
 International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.3, April 2012

23

Rabia Bashir

DCE, College of E & ME
National University of Science

and Technology (NUST)
Pakistan

ABSTRACT

In software engineering, an Anti-pattern (or Anti-pattern) is a

pattern that may be commonly used but is ineffective and/or

counterproductive in practice. Anti-patterns or bad practices

are not novel; they are ordinary in software industry, and have

been since software's inception. The foundation of anti-

patterns initiated in 1980 and continued to nurture in software

community in 1990s. Analysis of anti-patterns assists to

identify the common faults in software projects. These are the

practices performed by experienced people or project

managers that provide guidance to avoid project failure. We

feel there is a lack of empirical knowledge about anti-patterns

in open source software development which direct the

practitioners about bad practices that can influence the

software quality.

This paper exposes the software project management anti-

patterns and their impact on open source software

development where developers work in variable locations,

seldom or certainly not meet face to face, and manage their

activities through emails and video conferencing. The main

aim of the paper is to uncover the anti-patterns, which are

present in open source software development and to provide a

knowledge based solution to avoid them.

Keywords
Open Source Software, Anti-patterns, Pitfalls, Issues, Bad

Practices

1. INTRODUCTION
An anti-pattern is a challenging software project situation. It

can be caused by human mistakes (management anti-pattern)

or by community/society issues (environmental anti-pattern)

[1]. The term anti-pattern was proposed by Andrew Koenig in

1995 motivated by the book named Design Patterns, by Gang

of Four which introduced the idea of software design patterns

[2]. Anti-pattern paradigm can include bad practice, incorrect

response to group of events, failure to forecast, understand or

manage project factor etc.

The idea of anti-pattern is intimately associated to project risk,

in this way that anti-patterns are prospective risks to a project

if their reasons occur during project operation [1]. Anti-

patterns can be generated by overview of project cases where

wrong assessments have been done. Anti-patterns articulate

general mistakes that are made during development of

software and their solutions. Therefore, anti-patterns guide us

what to avoid and how to handle the problem when we get it.

[3]. Anti-patterns are knowledge items and they have to be

shared with project management society in efficient way [1].

Furthermore, anti-patterns are normally interconnected and

seldom emerge in isolation. Consequently, identifying which

anti-patterns present in software project is difficult job which

needs special/expert knowledge [4].

Anti-patterns offer real-world knowledge in identifying

frequent problems in software development and present the

tools to allow software developers and managers to spot these

problems and find out their fundamental reasons. Another

merit of using anti-pattern is these methods provide general

vocabulary of representing and classifying problems and

communicating their solutions [4].Open source software

development is changing the strategies of classic software

development [5]. It is the method by which open source

software (publically available source code) is built. Open

source products are offered with source code under license to

understand, modify and enhance its design and functionality.

We consider that there is deficiency of empirical knowledge

regarding anti-pattern in open source software development

which may guide the experts about bad practices that can

affect the quality of software [5].

Normally, open source software is developed by internet-

based society of developers [5].

Geographically isolated software developers develop

trustworthy and innovative software over the internet;

Knowledge is key element for dealing with complex situations

and preventing bad decisions and their results. Knowledge on

a specific area requires to be represented in structures that

assist knowledge capturing, storing, knowledge searching,

retrieving and finally reusing [1]. For anti-patterns, a

knowledge-based system that can help project managers in

identifying bad practices/anti-patterns is needed [4].

Knowledge-base is a repository for storing related information

about any specific subject. Knowledge-based systems are one

of the applications of artificial intelligence and they transmit

knowledge from human being to machine (computer) [4].

The purpose of this research is to first explore the pitfalls/anti-

patterns in open source software development and then

provide an ontology based knowledge management solution

to mitigate these problems. We will start with identifying the

key issues / pitfalls in open source development practices and

will aim to provide an ontology based knowledge

management solution to the issues identified in the first phase.

2. RELATED WORK
In [7], the authors have discussed the issue of maintenance of

dispersed developers‟ group awareness. In their opinion, Open

source software development projects are very much shared

and dispersed. Except the distance problems these projects

have produced huge, multifaceted and successful software

systems. However, it is still question that how the dispersed

teams handle their teamwork and collaborate with each others.

Their main focus is how the geographically scattered teams

manage team awareness.

They conducted interviews of software developers, study

project communication and come across with different project

artifacts of three successful open source software projects.

They explored that distributed software developers have

Anti-patterns in Open Source Software Development

International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.3, April 2012

24

required keeping knowhow of each others, and have common

information of whole development team and in depth

knowledge of people with whom they are going to work .even

if there are various ways of information, but this information

is maintained mainly through textual communication (email

list and chat tools). These text based channels contain many

features that assist to manage the awareness.

Saleh et. al. [8] have proposed a Quality Assessment System

Based on Feedback to maintain open source software (OSS)

Evolution. To uphold the software evolution of huge OSS is a

main challenge. Some aspects that make software difficult to

manage are distributed software development teams, constant

and quick turnover of volunteers, lack of proper procedures

and ways, absence of project planning and project

documentation. Their work is based on distant and constant

analysis of open source system to observe progress using

existing resources like code repository of CVS, exchange of

emails and commitment log files. Progress monitoring

depends on three major services. The first service evaluates

and track the rise in difficulty and fall in quality; the second

helps scattered software developers by conveying them report

as a feedback after everyone contribution; the third permits

developers to get an in depth overview of software by giving a

dashboard of project evolution. For the solution of these

problems their remote OSS development analysis strategy

gives a wide range of services by making use of CVS as data

source. It uses a Plugin-based Architecture (PAM) for

maintenance of software; it provides various fundamental

software modules for repair/maintenance. Moreover, this

approach uses internet for communication among CVS and

Software Cost-effective Change and Evolution Research

(SOCCER) laboratory. SOCCER laboratory [Fig.1] supplies

development and quality control mechanisms automatically.

Martin et. al. [9] presented quality features of OSS projects

achieved by investigatory interviews with OSS developers.

Various quality issues have been identified that OSS are

facing. These findings can be utilized as beginning point for

future exploration regarding quality in OSS projects, along

with the implementation of quality enhancement methods and

approaches.

Fig 1: Infrastructure for Remote OOS evolution

analysis[8]

They showed the importance of additional research on OSS

quality features and recommended to discover other quality

problems that are not in their research study and to estimate

the effect of diverse practices on software project quality. It

has been argued that tools are required to find out and

measure quality, both for education to carry out advance

studies and for OSS developers to perk up project quality, and

those collaborations might be apparent in this field. Anupriya

Ankolekar et. al. [10] investigated that semantic web

technologies can add different facets of collaboration in OSS

environment like maintaining cooperation and teamwork

between software developers. Furthermore, they developed

ontologies for cooperation tools and developed refined agents

that can control the data in those tools and represent

significant information. They also stated various challenges to

cooperate in OSS development in terms of finding an expert

person at the distant location, less communication between

team members and reduced awareness in result of less contact

and absentness of background or contextual work.

Kevin et. al. [11] have shared case study knowledge of

developing small software whose structural model depends on

OSS. This study has described the benefits and pitfalls coming

together the people, culture and software development

practices crosswise an OSS and vendors. Open source

products are less documented or sparse or not on hand at all,

inadequate testing and may have incomplete requirements.

Klaas et.al .[12] have conducted a literature review and

indentified the challenges that emerge during OSS

development. Their study is more focused towards the

challenges of using OSS in developing the system.

They have demonstrated the results of their study by finding

the challenges that exist in developing OSS and classified 21

challenges that can assist the developers to have awareness

about them in case of using OSS for the development of

product. They are assertive that these findings are worth some

for researchers and people from the software industry.

Developers will become more alert about the issues and

challenges of making use of OSS in developing software and

will also assist researchers to think and propose the solution

for these challenges.

In [13] author has reviewed the usability related case studies

in eight projects of Free/Libre/Open Source Software. Most

essential issue that was reported in case studies of reviewed

projects was deficiency of user research. Author says dealing

with three major challenges of culture, participation and

leadership will assist to make it simple to accomplish the user

research in these software projects. These projects will be

capable to attain good usability without any difficulty and to

enhance the usability status of OSS.

In our work we have provided knowledge based solution

for anti-patterns in open source software development by

identifying two ontologies: Bug ontology and CVS

ontology and also provided their implementation.

3. PROPOSED MODEL
Ontologies are defined as a formal specification of a shared

conceptualization. [Borst and Akkermans (1997)].They

present an opportunity to reuse domain knowledge and

coordinate information between persons or software agents.

Many procedures and methodologies for developing,

maintaining and analyzing ontologies are provided. e.g.

Methodology of Uschold and King, Gruninger and Fox‟s

methodology etc. Since there are many anti-patterns of open

source projects involved in our case, and it is very hard to

cover every aspect of anti-patterns, we are currently focusing

on the lack of communication and coordination which is one

of the core issues in open source software development.

International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.3, April 2012

25

Fig 2. Methodology Structure, Uschold and King’s

Methodology [14]

To analyze the communication and coordination knowledge

and provide a base for sharing of common understanding, we

have identified two ontologies:

 Bug Ontology

 CVS Ontology

Many software developing companies use bug tracking. We

can use Bug ontology for tracking bugs.

Below are few considerations for a scenario:

Consider the following scenario:

1. Specify a bug and few checks/limitations (bug fixing, bug

fixing cost), what is the suitable approach for solution?

1.1 Specify a bug and its time limitations, what is the suitable

approach for solution?

1.2 Specify a bug and its cost limitations, what is the suitable

 approach for solution?

2. Which bugs are with costly solution?

Example:

Bug Ontology:

Concept/Idea: bug (bg), solution(sol),costly-

solution(cs),time(tm),cost(co)

Attributes: bug-identifier (bg, id).

Relations/Associations: bug-solution (bg, sol), solution-time

(sol, tm), Solution-cost(sol, co).

The basic thought is that it should wind up as powerful and

strong Bug Ontology that can be used by bugs tracking tool

i.e. bugzilla and other data storages to allow the people to

query regarding bugs [12-14].

Figure 3 shows the main concepts involved in Bug ontology.

One of the major concepts is issue i.e. BugTracker that deals

with BugIssue to track the bugs in the source code and the

probability of these issues can be major, minor and critical.

Other concepts are Project and SoftwarePackage, and issue is

related to any project or SoftwarePackage. Project concept is

showing the developer, documenter of the project and when

the project is released. A repository concept illustrates that

project is stored in some repository, which explains the

location of that repository and when it is browsed, repositories

can be SVN (subversion repository), CVS (concurrent version

control) and BK. Issue also represents the status, precedence

and the date when it was created or updated. One concept is

Description, which presents the details of author, date of the

issue and the issue contents. Another major concept is

Version, giving an idea of version of the document in terms of

version number, previous or next versions. The figure also

shows a concept DocumentVersion which uses version

concept properties.

Committing concept demonstrates that issue is solved by

committing which involves summary of commits, when it was

committed and which author has committed.

In addition, many companies have adopted CVS (concurrent

version system) to handle and maintain the internal source

code.CVS is a tool that is used to keep track the changes done

by different software developers in source file; by this way it

allows them to remain in sync with one another:

 It present a single method to use for the whole

development team and every member works under the

one „ground rule‟.

Ontology Capture

Ontology Coding

 Integrating Existing Ontologies

Evaluation

Documentation

Identify Purpose

Building the Ontology

International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.3, April 2012

26

 It has ability to track the alterations, encourage

accountability and make it easy to get the right person to

resolve the issues in the documents.

 List of accurate changes, can be produced easily and

fastly, and makes easy to help and recommend the users

that how information is changed from one version to

another.
 Changes are in order rather than chaotic, its saves

development time.

.

 If any critical mistake is done during the change then it‟s

easier to “roll back” to the previous version [15].

 In figure 4, the main concepts involved in CVS ontology

are presented. One of the important concepts in CVS is

document versioning to keep track of changes and Version

concept indicates the number, date, time and status of the file

and documents that are revised .CVS contains many

repositories having different directories. Inside the directories

there are many documents and files representing their type,

the markup language and names respectively. Different opera-

 Fig 3: Proposed Bug Ontology

Fig 4: Proposed CV Ontology

International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.3, April 2012

27

tions can be performed on directories like checkedout : which

creates working copy in a repository from ongoing project,

commit: to copy the alterations to the files in the working

copy and backup: to take the backup/copy of the files. One of

the important concepts is SandboxDirectory concept

demonstrating all those files that are in editable form are

present in it.
Another concept is StickyTag that is related to file concept

and it illustrates: if we commit any changes then stick tag will

be on our working file unless we remove it showing the date

when the changes are committed along with any options.

There are different types of file concepts like history file

concept which contains log of all commit messages and the
name of users who have committed the revisions and

EnteriesFile concept specifies the timestamp of the local

filesin the directory. There are basically three types of module

concepts: Alias module concept, Regular module concept, and

Ampersand modules concept. AliasModule concept shows the

way of defining the aliases of the module, AmpresandModule

concept refers to other modules and RegularModule concept

defines all the files that are present in directory.

4. IMPLEMENTATION
In our work, CVS and Bug ontologies are implemented by

using Protégé 4.1. Protégé is open source software to develop

knowledge based applications and domain models by using

ontologies. To implement ontologies , we have first specified

Fig 5: Bug Ontology Representation in Protégé

being implemented using Protégé 4.1 and derived in OWL

(Web Ontology Language) with the help of using specific

Plug-In of Protégé. We have not presented whole the “Bug”

ontology, which is used by many software developing

companies for tracking bugs. Bug ontology is specification of

our ontology but figure 5 shows Protégé screenshot of it and

figure 6 presents its partial Web Ontology Language

specification.

Figure 5 shows the hierarchy of Bug ontology in terms of

classes in protégé and all these classes (concepts) have been

discussed in detail in section 3. OWL code generated by

Protégé for the hierarchy of classes is showed in Figure 6. In

Protégé OWL Properties are used to represent the relationship

or link between two objects. In our work the link between

classes are shown by using the property.

Fig 6: OWL Code for Bug Ontology

Figure 7 demonstrates the object properties along with OWL

code. OWL uses domain and range axioms to link the

individuals. For example, in our Bug ontology, the property

deals would link/connect the individuals belonging to the

class BugTracker to the individuals belonging to the class

BugtrackerIssue as depicted in figure 8.

Class declaration

in OWL

BugtrackerIssue is defined

as a sub class of Issue

International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.3, April 2012

28

Fig 7: CVS Object Properties

 Fig 8: OWL code for link between Bug Ontology

Classes

The CVS ontology is implemented by using Protégé-

4.1.Figures 9 and 11 illustrate the classes and properties of

CVS ontology.

OWL code generated by Protégé for the hierarchy of classes

[figure 9a.] is shown in figure 9b.

Fig 9a: CVS Ontology Representation in Protégé

Fig 9b: OWL Code generated by Protégé

Sub class

Parent class

International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.3, April 2012

29

Fig 11: Object properties and relationship between

 CVS class

The above figure is illustrating OWL code for CVS ontology

and the relationship between classes.

5. DISCUSSION
In current years, the open source software development has

recognized as a possible choice to other development models.

Many famous softwares like Linux, Apache and Samba are

created by following open source development practices.

However, there are certain anti-patterns in open source

software development, because of certain constraints we could

cover only communication and coordination which is

considered the major problem in OSS .In our work, we have

provided the ontology based solution for this anti- pattern and

identified two ontologies : Bug ontology and CVS ontology

for it by implementing them into software (Ontology Editor)

called Protégé 4.1 which is open source software to develop

knowledge based applications. Apart from communication

and coordination, there are some other anti-patterns or bad

practices in OSS like lack of documentation, because

developers work on different places in OSS and hard to

maintain the documentation in this case and this is also one of

the major issues and the lack of documentation illustrates

that there is no assertion that all people who are working on

the particular software are following same software

procedures and methodologies. Unsupported code is also an

issue in OSS, when a contributor submit his code for

implementing the particular features, if any changes are done

by other software developer ,in this case feature needs to be

updated so that it carry on to work properly. Unfortunately,

some original software developers disappear and the code

remains unmaintained. This leads software developers

towards difficult situation.

6. CONCLUSION AND FUTURE WORK
This paper has presented insights into anti-patterns in OSS

development. We have proposed knowledge based solution

for anti-patterns in open source software development. Further

research is recommended to classify other anti-patterns in

OSS development and to present the ontology oriented

solution. We have addressed the issues of lack of

communication and coordination anti-patterns in this research

work.Few other anti-patterns including lack of configuration

management, group awareness, declining quality of OSS and

many others for which ontology based solution will be

developed in our future work.

7. REFERENCES

[1].Stamelos,I. Software project management anti-patterns.

Published in Journal of System and Software, vol. 83,

January 2010

[2].Anti-pattern, http://en.wikipedia.org/wiki/Anti-pattern, last

accessed 5th January, 2012.

[3]. Smith, C.U and Williams, L.G. Software Performance

Anti-Patterns.2000.In proceedings of 2nd international

workshop on Software and Performance (WOSP-00)

 [4].Settas,D.L., Meditskos,G., Stamelos,I.G and

Bassiliades,N. January 2009. PROMAISE: A

Knowledge-based System for Software Project

Management Antipattern Using Semantic Web

Technologies. Technical Report.

[5]. Hars, A. and Ou,S. Working for Free? – Motivations of

Participating in Open Source Projects. 2001. Published in

Proceedings of 34th Annual Hawaii International

Conference on System Sciences

 [6].Yamauchi,Y.,Yokozawa,M.,Shinohara,T. and Ishida,T.

Collaboration with Lean Media: How Open Source

Software Succeeds,Toru.2000. In proceedings of ACM

conference on Computer supported cooperative

work(CSCW-02)

 [7].Gutwin,C., Penner,R. and Schneider, K. Group

Awareness in Distributed Software Development. 2004.

In Proceeding of the ACM conference on Computer

supported cooperative work(CSCW-04)

[8]. Bouktif,S., Antoniol ,G. and Merlo,E. A Feedback Based

Quality Assessment to Support Open Source Software

Evolution: the GRASS Case Study.2006. In proceedings

of 22nd International Conference on Software (ICSM-06)

[9].Michlmayr,M.,Hunt,F and Probert,D. Quality Practices

and Problems in Free Software Projects.2005. In

Proceedings of the First International Conference on

Open Source Systems, pp. 24-28

Link between

CVS and

Repository

International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.3, April 2012

30

 [10]. Ankolekar ,A., Herbsleb ,J.D. and Sycare,K.

Addressing Challenges to Open Source Collaboration

With the Semantic Web.2003.In Proceedings of the ICSE

3rd Workshop on Open Source.

[11].Gray,K.,Koehnemann,H., Blakley , J. , Goar ,C .

Mann,H. and Kagan,A. A Case Study: Open Source

Community and the Commercial Enterprise.2009.In

proceedings of 6th International Conference on

Information Technology: New Generations.pp.940-945.

[12]. Kon,F.,Meirelles,P.,Lago,N.,Terceiro,A., Chavez,C. and

Mendonca,M. Free and Open Source Software

Development and Research: Opportunities for Software

Engineering.2011.Published in Proceedings of 25th

Brazilian Symposium on Software Engineering

[13]. Stol,K. and Baber,M.A. Challenges in Using Open

Source Software in Product Development: A Review of

the Literature.2010.In proceedings of 3rd International

Workshop on EmergingTrends in Free/Libre/Open

Source Software Research and Development

[14].OntologyEngineering,www.stiinnsbruck.at/.../domain_m

odeling.../Ontology_Engineering_Christian_Ammendola.

pdf,Last accessed 15 February,2012.

[15].Why Use Version Control,

http://www.fortnet.org/FortNet/HTML/Presentation/CVS

/whyvc.html, Last accessed 10 February,2012.

