transfer function of the coprime factorization 

of the fast model (3), i.e., 

( , ) ( )fast rN s µ N p                                                  (25) 

and 

( , ) ( )fast rM s µ M p                                                (26)   

and Slow and fast parts of the coprime factors can be obtained 

using coprime factors of  slow and fast subsystems, i.e.,  

( , ) ( ) (0)slow l rM s µ M s M                                     (27)          

and  

( , ) ( ) (0)slow l rN s µ N s N                                          (28)  

( , ) slowM s µ  and ( , ) slowN s µ  are slow parts of ( , )M s µ  and 

( , )N s µ , respectively.  ( , ) fastN s µ  and ( , ) fastM s µ  are fast 

parts of ( , )M s µ  and ( , )N s µ , respectively.  

 

An approximation P0(s) of the TFSTF P(s,µ) will be considered 

such that: 

1

1

( ) ( , ) ( , )

( , ) ( , )

0 slow slow

slow slow

P s N s µ M s µ

M s µ N s µ







  
                       (29) 

 

This approximation P0(s) of P(s,µ) allows the calculation of the 

stabilising controller K0 with the following coprime factorization: 

1
0K Y X                                                             (30) 

The set of all admissible controllers that stabilize P(s,µ) such that 

the closed loop transfer function is a stable TFSTF is given by 

[2]: 

 
1( ) ( )K Y Q N X Q M                                    (31) 

Q(s,µ) is stable TFSTF matrix and 

det ( ( , ) ( , ) ( , )) 0Y s µ Q s µ N s µ  . 

 

Thus, the fault tolerant controller based on the GIMC for 

singularly perturbed systems can be designed as following: 

a- Design K0 to satisfy the system performance of P0 by 

assuming no faults.  

b- Design Q to tolerate faults. 

Q is active only when the residual signal is different from zero. Q 

can be designed using passive or active fault tolerant control 

methods. 

6. CONCLUSION 
In this note, we studied the fault diagnosis of singularly perturbed 

systems using slow and fast subsystems. The so generated 

residual is used to build a GIMC based fault tolerant control 

structure to singularly perturbed systems. The controller design 

for performance and fault tolerance is separated. This structure 

operates in frequency domain; coprime factors of singularly 

perturbed systems were developed and approached using slow 

and fast subsystem coprime factors. Thus, the nominal model, 

used to design the performance controller, was suggested as the 

approximation of the full system.  
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