
 International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.3, April 2012

6

Automatic Generation and Execution of Mutants

Madhuri Sharma

Center for Development of Advanced Computing,
Noida

Neha Bajpai
Center for Development of Advanced Computing,

Noida

ABSTRACT

To obtain the high quality software, there is a use of Mutation

testing to measure the quality of our test suite. Fault insertion

based techniques have been used for measuring test adequacy

and testability of programs. Mutants are generated by

introducing the faults in the original program. Tests Cases are

adequate if they detect all the mutants. This paper describes a

survey study to investigate the generation and execution of

mutants.

General Terms

Software Testing

Keywords

Software Testing, Mutation Testing, Mutation Testing

Process, Cost Reduction Mutants.

1. INTRODUCTION
Software testing is an important phase of software

development life cycle. Since, exhaustive testing of software

is not possible, so many techniques are invoked. In software

testing, a failure is an external, incorrect behavior of a

program - incorrect output, or runtime failure. A fault is the

incorrect statement in the program that causes a failure.

Automating software testing activities can increase the quality

and drastically decrease the cost of software development.

Test automation is the use of software to control the execution

of tests, the comparison of actual outcomes to predicted

outcomes, and test reporting functions.

Object-oriented design programming and languages offers

many advantages to software developers and provide the

solutions to old problems. However, the object-oriented

language features introduce the new kind of problems.

2. MUTATION TESTING
DeMillo et al. had described about the approach of seeding

the faults into the program through various mutation

operators. Mutation testing is a fault-based testing technique

that measures the effectiveness of test suites for fault

localization, based on seeded faults [4]. Faults (Syntactic

changes) are introduced into the program and thus generate an

error in the program, called mutants. Mutants are generated

by applying the mutation operator say a relational operator

replaces „>‟ with „>=‟, „<‟, „<=‟,‟==‟,‟! =‟. Test cases are then

applied on both the original program and mutants and to

check whether the original program & mutants give the same

result or not. If original program output is different than that

of output with mutant, then the mutant is said to be killed or

dead otherwise said to be as live.

Then, there can be two possibilities in case of live mutant: -

either the generated mutant is equivalent or cannot be killed.

When the mutants are not killed and is not able to differentiate

between original program and non-equivalent mutants which

means our test case is inadequate. So to kill that mutant we

need more new test cases. A test suite that can kill all non-

equivalent mutants is said to be adequate. The main objective

of mutation testing is to kill more live mutants as more we

can.

The goal of mutation testing is to assess the quality of tests

and use these assessments to help construct more adequate

test and thus produce a suite of valid tests which can be used

on real programs.

3. MUTANT PROGRAM
Program mutation is a powerful technique for the assessment

of the goodness of tests. It provides a set of strong criteria for

test assessment and enhancement. Program mutation is a

technique to assess and enhance your tests; it is referred to

program mutation as mutation. When testers use mutation to

assess the adequacy of their tests, and possibly enhance them,

is known as mutation testing. Sometimes the act of accessing

test adequacy using mutation is also referred to known as

mutation analysis.

Mutation testing is a powerful technique for use during unit,

integration, and system testing. Mutation testing works by

seeding faults in the software program. Various mutation

operators are used to create these faulty programs. These

programs are called mutants. The mutants depict software

faults that may be caused by programmers while writing the

software. Test cases are then executed on these mutants to

determine if they have been killed or not. Test sets that kill all

the mutants are considered to be good as they successfully

detect all the possible program faults.

• By modifying a program to contain simple errors

and demanding that test data be discovered to

distinguish the erroneous versions of the program

from the original program, those simple errors can

be guaranteed as absent from the original.

4. MUTATION OPERATORS
Mutation Operators are applied on the original program to

generate the mutants. There are huge numbers of operators for

procedural and object oriented programming. A procedural

language contains the simple syntactic changes in the program

such as changing the arithmetic, relational, logical operators.

The object-oriented contains some extensions of mutation

operators such as encapsulation, inheritance, polymorphism,

overloading, exceptional handling etc.

Mutation Operators are of two types: -

http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Software_testing

 International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.3, April 2012

7

1) Traditional Mutation Operators

2) Class Mutation Operators

4.1 Traditional Mutation Operators
The traditional mutation operators are developed from

procedural languages. However, running all these mutant

operators generates a huge number of mutants and not all of

them are effective because of overlaps [5]. However, these

operators are language specific.

4.1.1 Arithmetic Operators
Mutants are generated by replacing, inserting, deleting the

arithmetic operator with the other arithmetic operators.

4.1.2 Relational Operators
Mutants are generated by replacing, inserting, deleting the

relational operator with the other relational operator.

4.1.3 Conditional Operators
Conditional Operators generate the mutants by replacing,

inserting, deleting with the other operators.

4.1.4 Logical Operators
Logical Operators produce the mutants by applying the other

conditional operator in original program.

4.1.5 Assignment Operators
The assignment operators create the mutants by applying the

other assignment operators but one at a time.

4.1.6 Shift Operators
A shift operator creates the mutants by applying the other shift

operator in the original program.

4.2 Class Mutation Operators
Class mutation operators were identified for testing object-

oriented and integration issues [6].

4.2.1 Encapsulation
In encapsulation, mutants are created by applying operator

which modifies deletes, insert the access level for instance

variables and methods to other access levels, in order to check

that accessibility is correct.

4.2.2 Inheritance
The Inheritance operator produce the mutants by deleting a

hiding variable, and to check that variable defined and its

accessibility in class and subclass will be properly correct or

not.

4.2.3 Polymorphism
The Polymorphism operator creates the mutants in such a way

that accessibility of the method having the same name and

number of parameters accessible in a right manner or not.

5. MUTATION SCORE
Mutation score defines the relationship between the number

of mutants killed by the test suite and the difference between

the total number of mutants and the number of equivalent

mutants to the original program. The objective of mutation

score is to evaluate the test set adequacy against mutation

testing. The higher the mutation score, the more adequate is

the test set.

Mutation score is calculated as:-

Mutation Score = 100 * K / (N - E)

Where, K = Killed mutants

 N = Number of mutants

 E = Number of equivalent mutants

 A set of test cases is mutation adequate if its

mutation score is 100%.

6. EXAMPLE
AOR (Arithmetic Operator Replacement)

The Arithmetic Operator Replacement (AOR) operator is a

traditional mutation operator. The AOR operator replaces

each occurrence of an arithmetic operator by each of the other

possible arithmetic operators.

Example:

public class try1 {

public static void main(String args[]){

 int m, p, c, s=0, a=0;

 m = 9; p = 86; c = 86;

 a = p + c;

 s = a - m;

 System.out.println("p & c: \n " + a);

 System.out.println(" s: \n " + s);

} }

So mutants are generated by changing the arithmetic operator

(a = p + c) to the other operators, but do the one change at a

time.

Mutants are:

m1: a = p – c;

m2: a = p * c;

m3: a = p / c;

But when the test cases are applied on both the original

program and mutants program also, and check the output of

mutants program against the original program. If they produce

the different output then they are kill mutants otherwise live

mutant.

7. EQUIVALENT MUTANTS

Equivalent mutants are those mutants whose outputs are same

as those of the original output. However, a number of

equivalent mutants are generated by applying mutation

operators.

Example: Mutant is generated by applying the relational

mutation operator as which replaces the (>=) operator with the

(>) operator as shown below:

http://www.ironiacorp.com/Projects/Testing/Mutants
http://www.ironiacorp.com/Projects/Testing/Test_set
http://www.ironiacorp.com/Projects/Testing/Mutants
http://www.ironiacorp.com/Projects/Testing/Test_set
http://www.ironiacorp.com/Projects/Testing/Mutation_testing
http://www.ironiacorp.com/Projects/Testing/Mutation_testing
http://www.ironiacorp.com/Projects/Testing/Mutation_testing
http://www.ironiacorp.com/Projects/Testing/Test_set

 International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.3, April 2012

8

When the input values (a,b) are given as (10,6) they both

gives the output.

However, when test cases are applied on it, then there will be

no single test case that could be able to kill this equivalent

mutant. This mutant is one of the obstacles for practical use of

mutation testing. There may be requirement of tricky process

to identify the equivalent mutants.

8. EXISTING MUTATION TESTING

TOOL FOR JAVA PROGRAMS

8.1 JUMBLE
Jumble is a Java mutation testing tool and the purpose of

mutation testing is to provide a measure of the effectiveness

of test cases. A single mutation is performed on the code to be

tested; the corresponding test cases are then executed. If the

modified code fails the tests, then this increases confidence in

the tests. Conversely, if the modified code passes the tests this

indicates a testing deficiency. Jumble is a simple non-graphic

tool that converts a text file to a version that facilitates

studying the format of the file. Jumble randomly changes the

order of letters in the text file leaving punctuation and

capitalization intact [4].

 Jumble is an open-source tool that operates directly

at a source code level to speed up mutation testing.

 The limited sets of mutation operators supported by

Jumble are: Conditional, Binary Arithmetic

Operations, Increments, Inline Constants, Class

Pool Constants, Return Values, and Switch

Statements. They are simplified in such a way that

only one of the mutations defined by the mutation

operators is, in fact, applied (e.g. „-‟ is replaced by

„+‟, and not by each of the other operators,

i.e.„*‟,„/‟, and „%‟, as the AOR mutation operator

assumes).

 Disadvantage: Jumble does not support the OO

mutation operators. It also provides the fixed

replacements with the other mutation operators.

Operator Source Mutant

Conditional if (a >b) if (!(a >b))

Binary Arithmetic c = a + b; c = a - b;

Increments i++; i--;

Inline Constants long x = 01; long x = 11;

Class Pool

Constants

public String

welcomeStr =

“Welcome!”;

public String

welcomeStr =

“__jumble__”;

Return Values return returnStr; return null;

Switch Statements

case 0:

i++;

case 1:

i = 4;

case 1:

i++;

case 0:

i = 4;

8.2 JESTER
Jester (a mutation testing tool) that finds code that is not

covered by tests. Jester does the some modifications in source

code and runs the test cases, and if the test case passes Jester

displays a message what has changed. Jester that indicates if

the tests still pass when the expression (<=) is replaced by (<).

This indicates that a test might be missing in which it makes a

difference that it's "<=" rather than "<". With Jester, it matter

whether the tests pass or not [7].

Jester modifies the java source code and recompiles the

modified source code and then the test cases have to be run to

check the output. For instance, it will change if (x > y) to if

(false). If the test suite isn't paying close enough attention to

notice the change, then a test is missing.

 Jester is an open-source tool and a very expensive

way of mutation testing tools for Java mutation

testing, owing to an oversimplified mechanism of

mutants‟ generation.

 Actually, Jester offers a way to extend the default

set of mutation operations, but problems concerning

performance of the tool, as well as a limited range

of possible mutation operators.

 Nevertheless, in comparison to a code coverage

tool, Jester can spot untested code even if it is

executed.

 Disadvantage: Jester‟s approach is to generate,

compile and run unit tests against a mutant. The

process repeats for every mutant of the source code

and, thus, is inefficient. However, Jester takes a

long time to run, and the results take some manual

effort to interpret.

8.3 JUDY
Judy is an open source tool implementation with the features

of automatic mutation testing process and mutant generation

approach and a large number of supporting mutation

operators.

if(a>=b)

return (a+b);

else

return (a-b);

if(a>b)

return (a+b);

else

return (a-b);

Table 1.Mutation Operators Supported by Jumble [4]

 International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.3, April 2012

9

8.4 Mu JAVA
MuJava is a tool written for java programs. It uses two sets of

mutation operators: method-level and class-level. MuJava

creates mutants using the various method-level and class-level

operators. It then runs test cases on them and evaluates the

mutation coverage for them. Test cases are written as separate

classes that call methods in the classes that need to be tested

[8].

 MuJava is not an open-source tool but offers a large

set of both traditional and OO mutation operators

for the Java language.

 Program which is under the test mutation operators

do syntactic change in the program. However, this

syntactical mistake represents the mistakes which

are done by the programmer while writing code.

 MuJava, to save the compilation time it follows a

„do faster‟ approach in mutation testing process.

This approach has been adopted primarily for

object-oriented programs.

 Traditional Operators: AOR(Arithmetic Operator

Replacement), AOI(Arithmetic Operator Insertion),

AOD(Arithmetic Operator Deletion),

ROR(Relational Operator Replacement),

COR(Conditional Operator Replacement),

COI(Conditional Operator Insertion),

COD(Conditional Operator Deletion), SOR(Shift

Operator Replacement), LOR(Logical Operator

Replacement), LOI(Logical Operator Insertion),

LOD(Logical Operator Deletion), ASR(Assignment

Operator Replacement)

 Class Mutation Operators: AMC(Access Modifier

Change), IHD (Hiding Variable Deletion), IHI(

Hiding Variable Insertion), IOD(Overriding

Method Deletion), IOP(Overriding Method Calling

Position Change), IOR(Overriding Method

Rename), ISK(super Keyword Deletion), IPC(

Explicit Call of a Parent's Constructor Deletion),

PNC(new Method Call with Child Class type),

PMD(Member Variable Declaration with Parent

Class type), PPD(Parameter Variable Declaration

with Child Class type), PRV(Reference

Assignment with other Comparable type), OMR(

Overloading Method Contents change), OMD(

Overloading Method Deletion), OAO(Argument

Order Change), OAN(Argument Number Change),

JTD(this Keyword Deletion), JSC(static Modifier

Change), JID(Member Variable Initialization

Deletion), JDC(Java-supported Default Constructor

Create), EOA(Reference Assignment and Content

Assignment Replacement), EOC(Reference

Comparison and Content Comparison

Replacement), EAM(Accessor Method Change),

EMM(Modifier Method Change)

 Disadvantage: MuJava displaying of mutants are

not shown in a convenient way and the problem of

showing mutants in the context of the complete

class is harder.

9. ARCHITECTURE OF MUTATION

TESTING PROCESS
The mutation testing process starts with the generation of

mutants of a program to be tested. So, first it takes the source

code and generates the mutants and then compiles each

mutant and performs the test cases on it and result is then to

be analysed against the test case result with mutant and source

code. This process is repeats for every mutant.

 Mutation Generation Process

The Mutant Generation Process includes the generation of

different-different mutants on the basis of selective mutation

operators.

 Mutation Compilation Process

The Mutant Compilation Process provides the compilation

solution on the different-different mutants which will be

generated from the mutation generation process.

Abbreviation
Description Example mutation

ABS
Absolute Value

Insertion

x = 2*a; x =

2*abs(a);

AOR
Arithmetic Operator

Replacement

x = a + b; -> x = a *

b;

LCR
Logical Connector

Replacement

x = a&&b -> x =

a||b;

ROR
Relational Operator

Replacement
if(a >b) -> if(a < b)

UOI
Unary Operator

Insertion

X = 2 * a; -> x = 2*-

a;

UOD
Unary Operator

Deletion
if(a<-b) -> if(a < b)

SOR
Shift Operator

Replacement

x =a << b; -> x=

a>>b;

LOR
Logical Operator

Replacement
x =a&b; -> x = a|b;

ASR

Assignment

Operator

Replacement

x+= 2; -> x-=2;

COR

Conditional

Operator

Replacement

if(a&&b) -> ! if(a&b)

EOA

Reference

Assignment and

Content Assignment

Replacement

list l1,l2; l1 = new

List(); l1 = l2; -> l1 =

l2.clone();

JTD
this Keyword

Deletion
this.r = r; -> r = r;

EOC

Reference

Comparison and

Content Comparison

Replacement

Integer a = new

Integer(1); Integer b =

new Integer(1);

boolean x = (a == b);

-> boolean x

=(a.equals(b));

JTI
this Keyword

Insertion

this.r = r; -> this.r =

this.r;

EAM
Accessor Method

Change

circle.getX(); ->

circle.getY();

EMM
Modifier Method

Change

circle.setX(1); -

>circle.setY(1);

Table2. Mutation Operators Supported by Judy [4]

 International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.3, April 2012

10

 Mutation Testing Process

The Mutation Testing Process is the phase during which all

the created and compiled mutants are tested.

However, the mutation generation and testing activities

mainly focuses on four kinds of activities:

9.1 Select Mutation Operators

This involves defining new mutation operators for different

languages and types of testing.

9.2 Experiments in Mutation Generation

Process

It deals with the experimentation in mutation generation

process. Empirical studies have supported the effectiveness of

mutation testing. Mutation testing has been found to be more

effective in finding faults.

9.3 Designing Framework

This kind of activity in mutation testing research is designing

mutation testing framework so that the testing process will be

done automatically. Different types of mutation testing tools

are developed: Jester, Jumble, MuJava, Judy. Main difference

in between them is on the basis of mutation operators.

9.4 Reducing the cost of Mutation Testing

The major cost of mutation analysis depends on

computational expense of generating and compiling large

numbers of mutant programs. Mutation testing is an attractive

but a time-consuming technique, which makes impractical to

use without a reliable, fast and automated tool that generates

mutants, runs the mutants against a suite of tests and reports

the mutation score of the test suite. However the various

approaches are defined to reduce this computational expense

of generating and running large numbers of mutant programs.

10. COST REDUCTION TECHNIQUE

Mutation Testing Process is very computationally expensive

testing technique, since it requires the execution of all the

mutants which is very time- consuming process. However,

there may be a requirement that all the mutants are necessary.

So to give a practical approach to mutation testing process,

many cost reduction techniques have been applied.

Selective Mutation: Selection mutation Operator technique

that takes a small subset of mutation operators which generate

all the possible mutants, in order to achieve the test suite

effectiveness. This idea was first suggested as „constrained

mutation‟ and then subsequently extended this idea calling it

Selective Mutation. Mutation operators generate different

numbers of mutants, and some mutation operators generate far

more mutants than others, many of which may turn out to be

redundant.

Higher Order Mutation: Higher order mutation is a new form

of mutation testing. Main motivation is to find higher valuable

mutants that denote the subtle faults.

Runtime Optimization Techniques: The interpreter based

technique is one of the optimization techniques used in first

generation of mutation testing tools. In this, the result of a

mutant is interpreted from its source code directly.

Mutant Schema Generation: Mutants schema Generation

approach designed to reduce the overall cost of traditional

interpreter-based techniques. Instead of compiling the each

mutant separately, the mutant schema technique generates a

metaprogram. This metamutant can be used to represent all

possible mutants. Therefore, to run each mutant against the

test set, only this metaprogram need to be compiled. Thus the

cost of this technique is composed of a one-time compilation

cost and the overall run time cost. As this metaprogram is a

compiled program its running speed is faster than the

interpreter-based technique.

START

Input Source Code

to be tested & Test

Case Values

Generation of

Mutants by applying

Mutation Operators

Compilation of

Mutants

Apply Test Cases on

Original Program and

Mutants

Result Analysis END

For Each Mutant

Fig.1 Architecture of Mutation Testing Process

 International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.3, April 2012

11

11. STEPS OF MUTATION TESTING

12. CONCLUSION
Mutation is a powerful but complicated & computationally

expensive testing method. Our aim to develop a framework

which will automatically generate the mutants and then the

test cases will be performed on the mutants. By modifying a

program to contain simple errors and demanding that test data

be discovered to distinguish the erroneous versions of the

program from the original program, those simple errors can be

guaranteed as absent from the original. Our target is to create

a feasible mutation testing tool with minimal human

involvement and significant performance improvement. Our

complete system would provide almost complete automation

to the tester.

Theoretical and experimental results have shown that

mutation testing is an effective approach to measuring the

adequacy of test cases. The cost of mutation testing has been a

focus of concern. Developments in the mode of application of

mutation testing can reduce the cost.

The OO mutants were derived from definitions of faults for

subtype inheritance and polymorphism, so it is reasonable to

expect tests from these mutants to find those kinds of faults. It

is also possible that the mutant operators could be reduced by

using a selective approach. However, more detailed

investigation will be needed. In the future, we plan to extend

the effectiveness study so that we can eventually determine a

set of selective class mutation operators as was done with

traditional mutation operators where prolific operators are

eliminated. In future, this framework will work on a set of

selective class mutation operators as was done with traditional

mutation operators.

13. REFERENCES
[1] Mike Papadakis and Nicos Malevris “Automatic Test

Case Generation Based on Mutation Testing” IEEE 21st

International Symposium on Software Reliability

Engineering , 2010 .

[2] M.RWoodward “MutationTesting – An

EvolvingTechnique” , IEEE Conference.

[3] Aparajita Rao, Kavitha Elizabeth George, G.Logeshwari,

S. Viveka Katherine, T.Mythili “A Model for the

Development of a Mutation Testing Cum Test Case

Generation Tool”, International Conference on Advances

in Recent Technologies in Communication and

Computing, 2009.

[4] Wyb.Wyspian´skiego 27, 50370 Wrocław, Poland “Judy

- A mutation testing tool for Java”, Institute of

Informatics, Wrocław University of Technology, 2008.

[5] Yu-Seung Ma, Korea “Description of Method-level

Mutation Operators for Java”, Electronics and

Telecommunications Research Institute, March 20, 2005.

[6] Yu-Seung Ma, Korea “Description of Class Mutation

Mutation Operators for Java”, Electronics and

Telecommunications Research Institute, November 7,

2005.

[7] Ivan Moore “Jester - a JUnit test tester”, Proc. Second

Int. Conf. Extreme Programming and Flexible Processes

in Software Engineering, May 2001, pp. 84-87.

[8] Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon

“MuJava : An Automated Class Mutation System”,

 Journal of Software Testing, Verification and

Reliability, 15(2):97-133, June 2005.

[9] P. G. Frankl, S. N. Weiss, and C. Hu. “All-uses versus

mutation testing: An experimental comparison of

effectiveness”, Journal of Systems and Software,

38:235–253, 1997.

[10] Yue Jia and Mark “An Analysis and Survey of the

Development of Mutation Testing” IEEE Transactions of

Software Engineering, vol. To appear, 2010.

Input Program

Apply Mutation

Operators

Generation of Mutants

Apply Test Cases on both

the original program and

mutant program

Analyze

Output

Generate more

test cases

Revise the Mutation

Operator

Next

Operator

End

Test Effectiveness as

Mutation Score

Fig. 2 Steps of Mutation Testing

No

Yes No

Yes

Start

Generate more

test cases

End

 International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.3, April 2012

12

[11] A. J. Offutt, A. Lee, G. Rothermel, R. Untch, and C.

Zapf. “An Experimentational Determination of

Sufficient Mutation Operators” ACM Transactions on

Software Methodology, 5(2): 99-118, April 1996.

[12] R. A. DeMillo and A. J. Offutt. “Experimental Results

from an Automatic Test Case Generator” ACM

Transactions on Software Engineering Methodology,

2(2): 109-127, April 1993.

[13] W. E. Wong “On Mutation and Data Flow” PhD thesis,

Purdue University, West Lafayette, December 1993.

[14] W. E. Wong and A. P. Mathur “Reducing the Cost of

Mutation Testing: An Empirical Study” The Journal of

Systems and Software, 31(3): 185-196, Dec. 1995.

[15] A. P. Mathur and W. E. Wong, “An Empirical

Comparison of Mutation and Data Flow based Test

Adequacy Criteria”, Technical Report SERC-TR-135-P,

Software Engineering Research Center, Purdue

University, Feb. 1993.

[16] A. Jefferson Offutt and J. Huffman Hayes “A Semantic

Model of Program Faults” ISSTA‟ 96, San Diego CA,

USA.

[17] Vadim Okun “Specification Mutation for Test

Generation and Analysis” 2004.

[18] Salas and Aichernig “An automatic Test Case Generation

for OCL: a Mutation Approach” UNU IIST Report No.

321, May 2005.

[19] De Millo and Offutt “Experimental Results from an

Automatic Test Case Generator” ACM Transaction on

Software Engineering and Methodology, Vol 2, April

1993, Pages 109-127.

[20] A.J.Offutt and S. D.Lee “An Empirical Evaluation of

Weak Mutation” IEEE Transactions on Software

Engineering, 20(5): 337-344, May 1994.

[21] King K.N., Offutt A.J. “A Fortran Language System for

Mutation-Based Software Testing” Software Prac.

Exper., 1991, 21, (7), pp. 685-718.

[22] Offutt J., MA Y.S., Kwon, Y.R. “An Experimental

Mutation System for Java” SIGSOFT Software

Engineering Notes, 2004, 29, (5), pp. 1-4.

[23] Irvine S.A, TIN P., TRIGG L, Clearly J.G., Ingus S.,

Utting M.: “Jumble Java Byte Code to Measure the

Effectiveness of Unit Tests” Proc. Testing: Academic

and Industrial Conf. Practice and Research Techniques,

September 2007, pp. 169-175.

[24] Andrews J.H., Briand L.C., Labiche Y.: “Is Mutation an

Appropriate tool for Testing Experiments?” Proc. 27th

Int. Conf. Software Engineering, May 2005, pp. 402-411.

[25] V. N. Fleyshgakker and S.N. Weiss, “Efficient Mutation

Analysis: A New Approach” in Proceedings of the

International Symposium on Software Testing and

Analysis (ISSTA 94), (Seattle, WA), pp. 185-195, ACM

SIGSOFT, ACM Press, Aug. 17-19 1994.

[26] A. J. Offutt and S. D. Lee “How Strong is Weak

Mutation?” in Proceedings of the Fourth Symposium on

Software Testing, Analysis and Verification, (Victoria,

British Columbia, Canada), pp. 200-213, IEEE Computer

Society Press, October 1991.

[27] R. A. DeMillo, “Test Adequacy and Program Mutation”

Proceedings of the 11th International Conference on

Software engineering, p.355-356, May 1989.

[28] Hyunsook Do, Gregg Rothermal, “On the Use of

Mutation Faults in Empirical Assessments of Test Case

Priortization Techniques” IEEE Transactions on

Software Engineering, v.32 n.9, p.733-752 September

2006.

[29] W. Eric Wong , Joseph R. Horgan , Saul London , Aditya

P. Mathur “Effect of test set minimization on fault

detection effectiveness” Proceedings of the 17th

international conference on Software engineering, p.41-

50, April 24-28, 1995.

[30] A. Jefferson Offutt, “A Practical System for Mutation

Testing: Help for the Common Programmer”

Proceedings of the 1994 international conference on

Test, October 02-06, 1994, Washington, D.C.

http://dl.acm.org/citation.cfm?id=225018&CFID=93823765&CFTOKEN=14380660
http://dl.acm.org/citation.cfm?id=225018&CFID=93823765&CFTOKEN=14380660
http://dl.acm.org/citation.cfm?id=225018&CFID=93823765&CFTOKEN=14380660
http://dl.acm.org/citation.cfm?id=225018&CFID=93823765&CFTOKEN=14380660
http://dl.acm.org/citation.cfm?id=225018&CFID=93823765&CFTOKEN=14380660
http://dl.acm.org/citation.cfm?id=225018&CFID=93823765&CFTOKEN=14380660

