
International Journal of Computer Applications (0975 – 8887)

Volume 44– No20, April 2012

7

An Improved Grid Scheduling based on SLA for
Workflow Application

Animesh Kuity Sateesh Kumar Peddoju
Electronics & Computer Engineering Department Electronics & Computer Engineering Department
 Indian Institute of Technology Roorkee Indian Institute of Technology Roorke

Roorkee-247667 Roorkee-247667

ABSTRACT

In grid environment multiple resource providers work together in

order to accomplish a complex job. The service level agreement

is negotiated between client and a provider for executing the job

on high performance computing resources. Most of today grid

applications consist of highly correlated tasks. The performance

of the workflow application containing highly correlated tasks

mainly depends on scheduling.

This paper proposes an improved SLA based Grid scheduling for

workflow application using improved heterogeneous earliest

finish time algorithm to select appropriate resource(s) to execute

each task of workflow application and advance reservation based

resource negotiation to get commitment of the resources towards

the task. The proposed model to schedule each task of workflow

application not only keeps in mind the earliest finish time but

also requirement of the user’s job. The resultant effect of the

proposed model decreases both execution times of the workflow

applications as well as rescheduling needed for each task.
Keywords
Grid Computing, SLA, DRS, HEFT, Advance reservation based

resource negotiation, QoS, DAG.

1. INTRODUCTION
Grid [1] is defined as “a dynamic collaborative computing

environment which allows sharing, aggregation and allocation of

resources among multiple administrative domains”. Shared

resources include computation power, storage, memory, data, and

special instruments such as telescope. Grid is a highly

decentralized environment involving multiple autonomous

administrative domains with its own policies for scheduling,

access cost, security, etc. The aim of Grid is to utilize the idle

CPU cycles of different contributing organizations for running

complex scientific applications requiring days of computation.

Efficient utilization of resources is primary goal of Grid

environment.

A workflow application is defined as “a set of tasks which is

coordinated by control and data dependency” (e.g. weather

forecasting workflow, bioinformatics workflow etc.)[2]. Now a

days, most of the users want their jobs to finish execution within

their specified time and they pay for that. A workflow application

is represented by a directed acyclic graph where each node of the

graph represents execution time of the task and each edge

represents the data transfer time between the tasks. The direction

of the edge represents data transfer direction and parent-child

relationship between the tasks. For efficient scheduling of

workflow application many static and dynamic scheduling

algorithms have been proposed (e.g. ADOS [3], MAHEFT [4],

LAR [5] etc.). How to schedule the workflow application based

on user requirement such as QoS and timing constrain has not

been address in those papers. For higher QoS, resource broker

demands higher prices. So in most of the cases, user wants

cheaper service with lower QoS that are sufficient to meet their

requirements [6].

Service level agreement [7] is a contract between user and

resource providers which state QoS required by the job,

restriction on utilization of resources and penalties during

violation of objective. Users need some commitment and

assurance on the top of allocated resources to accomplish a job

and for dealing with erroneous condition. These terms need to be

agreed upon before use and manifested in form of SLA.

When a job is submitted by a user to resource broker, a SLA

workflow is created between user and resource broker by

describing all the terms and conditions. Resource broker works as

a middle man. Each workflow consists of more than one task.

Resource broker creates a SubSLA for each task of the workflow

application with the service provider so that overall execution

time of the job is within user’s specified time.

Most of the current research [8, 9] address that task is submitted

to the resource provider which has lowest execution time. But if

resource broker schedule the task depending on only execution

time, it may happen that at later time rescheduling is needed for

that task. Due to rescheduling of the task, job may not be able to

complete their execution within the specified time. The main

focus of this paper is to address these issues. Also advance

reservation based resource negotiation is used to get commitment

of the service provider to execute the task. A simple architecture

of an improved SLA based job scheduling for workflow

application is shown in Fig. 1.

2. RESOURCE SELECTION FOR

EXECUTING THE JOB
Whenever a user submits a job, resource broker does the entire

task on the behalf of user that is selection of suitable resources to

execute the job and negotiation with the resource providers. The

payment for the job will be the sum of cost incurred due to

resource broker and service provider. According to the improved

deviation based HEFT [10], tasks of the workflow application are

scheduled to the resource provider.

2.1 Improved deviation based HEFT
This proposed model schedules the job according to the

requirements of the job rather than resources’ own scheduling

metric. The workflow application containing more than one task

is represented by directed acyclic graph. The proposed improved

deviation based HEFT consists of two phase. Task prioritize

phase in which the priority of each task is calculated.

International Journal of Computer Applications (0975 – 8887)

Volume 44– No20, April 2012

8

Fig 1: A SLA based job scheduling for workflow application.

To assign the priority of the tasks ni, improved deviation based

HEFT uses task’s upward rank (ui). It is the longest path from the

task node ni to the exit node. Upward rank (ui) is calculated from

(1).

𝑅𝑎𝑛𝑘𝑢 𝑛𝑖 = 𝑤𝑖 + max 𝑐𝑖 ,𝑗 + 𝑟𝑎𝑛𝑘𝑢 𝑛𝑗 (1)

 𝑛𝑗 ∈ 𝑠𝑢𝑐𝑐(𝑛𝑗)

Where wi is the average computation cost of the task at all

available resource providers or processors. Ci,j is the average

communication cost of edge (i,j) and succ(ni) is the immediate

successor of task ni .

After calculating the rank of all tasks of the workflow application,

tasks are arranged in non-decreasing order of rank. If tie occurs,

then it is resolved by taking any task randomly. In resource

selection phase suitable resources are selected to execute each

task. Resources are selected not only depending on earliest finish

time but also which meets the user requirements exactly. It

consists of two phases: approximate earliest execution finish time

calculation. In this phase, approximate earliest execution finish

time of every task to every resource is calculated from (2). In this

phase, search for required time slot to execute task ni on

processor pj starts from ready time that is the time when all input

data of task ni that were sent by all predecessor task of ni have

arrived at processor pj.

𝐸𝑆𝑇 𝑛𝑖 , 𝑝𝑗 = max⁡{𝑇_𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒[𝑗],

max⁡(𝐸𝐹𝑇 𝑛𝑚 , 𝑝𝑘 , 𝑐𝑚,𝑗)}

 𝑛𝑚 ∈ 𝑝𝑟𝑒𝑑(𝑛𝑖)

 (2)

𝐸𝐹𝑇 𝑛𝑖 , 𝑝𝑗 = 𝑤𝑖 ,𝑗 + 𝐸𝑆𝑇(𝑛𝑖 , 𝑝𝑗)

Where EST(ni, pj) is the earliest start time of task ni on processor

pj and EFT(ni, pj) is the earliest finish time of task ni on processor

pj. T_available[j] is the earliest time at which processor pj will be

available for task execution and pred(ni) is the set of immediate

predecessor tasks of task ni. And wi,j is the execution cost of task

ni.

In the second phase deviation is calculated using the deviation

based resource scheduling algorithm against the requirements of

the task and the amount of resources that resource provider have.

Resources are ordered according to the deviation coefficient.

Then, it is selected to fulfil the task requirements.

In deviation based resource scheduling algorithm (DRS) [11], the

percentage of deviation Dij is calculated against jth parameter of

the task requirement and the corresponding parameter of the ith

available resources using (3).

For every available resources from i=1 to N

Percentage of deviation

𝐷𝑖𝑗 =

𝐴𝑣(𝑡)−𝑅𝑗 (𝑡)

𝐴𝑣(𝑡)
× 100 𝑖𝑓 𝐴𝑣(𝑡) > 𝑅𝑗 (𝑡)

𝐴𝑣(𝑡)−𝑅𝑗 (𝑡)

𝑅𝑗
× 100 𝑖𝑓 𝑅𝑗 (𝑡) > 𝐴𝑣(𝑡)

 (3)

Where j=number of resource parameter from 1 to m

Av(t) is the jth parameter of the ith available resources at time t

Rj(t) is the jth parameter of the request at time t

After calculating percentage deviation Dij for every available

resource, in order to scale down percentage of deviation between

-1 to +1, percentage of deviation is divided by maximum

percentage deviation if it is positive otherwise it is divided by

minimum percentage of deviation. Resource with zero deviation

value is the resource that exactly meets the task’s requirements.

Resource with positive deviation value is the resource that has

greater capability than what task requires. Resource with negative

deviation value is the resource that has lesser capability than what

task requires.

Resources are arranged according to non-decreasing order of

earliest finish time. Our proposed model first selects the resource

that has earliest finish time as well as satisfies all the

requirements of the task. Then, it moves towards the increase

earliest finish time that satisfies the task requirement until one

found. If no resource is available with zero or positive deviation

value then it selects the resource of negative deviation value.

ALGORITHM-1

2.1.1 Improved deviation based HEFT by Example
Fig. 2 shows a simple task graph of a workflow application

containing 10 tasks. The number on edges represents

1. Set the computation costs of the tasks and communication

costs of edges with mean value

2. Compute rank of all tasks by traversing graph upward,

starting from exit node using (1).

3. Sort the tasks in a scheduling list by non-increasing order of

rank value

4. While there is unscheduled task ti in the list

a. Select the first task ni from the list of scheduling

b. For each processor pj in the processor set

1. Calculate EFT for task ti using (2)

c. For each resource from the resource set

1. Calculate percentage deviation of each

resource against task requirements using (3)

d. Scale down the calculated percentage deviation

between -1 to +1

e. Sort the resources according to non-decreasing

order of EFT

f. Select the resource(s) for execution of task ni which

has minimum EFT and also satisfy all the

requirement of task ni

g. If it does not satisfy the requirement

1. Select the resource from increasing order of

minimum EFT that satisfy all the requirements of

task ni

h. If no such resource is available that alone satisfy

task requirements

1. select more than one resource that satisfy all

the requirements of the task

International Journal of Computer Applications (0975 – 8887)

Volume 44– No20, April 2012

9

communication cost between tasks. Table 1 shows the

computation cost of those 10 tasks on processor Pi (i=1 to 5) of

resources Aj (j=1 to 5). Rank is calculated based on mean

communication cost and mean computation cost as shown in

Table 2. Earliest finish time of every task on every processor is

calculated using (2). Table 3 shows the earliest finish time

calculation of task 1 on every processor. After calculating EFT of

task 1, deviation value is calculated against the requirement of the

task and amount of resources that resource provider has, using (3).

Table 4 shows the deviation value calculation for task 1 using

deviation based resource scheduling algorithm. R represents

requirement (e.g. CPU_Count, RAM in MB, CPU %) of task 1

and Ai (i=1 to 5) represents the capability of resources. Using

Table 3 and Table 4, resource that has minimum earliest finish

time and also satisfy all the requirements of task is selected for

execution of task 1. In this case, A2 will be chosen for execution

of task 1. And availability of resource 2 (i.e. A2) will be the

execution time of task 1. If no such resource is available, then our

proposed model proceeds according to algorithm 1. In this

process, our proposed model not only minimizes execution time

but also satisfy the user requirement.

Table 1. Computation Costs

Task

P1

P2

P3

P4

P5

1

7

15

16

22

15

2

18

8

6

17

13

3
15

16

9

11

18

4

12

11

14

10

9

5 9 14 19 13 11

6 14 20 22 9 12

7 21 10 13 13 8

Table 2. Calculated Rank of Task

Task

Rank

1

133.8

2

104.8

3

100.2

4

73.4

5
47.2

6 45.4

7
13

Table 3. EFT Calculation of Task 1 on every processor

 Table 4. Deviation Value calculation for task 1

Processor
EFT of

task 1

P1 7

P2 15

P3 16

P4 22

P5 15

CPU_Count

RAM in MB

CPU %

R

6

2727

66

A1 9 343 71

A2
8 2823 7

A3 6 1758 42

A4 6 402 23

A5 8 1318 26

 CPU_Count RAM in MB CPU

A1 50 -695.04 -500

A2 33.33 3.52 6.49

A3 0.0 -55.12 -57.17

A4 0.0 -578.36 -186.96

A5 33.33
-123.89

-158.85

 CPU_Count RAM in MB CPU

A1 0.0 -1.0 -1.0

A2 0.67 1.0 1.0

A3 0.0 -0.079 -0.114

A4 0.0 -0.83 -0.373

A5 0.67 0.173 -0.318

International Journal of Computer Applications (0975 – 8887)

Volume 44– No20, April 2012

10

 9

 14

 8

 19 13

 15 11

 12

 17

 21

Fig 2: A simple task graph of a workflow application

containing 8 tasks

2.2 Advance Reservation based Resource

Negotiation
After selecting the resources using improved deviation based

HEFT algorithm, the advance reservation [12] based resource

negotiation is used to get the commitment of the resources

towards the completion of the job. If resource with earliest finish

time that satisfy task’s requirement (resource with zero or

positive deviation value) is available then negotiation will be

done with that resource using advance reservation by setting the

reservation time as earliest start time.

If earliest start time slot is not available then resource providers

will send their free time slot. Resource broker will then negotiate

for one of those free time slots as per user requirements to

execute the job. If there does not exist any zero or positive

deviation value resource that means task’s requirements are

greater than availability of the resources. In this case two or more

resource providers are needed to execute the task. For that the

proposed model uses advance reservation based resource

negotiation thread. The job of the advance reservation based

resource negotiation thread is to first select the resources which

are required to execute the task. Then it will create as many

threads as the selected number of resources and request them

simultaneously to send their free time slot. A common free time

slot is chosen from those free time slots and resource broker

negotiates with all the selected resources using advance

reservation with time as the common free slot time. If any of the

resources disagree then resource broker selects another

resource from the remaining resources. After successful

completion of negotiation, the task is submitted to the selected

resource(s). Then, the entire process is monitored by a monitoring

engine that monitors the proper consumption of the resource(s). If

any kind of violation occurs then an event will be generated and

appropriate action is taken. In this process, our proposed model

not only minimizes the execution cost but also meet the time

constraints imposed by the user.

ALGORITHM-2

3. CONCLUSION
Grid computing environment can be highly heterogeneous.

Different hardware characteristics such as CPU speed, cache and

interconnect can impact the time that a job takes to execute.

Different sites use different local scheduling policies. Some site

might favor parallel job or may restrict on finish time of the job.

So SLA can be used to remove all these difficulties. A SLA is a

contract between participating parties which acts as a legal

document for a set of guarantee and QoS metrics. This paper

proposes an efficient service level agreement based grid

scheduling for workflow application which improves not only

required execution time of SLA-based workflow application in

grid environment but also satisfy all the requirement of the job. In

this process, we reduce rescheduling needed for tasks. In future,

the implementation of whole proposed model will be done in

Globus environment.

4. REFERENCES

[1] I. Foster, C. Kesselman, S.Tuecke, 2001. “The Anatomy of

the Grid: Enabling Scalable Virtual Organizations”,

International Journal of Supercomputer Applications, 15(3).

[2] Zhifeng Yu and Weisong Shi, 2007. “An Adaptive

Rescheduling Strategy for Grid Workflow Applications”,

Proc. 21st Int'l Parallel and Distributed Processing Symp.

(IPDPS), pp. 1-8.

1. Identify the minimum number of resource(s) required to

execute the task selected using improved deviation based

HEFT

M=minimum number of resource(s)

2. If resource with earliest finish time that satisfy all the

requirement of task is available

//set reservation time to earliest start time

a. Set time=earliest start time

b. CreateReservation with the resource

c. If createReservation is successful

1. Then commitReservation with that

resource

d. Else

1. Send request with QueryFreeTime for free

time slot

2. Receive free time slot and send

commitment for one of the free time slot

3. Else

a. For 1 to M

b. Create resource negotiation thread

c. For each resource negotiation thread

1. Send request with QueryFreeTime for free

time slot

d. Find a common free time slot that is suitable

to execute the job

e. For 1 to M

f. Set time = common free time slot

g. CreateReservation with the resource

h. If createReservation is successful

1. Then commitReservation with that

resource

i. Else

1. Choose another resource for negotiation

2. Repeat the process

1

2
3

4

5
6

7

International Journal of Computer Applications (0975 – 8887)

Volume 44– No20, April 2012

11

[3] Young Choon Lee, Riky Subrata, and Albert Y. Zomaya,

2009. “On the Performance of a Dual-Objective

Optimization Model for Workflow Applications on Grid

Platforms”, IEEE Transactions on Parallel and Distributed

Systems, vol. 20(9), pp. 1273 - 1284.

[4] Ahmed Mohamed A. Ghanem, Ahmed I. Saleh, Hesham

Aarafat Ali, 2010. “High Performance Adaptive

Framework for Scheduling Grid Workflow Applications”,

International Conference on Computer Engineering and

Systems (ICCES), pp. 52-57.

[5] Fang Dong, Junzhou Luo, Aibo Song, Jiuxin Cao, 2011.

“Load-aware based Adaptive Rescheduling Mechanism for

Workflow Application”, 15th International Conference on

Computer Supported Cooperative Work in Design

(CSCWD), pp.400-407.

[6] Jia Yu, Rajkumar Buyya and Chen Khong Tham,2005.

“QoS-based Scheduling of Workflow Applications on

Service Grids”, Proceedings of the 1st IEEE International

Conference on e-Science and Grid Computing (e-Science

2005, IEEE CS Press, Los Alamitos, CA, USA), Dec. 5-8,

Melbourne, Australia.

 [7] P.Balakrishnan, S. Thamarai Selvi and G.Rajesh Britto,

2008.“GSMA based Automated Negotiation Model for

Grid Scheduling”, publish in SCC 2008WIP, IEEE

Congress on Services, SERVICES 2008, July 8-11,

Honolulu, Hawaii, USA, pp. 569-570.

 [8] D.I.George Amalarethinam, F.Kurus Malai Selvi,2011.

“An Efficient Dual Objective Grid Workflow Scheduling

Algorithm”, International Journal of Computer

Applications (0975 – 8887), vol. 33(1).

[9] Dang Minh Quan & J¨orn Altmann, Laurence T. Yang,

2008. “Optimizing the execution time of the SLA-based

workflow in the Grid with parallel processing technology”,

Asia-Pacific Services Computing Conference (APSCC '08.

IEEE), pp. 15-20

 [10] Haluk Topcuoglu, Salim Hariri, Min-You Wu,2002. “Task

Scheduling Algorithms for Heterogeneous Processors”

Eighth Heterogeneous Computing Workshop(HCW '99)

Proceedings, pp.3-14

[11] P.Balakrishnan, S. Thamarai Selvi and G.Rajesh Britto,

2008. “Service Level Agreement based Grid Scheduling”

International Conference on Web Service publish in SCC

2008WIP, Honolulu, Hawaii, USA, pp. 203-210.

[12] Anthony Sulistio , Rajkumar Buyya, Rao Kotagiri, 2008.

“Advance Reservation and Revenue-based Resource

Management for Grid System”, Doctor of Philosophy thesis,

University of Melbourn, Australia.

