
International Journal of Computer Applications (0975 – 8887)

Volume 44– No.22, April 2012

 The first author thanks the Defense Research

Developmental Organizations (DRDO), Government

of India, New Delhi, for its financial assistance

through extramural research grant.

Performance Factor based Local Scheduling for
Heterogeneous Grid Environments

G.Sumathi

Professor
Department Of Information

Technology

Sri Venkateswara College of
Engineering

Sriperumbudur, India

S.Sathyanarayanan

Student
Department of Information

Technology

Sri Venkateswara College of
Engineering

Sriperumbudur, India

R.Santhosh Kumar
Student

Department of Information
Technology

Sri Venkateswara College of
Engineering

Sriperumbudur, India

ABSTRACT

Grids [3] have emerged as paradigms for the next generation

parallel and distributed computing. Computational Grid can

be defined as large-scale high-performance distributed

computing environments that provide access to high-end

computational resources. Grid scheduling is the process of

scheduling jobs over grid resources. Improving overall system

performance with a lower turnaround time is an important

objective of Local Grid scheduling. In this paper a

Performance Factor Based Local Scheduling Algorithm is

proposed. In this algorithm priority for each subtask in the

Grid is assigned based on two new parameters, Computational

Complexity and Performance Factor. The algorithm classifies

the subtasks into high, medium and low categories based on

their priority. The value for performance factor is assigned

based on the value of processing power of each node i.e.

Number of operations per cycle per processor and the number

of instructions processed per second. The subtasks are then

mapped to respective processors based on the assigned

priority for execution. A subtask, which requires a very high

performance factor and that exhibits high computational

complexity, is given a high priority. Prioritizing the subtasks

in this way can improve the performance of grid resources

that in turn improve the overall efficiency of the

computational grid. The effectiveness of this algorithm is

evaluated through simulation results.

1. INTRODUCTION
Computational Grids are emerging as a new computing

paradigm for solving challenging applications in science,

engineering and economics [1].

Computational Grid can be defined as large-scale high-

performance distributed computing environments that provide

access to high-end computational resources [2].Each of these

resources could be a uni- processor machine, a symmetric

multiprocessor cluster, a distributed memory multiprocessor

system, or a massively parallel supercomputer. Each resource

consists of a number of heterogeneous nodes. The resources

on the grid are usually accessed via an executing “job”.
A Grid scheduling is the process of scheduling jobs over grid

resources. A grid scheduler is different from local scheduler in

that a local scheduler is in charge of resource allocation,

assigning of sub-tasks and subtask execution management.

In heterogeneous grid environment [3] with its multitude of

resources, a proper scheduling and efficient load balancing

across the grid can lead to improved overall system

performance and a lower turn-around time for individual jobs.

First Come First Serve (FCFS) algorithm neither considers

any of the subtask parameters nor the resource parameters.

Shortest Subtask Fastest Node (SSFN) and Longest Subtask

Fastest Node (LSFN) algorithms consider computational

complexity of subtasks for scheduling and ignore the priority

of a subtask. A scheduling algorithm based on the

performance factor of the nodes in the resource is proposed

and tested. The Performance Factor based local scheduling

algorithm assigns a priority to the subtask based on the

parameters Computational Complexity and Performance

Factor.

The value of the Performance Factor is assigned based on the

number of operations per cycle per processor and the number

of instructions processed per second. In this a subtask which

requires high performance factor and which exhibits high

computational complexity is given a high priority. A subtask,

which exhibits high computational complexity and requires

low performance factor, is given a low priority. A subtask,

which exhibits a medium computational complexity and

requires medium performance factor, is given a medium

priority. The fastest free node available in the resource is

allocated to the subtask which has high priority. Prioritizing

the subtasks based on their nature can improve the real time

performance of computational grids.

The rest of the paper is organized as follows: The grid

framework is presented in Section 2. The proposed scheduling

algorithm is discussed in Section 3. The performance study is

carried out and results are discussed in Section 4. Finally,

some concluding remarks are made in Section 5.

2. GRID FRAMEWORK
Fig.1 shows the framework of the grid [4]. The Global and

Local Grid Resource Brokers (GGRB & LGRB) and Grid

Information Server (GIS) are the three main components of

the grid. Each of these components has its own independent

functionalities that help in grid management and job

scheduling and thus serve the purpose of a grid.

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.22, April 2012

46

Figure 1. Grid Framework

2.1. Local Grid Resource Broker (LGRB)

The local grid resource broker is a synonym for a grid

resource. Each grid resource has been categorized based on its

processing speed as follows:

Type 1: TFLOPS Machines Type 2: GFLOPS Machines and

Type 3: MFLOPS Machines

This categorization adds to the heterogeneous nature of a grid.

Each LGRB in the grid can be any one of the above three

resources. There can be many LGRBs possible in the grid.

With the addition of every LGRB, the number of resources

and consequently the number of processing elements (PEs)

are increased. A job submitted to the grid may be migrated to

any of the LGRBs in the grid for execution. Once a job has

been migrated to a particular LGRB, the LGRB ensures

execution of the job on the specified number of processors.

Since computational grids have been taken into consideration,

the number of processing elements in an LGRB is the actual

resource of the grid.

2.2. Global Grid Resource Broker (GGRB)
All the jobs are submitted to the GGRB. A single GGRB takes

care of scheduling jobs in the grid based on the resources

available as per the scheduling algorithm. Once a task has

been scheduled to a particular LGRB, the GGRB migrates the

job to that LGRB for execution.

2.3. Grid Information Server (GIS)
The Grid Information Server is the database bank of the grid.

It keeps track of the resources available in the grid. Any new

LGRB should register itself with the GIS. The GIS provides

information regarding free resources to the GGRB based on

which the GGRB schedules the jobs.

2.4. Working of the Grid

2.4.1 Registration
Any new LGRB should register itself with the GIS by sending

a request. The GIS responds with an acknowledgement, which

means that it is ready to accept a new resource as a grid

member. Now, it’s the LGRBs turn to send the details

regarding itself, its type, and number of processing elements

and speed of each processing element.

2.4.2 Job Scheduling
The GGRB stores the incoming jobs in a queue. When

scheduling is to be done the GGRB requests the GIS with a

query for the suitable resources. As soon as the GIS receive a

request from the GGRB it sends the IP address of the suitable

resource to GGRB, if available. Jobs submitted to the GGRB

are migrated to the LGRBs based on a global scheduling

algorithm for execution.

3. SCHEDULING ALGORITHM
Proper scheduling algorithm can lead to an improved overall

system performance and a lower turnaround time. Since a

Grid has heterogeneous resources it is often complex to

design an efficient scheduling algorithm.

3.1 Performance Factor Based Local

Scheduling Algorithm
The algorithm classifies the subtasks into high, medium and

low categories based on their priority. The priority assignment

is done by considering the new parameters, Performance

Factor of nodes in the resource and Computational

Complexity of the subtask.The performance factor is

computed by considering the Number of operations per cycle

per processor and the Number of instructions processed per

second. The priority of each subtask is assigned based on the

performance factor calculated and computational complexity

of the subtask.The fastest free node available in the resource

is allocated to the subtask which has high priority. Prioritizing

the subtasks based on their nature can improve the real time

performance of computational grids.

3.2 Computational Complexity
Task partitioning algorithm takes care of efficiently dividing

an application into tasks of appropriate grain size and an

abstract model of such a partitioned application is represented

by a Directed Acyclic Graph (DAG). Figure 2 is an example

of a DAG that represents an application that has 6 subtasks.

Each node of a DAG corresponds to a sequence of operations

and a directed arc represents the precedence constrains

between the tasks. Each task can be executed on a processor

and the directed arc shows transfer of relevant data from one

processor to another.

 All the operations are represented in terms of

additions. Node weight represents the amount of computations

(in terms of additions) involved in the particular node. This

denotes the Computational Complexity of the subtasks.

Figure 2. An example DAG

\

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.22, April 2012

47

3.3 Priority Assignment
 A subtask, which requires a high performance factor for

execution and exhibits high computational complexity, is

given a high priority. A subtask, which exhibits a medium

computational complexity and requires a low performance

factor, is given a medium priority. The fastest free node

available in the gridresource is allocated to the subtask which

has the highest priority.

 The procedures are given below:

Algorithm
Assign Performance Factor(ResourceListRs_List)

While(Rs_List!=NULL)

For each resource

/*OC = No. of operations per cycle per processor

SP = Speed of the processor

/* Performance FactorList contains the actual value of

performance factor for each node available in the resource*/

Performance Factor_List[i] = OC*SP

End While

Find the Max, Min and Mid ranges in Performance Factor_list

For each subtask in Performance Factor_List

If Performance Factor_List[i] >= Maximum

Final_List[i] = High

/*Final_List contains the range of Performance Factor

calculated and sorted in descending order for each node

available in the resource*/

Else If Factor_List[i] >= Middle

Final_List[i] = Medium

Else Final_List[i] = Low

EndIf

End Assign Performance Factor

Assign Priority Procedure

AssignPriority(Local_List)

While(Local_List !=NULL)

/* Local _ List contains the list of nodes available in the Grid

resource */

For each subtask

/* CompC_List contains the Computational Complexity of

subtasks*/

 If (CompC_List[i] = High AND Final_List[i] = High)

Priority[i] = 1

Else If (CompC_List[i] = High AND Final_List[i] = Medium)

Priority[i] = 2

Else If (CompC_List[i] = High AND Final_List[i] =Low)

Priority[i] = 3

Else If (CompC_List[i] = Medium AND Final_List[i] = High)

Priority[i] = 4

ElseIf (CompC_List[i] =Medium AND Final_List[i] =

Medium)

Priority[i] = 5

Else If (CompC_List[i] = Medium AND Final_List[i] = Low)

Priority[i] = 6

Else If (CompC_List[i] = Low AND Final_List[i] = High)

Priority[i] = 7

Else If (CompC_List[i] = Low AND Final_List[i] = Medium)

Priority[i] = 8

ElseIf (CompC_List[i] = Low AND Final_List[i] = Low)

Priority[i] = 9

EndIf

End AssignPriority

Let m represents number of free nodes available in the grid

resource and n represents number of subtasks present in the

job. The worst case time complexity of the algorithm is O (n

logn) when m ≤ n and O (m logm) when m > n.

4. PERFORMANCE STUDY

Figure3. Performance Chart

We compare the performance of our algorithm with First

Come First Serve, Shortest Subtask Fastest Node and Longest

Subtask Fastest Node algorithms.

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.22, April 2012

48

3.4 First Come First Serve (FCFS)
This scheduling algorithm schedules the subtask on a “First

come First serve” basis. We learn that FCFS algorithm is

basic and is not based on the factors like computational

complexity and performance factor. It shows very low

computation results when compared to any of the other local

scheduling algorithms in Grid.

3.5 Shortest Subtask Fastest Node

(SSFN)
The Shortest Subtask Fastest Node algorithm assigns the

subtask exhibiting a diminutive value of computational

complexity to the fastest node available in the

resource.Shortest Subtask Fastest Node is a scheduling

algorithm, which tries to reduce the overall turnaround time of

the subtask. From Figure 3 we can decipher that SSFN is

more stable in handling subtask and hence outperforms FCFS

scheduling algorithm.

3.6 Longest Subtask Fastest Node

(LSFN)
The scheduling algorithm, commonly used for the assigning

of complex subtasks to high efficiency nodes available in a

resource is the Longest Subtask Fastest Node (LSFN)

algorithm. It tries to reduce the overall execution time of the

subtask.

From Figure3 we can infer that LSFN outperforms FCFS and

SSFN as the subtasks are assigned to the fastest node

available in the resource which leads to shorter execution

time.

3.7 Performance Factor based Local

Scheduling Algorithm (PF)

The value of the Performance Factor is assigned based on the

processing power i.e. number of operations per cycle per

processor and the number of instructions processed per

second. In performance factor based local scheduling

algorithm a subtask which requires high performance factor

and exhibits high computational complexity is given a high

priority.

A subtask, which exhibits high computational complexity and

requires low performance factor, is given a low priority.

A subtask, which exhibits medium computational complexity

and requires nodes in the resource having medium

performance factor, is given a medium priority. The fastest

free node available in the resource is allocated to the subtask

which has high priority.

From Figure4, we can state that PF based algorithm

outperforms FCFS, SSFN and LSFN due to its enhanced

usage of resources.

Performance evaluation is done based on execution time.

Execution time for each subtask is calculated by calculating

the elapsed time between submission time and the completion

time of the subtask.

5. CONCLUSIONS
Design of a proper scheduling algorithm with an aim to

improve the performance of a grid has indeed been a complex

task with a lot of parameters to be taken into consideration.

The SSFN and LSFN algorithms take the computational

complexity of the subtasks, speed of the nodes in the resource

into consideration while scheduling the jobs. In the

Performance factor based algorithm a parameter named

Figure4. Performance Graph

 “priority” has been used in the analysis and consequently, the

jobs are classified into high, medium and low categories. A

subtask, which needs nodes having a high performance factor,

exhibiting a high computational complexity is given a higher

priority. Prioritizing the subtasks in this way can improve the

performance of computational grids. The effectiveness of our

algorithm is evaluated through simulation results and its

superiority over other known algorithms is demonstrated.

6. REFERENCES
[1] Foster, I., Kesselman, C: The Grid: Blueprint for a New

Computing Infrastructure, Morgan Kaufmann (1998)

[2] Foster, I., Kesselman, C: The Globus Project: a Status

Report In Poc. IPPS/SPDP’98 Workshop on

Heterogeneous Computing pp. 4-18,1998

[3] G.Sumathi,R.SanthoshKumar,S.Sathyanarayanan,”MidJ

FR Global SchedulingAlgorithm for

HeterogeneousGridEnvironment”,IJRTET,November,20

11

[4] G.Sumathi, N.P. Gopalan, “PriorityBased Scheduling For

Heterogeneous Grid Environments”, Proc. Of 10th IEEE

International Conference on Communication Systems

(ICCS 2006), October, 2006.

[5] AmitAgarwal, Padam Kumar, Economical Task

SchedulingAlgorithm for Grid Computing Systems,

GJCST Classification(FOR) D.4.1, F.1.2

[6] T.Kokilavani, Dr. D.I. George Amalarethinam, Applying

Non-Traditional Optimization Techniques to Task

Scheduling in GridComputing an Overview International

Journal of Research and Reviews in Computer Science

(IJRRCS) Vol. 1, No. 4, December,2010

[7] Zhan Gao, SiweiLuo and Ding Ding, A Scheduling

Approach Considering Local Tasks in the Computational

Grid International Journal of Multimedia and Ubiquitous

EngineeringVol. 2, No. 4, October, 2007

[8] Kousalya.K and Balasubramanie.P, Ant Algorithm for

GridScheduling Powered by Local Search Int. J. Open

Problems Compt.Math., Vol. 1, No. 3, December 2008

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.22, April 2012

49

[9] Fangpeng Dong and Selim G. Akl, Scheduling

Algorithms for Grid Computing: State of the Art and

Open Problems TechnicalReport No. 2006-504 .

[10] S.Padmavathi, S.MercyShalinie and R.Abhilaash, A

MemeticAlgorithm Based Task Scheduling considering

Communication Coston Cluster of Workstations Int. J.

Advance. Soft Computing.Appl.,Vol. 2, No. 2, July 2010

ISSN 2074-8523.

[11] Topcuoglu,H.,S.Hariri and M.Y.Wu, “Performance

Effectiveand Low Complexity Task Scheduling

Algorithm scheduling forheterogeneous computing “,

IEEE Transaction on Parallel andDistributed Systems,

Vol.13,No.3,(2002).

[12] P.J. Huang, H. Peng, X.Z. Li, Macro adjustment based

task scheduling inhierarchical Grid market, in:

Proceedings of the 7th International Conferenceon

Computational Science, ICCS 2007, Beijing, China, in:

Lecture Notes inComputer Science, vol. 4487, Springer-

Verlag, 2007, pp. 430_433.

[13] G. Stuer, K. Vanmechelena, J. Broeckhovea, A

commodity market algorithm forpricing substitutable

Grid resources, Future Generation Computer Systems 23

(5) (2007) 688_701.

[14] C.L. Li, L.Y. Li, QoS based resource scheduling by

computational economy incomputational Grid,

Information Processing Letters 98 (3) (2006) 119_126.

[15] R. Subrata, A.Y. Zomaya, B. Landfeldt, Artificial life

techniques for loadbalancing in computational Grids,

Journal of Computer and System Sciences73 (8) (2007)

1176_1190.

[16] C.H. Hsu, T.L. Chen, K.C. Li, Performance effective

pre-scheduling strategy forheterogeneous Grid systems

in the master slave paradigm, Future

GenerationComputer Systems 23 (4) (2007) 569_579.

[17] M. Kalantari, M.K. Akbari, A parallel solution for

scheduling of real timeapplications on Grid

environments, Future Generation Computer

Systems(2009), in press

(doi:10.1016/j.future.2008.01.003).

