
International Journal of Computer Applications (0975 – 8887)

Volume 44– No.21, April 2012

50

Analysis of the Hash Function – Modified Grøstl

Gurpreet Kaur
Defence Institute of

Advance Technology
(DU), Pune, INDIA

Vidyavati S Nayak
Defence Institute of

Advance Technology
(DU), Pune, INDIA

Dhananjoy Dey
Scientific Analysis Group,
DRDO, Metcalfe House,

Delhi, INDIA

SK Pal
Scientific Analysis Group,
DRDO, Metcalfe House,

Delhi, INDIA

ABSTRACT
Modified Grøstl - mGrøstl hash function was recently

proposed by the authors as an alternative of one of the five

finalist of SHA-3 competition namely Grøstl-256. This

research paper presents the detailed analysis of algorithm

along with performance evaluation of mGrøstl in eBASH

project. According to the analysis, paper points out that

different performance can be gained by adapting different

platform.

Keywords

eBASH, Entropy Test, Grøstl, Hash Function, mGrøstl, SHA3

Competition.

1. INTRODUCTION
Hash functions play vital role in cryptology. A hash

function, h, is an algorithm which processes an arbitrary

length message into a fixed length hash code. Hash functions

are used in different cryptographic applications like digital

signatures, password protection schemes, and e-government.

A hash function must provide different security properties

depending on the security requirements of the application. It

takes input of variable size and produces an output of fixed

size, e.g., 160 bits for the most commonly used hash function

SHA-1.

Hash functions should be very efficient and the security

requirements for hash functions are usually described as

follows [1].

• Preimage Resistance: For any given output y, it is

computationally infeasible to construct an input x which

hashes to y.

• Second Preimage Resistance: This property, also called

weak collision resistance, specifies that for any given input x

and output h(x) = y, it is computationally infeasible to

construct a second input x′  x which hashes to the same hash

value y.

• (Strong) Collision Resistance: It is computationally

infeasible to construct two distinct inputs which hash to the

same value.

These three properties make the cryptographic one-way hash

function suitable for achieving many security goals including

authenticity, digital signatures, digital time stamping and

entity authentication. Nowadays, the most commonly used

dedicated cryptographic hash functions are SHA-1 and SHA-

2. Since collisions on standard hash functions were reported in

2004 [2], improvements to design hash algorithms as well as

the methods of attacking hash functions have progressed at a

similar, rapid pace.

For this reason, NIST announced the SHA-3 competition [3]

in Nov 2007. In SHA-3 hash function competition the five

finalists selected in final round on 09 Dec 2010 are Blake [4],

Grøstl [5], JH [6], Keccak [7] and Skein [8].

1.1 eBASH
Several ongoing projects are evaluating the efficiency of the

SHA-3 candidates. Recently, D. J. Bernstein and T. Lange

have launched the project eBASH (ECRYPT Benchmarking

of All Submitted Hashes) [9] which is a project to measure the

performance of hash functions. Anyone can submit his/her

design to evaluate the efficiency by an independent third

party. Time refers to time on real computers: time on an Intel

Core 2 Quad, time on an AMD Athlon 64 X2, time on an IBM

PowerPC G5 970, etc.

eBASH measures efficiency of each hash function on a wide

variety of computers, ensuring direct comparability of all

systems on whichever computers are of interest to the users.

1.2 Grøstl overview
Grøstl [5] is one of the five SHA-3 finalists and is an iterated

hash function with a compression function built from two

fixed, large, distinct permutations. The design of Grøstl is

based on principles very different from those used in the

SHA-family. The two permutations are constructed using the

wide pipe design strategy, which makes it possible to give

strong statements about the resistance of Grøstl against large

classes of cryptanalytic attacks.

This paper presents the analysis of Modified Grøstl algorithm

in terms of efficiency, entropy test, avalanche effect along

with performance evaluation in eBASH project. This made to

the conclusion, which shows that Modified Grøstl is faster

when compared with Grøstl1.

The organization of the paper is as follows. Section 2 presents

the brief description of Modified Grøstl hash function, In

Section 3 we discuss the security analysis using various tests

conducted on the Modified Grøstl hash function followed by

Section 4, presents the performance analysis along with the

comparison with original Grøstl algorithm

2. Modified Grøstl
mGrøstl2 - Modified Grøstl-256 hash function was recently

proposed and developed by the authors and is under

publication in [10] as an alternative to one of the five finalists

SHA3 candidate, viz., Grøstl . For the completeness of this

paper the brief description of the mGrøstl is presented below.

mGrøstl can take arbitrary length (< 2641024-bit block) of

input and gives 256 bits output. We have modified the hash

function construction, the padding procedure and the

1 From now onwards we will mention Grostl-256 as Grøstl.
2 We named Modified Grostl-256 as mGrøstl.

http://bench.cr.yp.to/ebash.html

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.21, April 2012

51

Fig 1: The Modified Grøstl Construction

compression function in mGrøstl. The three modifications

details have discussed below.

2.1 Construction of Hash Function
In mGrøstl, we have designed the construction for 2ℓ bit

message block. So the message M is first padded with the

following method and split into 2ℓ-bit (1024 bit) message

blocks M1…Mt, and each message block is processed

sequentially. The mGrøstl hash function iterates the

compression function f as follows:

Hi  f (Hi-1, Mi, Ci) for 1  i  t.

It maps the ℓ-bit previous Hash value Hi-1where H0=IV (Initial

Vector), 2ℓ- bit message block Mi, and ℓ-bit counter value Ci

where ℓ is defined to be 512 for mGrøstl-256 bit output as

shown in Figure 1. The padding procedure is discussed below.

2.1.1 Padding
The hash value of a message M of length L=1024 × (t-1) + 8r

bits can be computed in the following manner:

The padding procedure is shown in Figure 2. First append 1 to

the end of the message M. Let k be the number of zeros added

for padding. 7-bit representation of r bytes is appended to the

end of k zeros and at the last the 64-bit representation of total

number of blocks t is placed. k is the smallest non-negative

integer satisfying the following condition:

8r + 1 + k + 7 + 64  0 mod 1024

i.e., k + 8r  952 mod 1024

Fig 2: Padding Procedure

2.2 The Compression Function
The compression function f is based on two underlying ℓ-bit

permutations P and Q [5] which are same as original Grøstl.

The function f for mGrøstl is defined as follows:

For every message block Mi, is divided into two equal part,

i.e., Mi = Li||Ri. Transform the message block, Previous Hash

function Hi-1 and the counter value Ci in the following way:

Ptmp  P(Li  Ci) .

Qtmp  Q(Ri  Hi−1) .

Where counter Ci = i mod 264 for 1  i  t which increments in

next iteration. Ptmp, Qtmp are temporary 512-bit

representation used for storing the intermediate values.

Further the temporary values are transformed to get the next

chaining variable Hi as follows.

Ptmp  P(Ptmp  Qtmp) .

Hi  Ptmp  Qtmp  Hi-1.

The construction of compression function f for mGrøstl is as

shown in Figure 3.

Fig 3: The compression function f for mGrøstl

3. EXPERIMENTAL RESULTS

3.1 Evaluation for Hash Function Speed
The metric used for evaluating the hash function speed was

trivially the execution time of a single hash computation,

averaged over ten numbers of repetitions. A performance

comparison of the both hash functions considered for message

digest generation is reported in Table 1 done on a Sony

notebook with a Intel Core i3 with chipset M370 @ 2.40Gz

processor with 3 GB RAM running Linux OS is used.

 Table 1: Average execution time comparisons

File Size

(in MB)

Grøstl

(in ms.)

Modified Grøstl

(in ms.)

10 894.44 671.06

12.6 1131.61 855.42

16.5 1447.14 1094.79

19.1 1605.09 1243.31

28.8 2318.69 1839.46

Here we observed that mGrøstl is 1.27 times faster than

Grøstl. The performance chart comparison between original

Grøstl and mGrøstl as shown in Figure 4.

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.21, April 2012

52

Fig 4: Performance comparison

3.2 Evaluation of the mGrøstl as a Hashing

Algorithm
To evaluate the quality of a hash algorithm; the original Grøstl

and the mGrøstl are evaluated against the following metrics

[11].

1. Entropy test,

2. Bit Variances test

3.2.1 Entropy Test:
Entropy measures the average amount of information content

of a message and gives maximum result when it equals the

total number of bits in the message. Since, it is infeasible to

calculate the entropy of the message digest, an approximate

method [12] is used.

Approximate Entropy Assessment Method: Let the message

digest divided into block size of 1 byte. By taking all possible

combinations of byte pairs, we generated a set of 16 bit

numbers (0-65535) for each message digest. For a various

message digests if the frequencies of occurrences of these

numbers (0-65535) are equal, then the approximate entropy

for the 16 bit sub-blocks of the message digest is 16.

For the entropy test, all possible combinations of 8-bit

numbers from each 256-bit message digest, (=32*(32-1)) are

taken to form 16 bit numbers. The test is carried out for

200000 messages. Thus, there are 200000*32*(32-1) 16-bit

number occurrences in the digest pool.

Fig 5: Result for mGrøstl

Fig 6: Result for Grøstl

The Figure 5 and Figure 6 show the entropy results for both

Algorithms that describe the average occurrence frequencies

of all the numbers (0-65535) are almost equal i.e. 3027. The

approximate entropy for 16-bit sub block:

The original Grøstl = 15.99945 and

The Modified Grøstl = 15.99948.

So the approximate entropy for the 16 bit sub blocks of the

message digest is almost 16.

3.2.2 The Bit-Variance Test
The bit variance test actually measures the uniformity of each

bit of the digest. Since it is computationally difficult to

consider all input message bit changes, we have evaluated the

results for only up to 1024 files, viz. M, M1, M2, ..., M1024

which we have generated for conducting avalanche effect

(discussed in next section), Finally from all the digests

produced, the probability (Pi) for each digest bit to take on the

value of 1 and 0 is measured. If Pi(1) = Pi(0) = 1/2 for all

digest bits i (i ≤ 1 ≤ n) where n is the digest length, then the

one way hash function under consideration has attained

maximum performance in terms of the bit variance test.

We have performed the test and evaluated the results for 1024

files [11] and found the following results:

Mean frequency of 1‘s (expected) = 512.50

Mean frequency of 1‘s (calculated) = 510.87

Plotting the probability (Figure 7) of each of the bits (256-bit),

we see that the average probability is approximately 0.50.

Thus, mGrøstl passes the bit variance test.

Fig 7: The probability of a bit position for mGrøstl

3.3 Avalanche Effect
The avalanche effect is evident if, when an input is changed

slightly (for example, flipping a single bit) the output changes

significantly (e.g., half the output bits flip).

Tool for the test: We have taken an input file M consisting of

1024 bits and computed H(M). By changing the ith bit of M,

the files Mi have been generated, for 1  i  1024. Thus

hamming distance of each Mi from M is exactly one for 1  i 

1024. We then computed H(Mi) for 1  i  1024, computed

the Hamming distances di between H(M) and H(Mi), for 1  i

 1024, i.e., number of ones for H(M)  H(Mi). The Table 2

shows the max, min, mode and the mean values of the above

distances. The normal distribution of Hamming distances for

mGrøstl is shown in Figure 8.

To satisfy strict avalanche criterion, each di should be 128 for

1  i  1024. But we have found (Table 2) that di‘s were lying

between 102 and 153 for the above files and in most of the

cases di = 128. The observed deviation is acceptable so as to

resist collision search using differential attack.

0

400

800

1200

1600

2000

2400

10 12.6 16.5 19.1 28.8

E
x
e
c
u

ti
o
n

 T
im

e
 (

in
 m

s)

Message length (in MB)

Performance Comparision

Grøstl Modified Grøstl

0

1000

2000

3000

4000

0

2
2

8
6

4
5

7
2

6
8

5
8

9
1

4
4

1
1

4
3

0

1
3

7
1

6

1
6

0
0

2

1
8

2
8

8

2
0

5
7

4

2
2

8
6

0

2
5

1
4

6

2
7

4
3

2

2
9

7
1

8

mGrøstl

0

1000

2000

3000

4000

0

2
2

8
6

4
5

7
2

6
8

5
8

9
1

4
4

1
1

4
3

0

1
3

7
1

6

1
6

0
0

2

1
8

2
8

8

2
0

5
7

4

2
2

8
6

0

2
5

1
4

6

2
7

4
3

2

2
9

7
1

8

Grøstl

0

0.25

0.5

0.75

1
1

1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0

5

1
1

8

1
3

1

1
4

4

1
5

7

1
7

0

1
8

3

1
9

6

2
0

9

2
2

2

2
3

5

2
4

8

B
it

 p
r
o

b
a

b
il

it
y

Bit Number

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.21, April 2012

53

Table 2. Hamming Distances

No. of ones for di = H(M)  H(Mi)

Grøstl mGrøstl

Maximum 152 153

Minimum 101 102

Mode 126 128

Mean 128.82 127.73

Fig 8: The normalized Hamming distances for mGrøstl

4. eBASH EXPERIMENTAL RESULTS
The three implementations of mgrostl2563 were evaluated in

eBASH project. The results in the form of graph are

automatically posted at [13] whenever the eBASH

performance results are updated. The snapshot of this graph is

presented in the following subsection. The interested readers

may check the eBASH web page [9] for the latest updates.

4.1 Implementation comparison:

mgrostl256
We submitted three implementations of mgrostl256; those are

‗Opt64‘, ‗Opt32‘ and ‗Ref‘ implementation into eBASH

Project. We got the following graph as resultant

Implementation comparison as shown in Figure 9.

However, the time to hash a message depends heavily on the

message length and on the CPU used for hashing. A graph

showing these dependencies is naturally two-dimensional:

one axis shows the CPU, and one axis shows time. [14]

Vertical axis: architecture/microarchitecture/CPU/machine.

Horizontal axis: courier time; the time axis is cycles per byte

3
 Project eBASH named mGrøstl as mgrostl256

Fig 9: Implementation comparison: crypto_hash/mgrostl256

0

0.01

0.02

0.03

0.04

0.05

0.06

68 88 108 128 148 168 188

N
o
rm

a
li

ze
d

 d
is

tr
ib

u
ti

o
n

Normalized Hamming distance

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.21, April 2012

54

4.2 Measurements of mgrostl256, indexed

by machine
The measurements of hash functions performance are given in

the eBASH project. We further compiled the results as per the

implementations Opt32 and Opt64 for both original Grøstl

and mGrøstl. The computer name is linked to additional

information about the implementations and compilers selected

for benchmarking.

They have included four different architectures for compiling

the results: armeabi, ppc32, x86, and amd64. As sometimes

one micro-architecture includes useful additional instructions

that will not work on other micro-architectures: for example,

Sandy Bridge and the very new Ivy Bridge and Bulldozer all

support AES instructions that are useful for Grøstl, while

other amd64 micro-architectures do not support AES

instructions.

The following graphs represent the Time vs. compiler chart

for particular computer architecture. The graphs show that the

mGrøstl is faster as compared to Grøstl.

4.2.1 Architecture: x86, Computer: hydra6

Implementation: Opt-32,

SUPERCOP version: 20120310

Fig. 10. Time vs. compiler chart for Architecture: x86

4.2.2 Architecture: amd64, Computer: h6sandy

Implementation: Opt 32,

SUPERCOP version: 20120310

Fig 11: Time vs. compiler chart for Architecture: AMD64

Implementation: Opt 32

4.2.3 Architecture: amd64, Computer: bulldozer

Implementation: Opt 64 ;

SUPERCOP version: 20120310

Fig 12: Time vs. compiler chart for Architecture: AMD64

Implementation: Opt 64

90000

110000

130000

150000

170000

g
cc -fu

n
ro

ll-lo
o
p
s -m

3
2

 -m
arch

=
ath

lo
n
 -O

 -fo
m

it-…

g
cc -fu

n
ro

ll-lo
o
p
s -m

3
2
 -m

arch
=

i3
8
6
 -O

 -fo
m

it-…

g
cc -fu

n
ro

ll-lo
o
p
s -m

3
2
 -m

arch
=

k
6
 -O

 -fo
m

it-…

g
cc -fu

n
ro

ll-lo
o
p
s -m

3
2

 -m
arch

=
k
6

-3
 -O

 -fo
m

it-…

g
cc -fu

n
ro

ll-lo
o
p
s -m

3
2
 -m

arch
=

n
o
co

n
a -O

 -fo
m

it-…

g
cc -fu

n
ro

ll-lo
o
p
s -m

3
2

 -m
arch

=
p
en

tiu
m

2
 -O

 -…

g
cc -fu

n
ro

ll-lo
o
p
s -m

3
2

 -m
arch

=
p
en

tiu
m

4
 -O

 -…

g
cc -fu

n
ro

ll-lo
o
p
s -m

3
2
 -m

arch
=

p
en

tiu
m

-m
m

x
 -O

 -…

g
cc -fu

n
ro

ll-lo
o
p
s -m

3
2
 -m

arch
=

p
resco

tt -O
 -fo

m
it-…

g
cc -m

3
2
 -m

arch
=

ath
lo

n
 -O

 -fo
m

it-fram
e-p

o
in

ter

g
cc -m

3
2
 -m

arch
=

co
re2

 -m
sse4

 -O
 -fo

m
it-fram

e-…

g
cc -m

3
2
 -m

arch
=

co
re2

 -O
 -fo

m
it-fram

e-p
o
in

ter

g
cc -m

3
2
 -m

arch
=

co
rei7

 -O
 -fo

m
it-fram

e-p
o
in

ter

g
cc -m

3
2
 -m

arch
=

i3
8
6
 -O

 -fo
m

it-fram
e-p

o
in

ter

g
cc -m

3
2
 -m

arch
=

k
6
 -O

 -fo
m

it-fram
e-p

o
in

ter

g
cc -m

3
2
 -m

arch
=

k
6

-3
 -O

 -fo
m

it-fram
e-p

o
in

ter

g
cc -m

3
2
 -m

arch
=

n
ativ

e -m
tu

n
e=

n
ativ

e -O
 -fo

m
it-…

g
cc -m

3
2
 -m

arch
=

p
en

tiu
m

 -O
 -fo

m
it-fram

e-p
o
in

ter

g
cc -m

3
2
 -m

arch
=

p
en

tiu
m

3
 -O

 -fo
m

it-fram
e-p

o
in

ter

g
cc -m

3
2
 -m

arch
=

p
en

tiu
m

-m
 -O

 -fo
m

it-fram
e-p

o
in

ter

g
cc -m

3
2
 -m

arch
=

p
en

tiu
m

p
ro

 -O
 -fo

m
it-fram

e-p
o
in

ter

g
cc -m

3
2
 -O

 -fo
m

it-fram
e-p

o
in

ter

grostl256 mgrostl256

70000

75000

80000

85000

90000

g
cc -fn

o
-sch

ed
u
le-in

sn
s -O

s -fo
m

it-fram
e-…

g
cc -fu

n
ro

ll-lo
o
p
s -fn

o
-sch

ed
u
le-in

sn
s -O

s -…

g
cc -fu

n
ro

ll-lo
o
p
s -m

6
4
 -m

arch
=

b
arcelo

n
a -…

g
cc -fu

n
ro

ll-lo
o
p
s -m

6
4
 -m

arch
=

k
8
 -O

s -…

g
cc -fu

n
ro

ll-lo
o
p
s -m

6
4
 -m

arch
=

n
o
co

n
a -O

s -…

g
cc -fu

n
ro

ll-lo
o
p
s -m

6
4
 -O

s -fo
m

it-fram
e-…

g
cc -fu

n
ro

ll-lo
o
p
s -m

arch
=

b
arcelo

n
a -O

s -…

g
cc -fu

n
ro

ll-lo
o
p
s -m

arch
=

k
8
 -O

s -fo
m

it-…

g
cc -fu

n
ro

ll-lo
o
p
s -m

arch
=

n
o
co

n
a -O

s -fo
m

it-…

g
cc -fu

n
ro

ll-lo
o
p
s -O

s -fo
m

it-fram
e-p

o
in

ter

g
cc -m

6
4
 -m

arch
=

b
arcelo

n
a -O

s -fo
m

it-…

g
cc -m

6
4
 -m

arch
=

co
re2

 -m
sse4

 -O
s -fo

m
it-…

g
cc -m

6
4
 -m

arch
=

co
re2

 -m
sse4

.1
 -O

s -fo
m

it-…

g
cc -m

6
4
 -m

arch
=

co
re2

 -O
s -fo

m
it-fram

e-…

g
cc -m

6
4
 -m

arch
=

co
re-av

x
-i -O

s -fo
m

it-…

g
cc -m

6
4
 -m

arch
=

co
rei7

 -O
s -fo

m
it-fram

e-…

g
cc -m

6
4
 -m

arch
=

co
rei7

-av
x
 -O

s -fo
m

it-…

g
cc -m

6
4
 -m

arch
=

k
8
 -O

s -fo
m

it-fram
e-p

o
in

ter

g
cc -m

6
4
 -m

arch
=

n
ativ

e -m
tu

n
e=

n
ativ

e -O
s -…

g
cc -m

6
4
 -m

arch
=

n
o
co

n
a -O

s -fo
m

it-fram
e-…

g
cc -m

6
4
 -O

s -fo
m

it-fram
e-p

o
in

ter

g
cc -m

arch
=

b
arcelo

n
a -O

s -fo
m

it-fram
e-p

o
in

ter

g
cc -m

arch
=

k
8
 -O

s -fo
m

it-fram
e-p

o
in

ter

g
cc -m

arch
=

n
o
co

n
a -O

s -fo
m

it-fram
e-p

o
in

ter

g
cc -O

s -fo
m

it-fram
e-p

o
in

ter

grostl256 mgrostl256

75000

80000

85000

90000

95000

100000

g
cc -fn

o
-sch

ed
u
le-in

sn
s -O

s -fo
m

it-fram
e-p

o
in

ter

g
cc -fu

n
ro

ll-lo
o
p
s -fn

o
-sch

ed
u
le-in

sn
s -O

s -…

g
cc -fu

n
ro

ll-lo
o
p
s -m

6
4
 -m

arch
=

b
arcelo

n
a -O

s …

g
cc -fu

n
ro

ll-lo
o
p
s -m

6
4
 -m

arch
=

k
8
 -O

s -fo
m

it-…

g
cc -fu

n
ro

ll-lo
o
p
s -m

6
4

 -m
arch

=
n
o
co

n
a -O

s -…

g
cc -fu

n
ro

ll-lo
o
p
s -m

6
4
 -O

s -fo
m

it-fram
e-p

o
in

ter

g
cc -fu

n
ro

ll-lo
o
p
s -m

arch
=

b
arcelo

n
a -O

s -…

g
cc -fu

n
ro

ll-lo
o
p
s -m

arch
=

k
8
 -O

s -fo
m

it-…

g
cc -fu

n
ro

ll-lo
o
p
s -m

arch
=

n
o
co

n
a -O

s -fo
m

it-…

g
cc -fu

n
ro

ll-lo
o
p
s -O

s -fo
m

it-fram
e-p

o
in

ter

g
cc -m

6
4
 -m

arch
=

b
arcelo

n
a -O

s -fo
m

it-fram
e-…

g
cc -m

6
4
 -m

arch
=

co
re2

 -m
sse4

 -O
s -fo

m
it-…

g
cc -m

6
4
 -m

arch
=

co
re2

 -m
sse4

.1
 -O

s -fo
m

it-…

g
cc -m

6
4
 -m

arch
=

co
re2

 -O
s -fo

m
it-fram

e-p
o

in
ter

g
cc -m

6
4
 -m

arch
=

co
re-av

x
-i -O

s -fo
m

it-fram
e-…

g
cc -m

6
4
 -m

arch
=

co
rei7

 -O
s -fo

m
it-fram

e-…

g
cc -m

6
4
 -m

arch
=

co
rei7

-av
x
 -O

s -fo
m

it-…

g
cc -m

6
4
 -m

arch
=

k
8
 -O

s -fo
m

it-fram
e-p

o
in

ter

g
cc -m

6
4
 -m

arch
=

n
ativ

e -m
tu

n
e=

n
ativ

e -O
s -…

g
cc -m

6
4

 -m
arch

=
n
o
co

n
a -O

s -fo
m

it-fram
e-…

g
cc -m

6
4

 -O
s -fo

m
it-fram

e-p
o
in

ter

g
cc -m

arch
=

b
arcelo

n
a -O

s -fo
m

it-fram
e-p

o
in

ter

g
cc -m

arch
=

k
8
 -O

s -fo
m

it-fram
e-p

o
in

ter

g
cc -m

arch
=

n
o
co

n
a -O

s -fo
m

it-fram
e-p

o
in

ter

g
cc -O

s -fo
m

it-fram
e-p

o
in

ter

grostl256 mgrostl256

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.21, April 2012

55

4.2.4 Architecture: armeabi, Computer:h4mx515e

Implementation: Opt 32,

SUPERCOP version: 20120310

Fig 13: Time vs. compiler chart for Architecture: armeabi

4.2.5 Architecture: ppc32, Computer: stan

Implementation: Opt 32,

SUPERCOP version: 20120310

Fig 15: Time vs. compiler chart for Architecture: PPC32

5. CONCLUSION
The detailed analysis of algorithm is carried out along with

performance evaluation in eBASH project of mGrøstl.

According to the analysis from eBASH project, we can say

that different performances can be gained by adapting

different platform. This also shows that mGrøstl is as secure

as Grøstl and is more efficient than Grøstl.

6. ACKNOWLEDGMENT
The authors would like to thank eBASH Project. They would

also like to thank the anonymous reviewers for helpful

suggestions and comments to improve the paper.

7. REFERENCES
[1] A. Menezes, P. Oorschot & S. Vanstone, 1997,

Handbook of Applied Cryptography. CRC Press

http://www.cacr.math.uwateroo.ca/hac/

[2] E. Biham and R. Chen, ―Near-collisions of SHA-0,‖ in

Advances in Cryptology—CRYPTO 2004, Lecture

Notes in Computer Science, M.K. Franklin, Ed. Berlin,

Germany: Springer-Verlag, 2004, vol. 3152, pp. 290–

305.

[3] National Institute of Standards and Technology, 2011,

Cryptographic Hash Project SHA-3 contest,

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html.

[4] J.P. Aumasson, L. Henzen, W. Meier, R. Phan, 2011,

SHA-3 Proposal Blake. Candidate to the NIST Hash

Competition.

[5] P. Gauravaram, L. Knudsen, K. Matusiewicz, F. Mendel,

2011, C. Rechberger, M. Schlaffer, and S. Thomsen:

Grøstl - a SHA-3 candidate. Submission to NIST

http://groestl.info.

[6] H. Wu, 2011, JH. Candidate to the NIST Hash

Competition.

[7] G. Bertoni, J. Daemen, M. Peeters , G. Assche, 2011,

Keccak. Candidate to the NIST Hash Competition.

[8] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M.

Bellare, T. Kohno, J. Callas, J. Walker, 2008, Skein.

Candidate to the NIST Hash Competition.

[9] D. J. Bernstein and T. Lange (editors). eBACS: ECRYPT

Benchmarking of Cryptographic Systems,

http://bench.cr.yp.to, accessed 1 Feb 2012.

[10] Gurpreet Kaur, Vidyavati S Nayak, Dhananjoy Dey, S.

K. Pal, ―Modified Grøstl: An Efficient Hash Function‖,

(Accepted In proceeding) CSIA2012, Advances in

Intelligent and Soft Computing book Series, Springer.

[11] D. Karras & V. Zorkadis, ―A Novel Suite of Tests for

Evaluating One-Way Hash Functions for Electronic

Commerce Application‖. IEEE 2000

[12] R. Chatterjee, M.A. Saifee, and D. RoyChowdhury,

―Modifications of SHA-0 to Prevent Attacks,‖ in S.

Jajodia and C. Mazumdar (Eds.) ICISS 2005, LNCS

3803, Springer-Verlag Berlin Heidelberg 2005, pp. 277–

289, 2005.

[13] D. J. Bernstein and T. Lange (editors). eBACS: ECRYPT

Benchmarking of Cryptographic Systems,

http://bench.cr.yp.to/impl-hash/mgrostl256.html accessed

3 Mar 2012.

[14] D. J. Bernstein and T. Lange, 2012, The new SHA-3

software shootout. http://eprint.iacr.org/2012/004.pdf

100000

200000

300000

400000

500000

600000

g
cc -fn

o
-sch

ed
u
le-in

sn
s -O

2
 -fo

m
it-fram

e-…

g
cc -fu

n
ro

ll-lo
o
p
s -fn

o
-sch

ed
u
le-in

sn
s -O

2
 -…

g
cc -fu

n
ro

ll-lo
o
p
s -O

2
 -fo

m
it-fram

e-p
o
in

ter

g
cc -m

cp
u
=

arm
1
0
2
0
t -O

2
 -fo

m
it-fram

e-p
o
in

ter

g
cc -m

cp
u
=

arm
1
0
td

m
i -O

2
 -fo

m
it-fram

e-…

g
cc -m

cp
u
=

arm
1
1
3
6
jf-s -O

2
 -fo

m
it-fram

e-…

g
cc -m

cp
u
=

arm
1
1
3
6
jf-s -O

2
 -fo

m
it-fram

e-…

g
cc -m

cp
u
=

arm
1
1
3
6
j-s -O

2
 -fo

m
it-fram

e-…

g
cc -m

cp
u
=

arm
1
1
3
6
j-s -O

2
 -fo

m
it-fram

e-…

g
cc -m

cp
u
=

arm
7
td

m
i -O

2
 -fo

m
it-fram

e-p
o
in

ter

g
cc -m

cp
u
=

arm
8
 -O

2
 -fo

m
it-fram

e-p
o
in

ter

g
cc -m

cp
u
=

arm
8
1
0
 -O

2
 -fo

m
it-fram

e-p
o
in

ter

g
cc -m

cp
u
=

arm
9
 -O

2
 -fo

m
it-fram

e-p
o
in

ter

g
cc -m

cp
u
=

arm
9
2
0
 -O

2
 -fo

m
it-fram

e-p
o
in

ter

g
cc -m

cp
u
=

arm
9
2
0
t -O

2
 -fo

m
it-fram

e-p
o
in

ter

g
cc -m

cp
u
=

arm
9
4
0
t -O

2
 -fo

m
it-fram

e-p
o
in

ter

g
cc -m

cp
u
=

arm
9
e -O

2
 -fo

m
it-fram

e-p
o
in

ter

g
cc -m

cp
u
=

arm
9
td

m
i -O

2
 -fo

m
it-fram

e-p
o
in

ter

g
cc -m

cp
u
=

co
rtex

-a8
 -m

flo
at-ab

i=
so

ftfp
 -…

g
cc -m

cp
u
=

co
rtex

-a9
 -O

2
 -fo

m
it-fram

e-p
o
in

ter

g
cc -m

cp
u
=

ep
9
3
1
2
 -O

2
 -fo

m
it-fram

e-p
o
in

ter

g
cc -m

cp
u
=

stro
n
g
arm

 -O
2

 -fo
m

it-fram
e-p

o
in

ter

g
cc -m

cp
u
=

stro
n
g
arm

1
1
0
 -O

2
 -fo

m
it-fram

e-…

g
cc -m

cp
u
=

stro
n
g
arm

1
1
0

0
 -O

2
 -fo

m
it-…

g
cc -m

cp
u
=

x
scale -O

2
 -fo

m
it-fram

e-p
o
in

ter

g
cc -O

2
 -fo

m
it-fram

e-p
o
in

ter

grostl256 mgrostl256

200000

300000

400000

500000

600000

700000

800000

900000

g
cc -fn

o
-sch

ed
u
le-in

sn
s -O

2
 -fo

m
it-fram

e-…

g
cc -fu

n
ro

ll-lo
o
p
s -m

3
2
 -m

altiv
ec -O

2
 -…

g
cc -fu

n
ro

ll-lo
o
p
s -m

3
2
 -m

cp
u
=

G
3
 -O

2
 -…

g
cc -fu

n
ro

ll-lo
o
p
s -m

3
2
 -m

cp
u
=

G
4
 -O

2
 -…

g
cc -fu

n
ro

ll-lo
o
p
s -m

3
2
 -m

cp
u
=

G
5
 -O

2
 -…

g
cc -fu

n
ro

ll-lo
o
p
s -m

altiv
ec -O

2
 -fo

m
it-…

g
cc -fu

n
ro

ll-lo
o
p
s -m

cp
u
=

G
3

 -O
2

 -fo
m

it-…

g
cc -fu

n
ro

ll-lo
o
p
s -m

cp
u
=

G
4

 -O
2

 -fo
m

it-…

g
cc -fu

n
ro

ll-lo
o
p
s -m

cp
u
=

G
5

 -O
2

 -fo
m

it-…

g
cc -m

3
2
 -m

altiv
ec -O

2
 -fo

m
it-fram

e-p
o
in

ter

g
cc -m

3
2
 -m

cp
u

=
G

3
 -O

2
 -fo

m
it-fram

e-p
o
in

ter

g
cc -m

3
2
 -m

cp
u

=
G

4
 -O

2
 -fo

m
it-fram

e-p
o
in

ter

g
cc -m

3
2
 -m

cp
u

=
G

5
 -O

2
 -fo

m
it-fram

e-p
o
in

ter

g
cc -m

altiv
ec -O

2
 -fo

m
it-fram

e-p
o
in

ter

g
cc -m

cp
u
=

G
3
 -O

2
 -fo

m
it-fram

e-p
o
in

ter

g
cc -m

cp
u
=

G
4
 -O

2
 -fo

m
it-fram

e-p
o
in

ter

g
cc -m

cp
u
=

G
5
 -O

2
 -fo

m
it-fram

e-p
o
in

ter

grostl256 mgrostl256

