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ABSTRACT 

The K-means clustering algorithm is an old algorithm that has 

been intensely researched owing to its simplicity of 

implementation. However, there have also been criticisms on 

its performance, in particular, for demanding the value of K a 

priori. It is evident from previous researches that providing 

the number of clusters a priori does not in any way assist in 

the production of good quality clusters. The objective of this 

paper is to investigate the usefulness of the K-means 

clustering in the clustering of high and multi-dimensional data 

by applying it to biological sequence data which is known for 

high and multi-dimension. The squared-Euclidean distance 

and the cosine measure are used as the similarity measures. 

The silhouette validity index is used first to show K-means 

algorithm‟s inefficiency in the clustering of high and multi-

dimensional data irrespective of the distance or similarity 

measure employed. A further study was to introduce a 

preprocessor scheme to the K-means algorithm to 

automatically initialize a suitable value of K prior to the 

execution of the K-mean algorithm. The dimensionality 

problem investigated suggests that the use of the preprocessor 

improves the quality of clusters significantly for the biological 

data sets considered. Furthermore, it is then shown that the K-

means algorithm with preprocessor produces good quality, 

compact and well-separated clusters of the biological data 

obtained from a high-dimension-to-low- dimension mapping 

scheme introduced in the paper.  

General Terms 
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Keywords 
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1. INTRODUCTION 
Clustering is a statistical concept that has to do with the 

problem of identifying interesting distribution patterns and 

similarities between objects in a data set [1], [2], [3]. It is an 

optimization problem that seeks to classify objects based on 

their proximity to one another. In this sense, objects that are 

most similar are grouped together forming groups of similar 

objects referred to as clusters. The task any clustering 

algorithm has is to produce clusters that are compact and well-

separated from one another. It follows that a clustering task 

involves minimizing the intra-cluster distance or the within-

cluster dispersion and maximizing the inter-cluster distance or 

the between-cluster dispersion. 

There are two broad categories of clustering algorithms, 

namely hierarchical and partition-based clustering. K-means 

[4] is a well-known partition-based clustering technique. It 

has been widely used since first introduced in 1967. It, as a 

general rule, demands the value of K, the number of clusters 

expected, to be provided before the actual clustering. This is 

common to partition- based clustering algorithms [5]. Besides 

the provision of the value of K a priori, it is actually expected 

that the clusters centers are also to be identified, and then the 

algorithm performs the partitioning tasks iteratively until a 

solution is achieved. On the contrary, hierarchical clustering 

algorithms group objects into clusters without any knowledge 

of how many clusters there should be in the clustering task. 

This paper deals with the partition- based K-means clustering. 

The task of determining K a priori actually results into the 

problem of determining which cluster each object belongs. 

Clearly, the initial K has impact on the performance of the 

algorithm. A wrong choice of K results in the algorithm 

converging to a local minimum instead of an expected global 

minimum solution. Running the algorithm several times with 

different initializations tend to overcome this problem. 

However, this process results in high computational time. A 

number of algorithms have been suggested to determine a 

suitable value of initial K , see for example ISODATA [6], 

SYNERACT [7], DYNOC [8] and MLBG [9]. However, all 

these algorithms contain sensitive parameters, and this means 

that trying to solve one problem creates another of similar 

nature. 

Under the above circumstances, a preprocessor is incorporated 

prior to the execution of K-means. The silhouette validity 

index [10] plays an important role in determining the initial K. 

It is shown in the paper that this optimizes K-means‟ 

performance in clustering the high dimensional data sets. 

The remaining part of this paper is divided into sections as 

follows: Section 2 focuses on the preliminaries and related 

literature; Section 3 describes the new approach suggested for 

high dimensional data. Section 4 briefly presents the 

silhouette validity index. Section 5 shows the experimental 

results and Section 6 presents the concluding remarks. 

2. THE CLUSTERING TASK: DATA 

SETS, SIMILARITY MEASURES AND 

ALGORITHMS 

2.1 The data set 
Associated with a given data set  

 xxxS N,...,, 21     (1)  

that needs clustering, are the attributes  xxx
i
D

ii ,...,, 21  of xi ∈ S. 

For a numerical data set S, each jth attribute x
i
j  in xi is real and 

hence xi ∈ ℝD. However, for a mixed data set features of xi are 

generally two: numerical and categorical. Therefore, the 

attributes of xi can be written as  yyyxxx
i

q

iii
p

ii ,...,,,,...,,
2121 , p+q 

= D, where yyy
i

q

ii
,...,,

21
are categorical values. 
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Biological data being considered in this paper are that of 

nucleic acids - Deoxyribonucleic acid (DNA) and ribonucleic 

acid (RNA). Thus the categorical biological data set S 

xi = (AAAAUUUUGGGCCAAAGGCCCUUUAAGCCCGG) 

for RNA      (2) 

and 

xi = (AAAAT TTTGGGCCAAAGGCCCTTTAAGCCCGG) for 

DNA   (3) 

DNA is a double helix structure with two strands of 

reoccurring nucleotides held together by base pairing. The top 

of the helix consists of a Guanine-Cytosine (GC) pair, referred 

to as purines, while the bottom consists of an Adeline-

Thymine (AT) pair, referred to as pyrimidines. The GC base 

pair forms three hydrogen bonds, whereas the AT base pair 

forms two hydrogen bonds. DNA is a polymer with the 

nucleotides forming the monomer units. In its double stranded 

form, DNA is the genetic material of most organisms. The 

two strands form a double helix with the strands running in 

opposite directions as determined by the sugar-phosphate 

backbone of the molecule. DNA is represented in chains of 

symbols - AGCT (Adenine, Guanine, Cytosine, Thymine). 

For the purpose of this research they are represented as in (3). 

RNA is a bi-molecule made up of a chain of nucleotides as 

DNA, except that RNA introduces uracil (U) in place of 

Thymine (T). RNA and DNA are functionally and structurally 

different. A RNA strand folds onto itself. The folds form 

hydrogen bonds between G and C, A and U, and G and U, and 

their respective mirror images. The hydrogen bonds bind the 

base pairs to form DNA. There are enough literature for those 

interested in studying more of the structure of nucleic acids. 

The clustering process involved in this paper uses the above 

type of data. However, for the clustering purpose the 

biological sequence data have been converted into numerical 

data. Nucleic acids are represented in 3 dimension. During the 

sequencing process (that is, the process of converting nucleic 

acids into readable sequences) the 3 dimensional structure is 

rendered in a chain of nucleotides. The sequencing process 

renders the sequences in high- and multi-dimensions. 

2.2 The similarity measure 
An important component of a clustering algorithm is the 

distance measure between data points, say xi and xj . For 

continuous numerical data sets the squared Euclidean distance 

     


D

k

j
k

i
k

ji
ij xxxxdd

1

2
,   (4) 

is often used. The other well-known similarity measure is the 

cosine similarity measure: 

  
xx

xx
xxdd

ji

ji
ji

ij

.
,   (5) 

where xi is the length of the vector xi, and xi.xj is the dot 

product between vectors xi and xj. Both measures have been 

implemented for comparison purposes. 

2.3 The K-means algorithm 
The minimization problem involved in the K-means algorithm 

for numerical data set can be formally written as follows [11]: 
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where C m is the centroid of the mth cluster and d(xi, Cm) is 

defined by equation (4) or (5). If xi is assigned to cluster 

m then rim = 1. The clustering process partitions a data set 

into K  clusters S i (i= 1, 2, · · · , m) such that 

(i) Si = ∅, i = 1, … , K; 

(ii) ;1 SS
iK

i   

(iii) SS
ji  ∅, ⩝ i, j = 1,…, K and i ≠ j. 

The basic steps of the K -means algorithm for numerical data 

set are as follows. 

 

Algorithm 1: K-means clustering 

 

Step 1. Step 1. Assign K initial centroids C 1, C 2, · · · , C K, 

one for each cluster Sm. 

Step 2. For each data element xi ∈ S find the nearest C m 

according to some similarity measure, e.g. the 

measures (4) or (5), and assign xi to the cluster Sm.  

Step 3. For each cluster Sm calculate a new centroid Cm. 

Step 4. Stop Algorithm 1 else goto Step 2 with the new 

 centroids C1, C2, · · · , CK. 

2.4 The modified K -means algorithms 
A number of modified K -means algorithms have been 

proposed in the literature. The purpose of these modified 

versions is to handle the problem related to initial K value. 

Turi [12] proposed a K -means algorithm by dynamically 

changing the value of K as the iterations progress. Central to 

this algorithm are the merging and splitting of clusters. 

However, the algorithm requires the user to specify the values 

of several parameters (e.g. the merging and splitting 

thresholds). These parameters have a profound effect on the 

performance of making the result subjective. 

 

Huang [7] proposed a K-means algorithms, referred to as 

SYNERACT. SYNERACT combines K-means algorithm 

with hierarchical divisive approaches to overcome K-means‟ 

setbacks. SYNERACT employs a hyper-plane to split a 

cluster into two smaller clusters and then compute their 

centroids, performs an iterative clustering to assign objects 

into clusters, and constructs a binary tree to store clusters 

generated from the splitting process. This method does not 

demand the initial provision of K and the initial location of 

centroids before the clustering task. However, the user is 

expected to specify the values of two parameters needed for 

the splitting process. 

The dynamic optimal cluster-seek (DYNOC) algorithm was 

introduced by Tou [8]. DYNOC is a dynamic clustering 

algorithm. It achieves a maximization of the ratio of the 

minimum inter-cluster distance to the maximum intra-cluster 

distance through an iterative procedure with the capability of 

splitting and merging clusters. There are however user-

specified parameters that suggest whether splitting or merging 

are necessary. 

Rosenberger and Chehdi [9] attempted an improvement on K-

means by introducing an iterative procedure known as the 

modified Linde-Buzo-Gray (MLBG) algorithm. MLBG 

automatically finds the number of clusters in a data set by 

using intermediate results. A cluster maximizing an intra-

cluster distance measure is chosen for splitting iteratively. In 

the process, two cluster centroids are generated from the 

initial cluster. The first cluster centroid, C1, is initialized to the 

centroid of the original (initial) cluster. The second cluster 

centroid, C2, is chosen to be the object in the original cluster 
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which is the most distant from C1. At this point, K -means is 

on the new K + 1 centroids. The acceptance of the new set of 

centroids depends on if an evaluation criterion based on a 

dispersion measure is satisfied. This process is repeated until 

there are no valid partitions in the data set. The main problem 

with this method is that it requires the specification of the 

values of four parameters which have a fundamental effect on 

the resultant number of clusters [13]. 

The K-means algorithm is found to be the best applied to 

numeric data [14], and the modifications, discussed above, 

dealing with numerical data set are very encouraging. 

However, the application of the K-means algorithm to mixed 

data set is extremely limited. An at- tempt is made by Gupta 

et. al. [15] to apply the K-means algorithm by adopting two 

different similarity measures. An integrated cost function is 

suggested which has two components. A cost owing to 

numeric attributes is minimized by usual way i.e. assigning 

elements to clusters, while the other cost, owing to categorical 

attributes, is minimized by selecting the categorical elements 

of centroid. However, the method of Gupta et. al. [15] has 

neither been justified by mathematical means nor has it been 

validated by sufficient numerical testing. In addition, the 

method is not parameter-free. Finally, the clustering of 

categorical biological data set (e.g. nucleic or amino acids) 

has not been address in the literature. These data sets contain 

high and multi-dimensional data sequence xi, and to the best 

of my knowledge, there is no K-means algorithm developed 

for clustering of these data sets. Hence, the decision to study 

this clustering problem. 

3. APPLICATION OF K-MEANS TO 

BIOLOGICAL SEQUENCE DATA 
It is well known that K -means clustering algorithm is 

incapable of handling multi-dimensional data - a situation 

where the input data are of several dimensions. However, 

it is interesting to note that K -means have been employed 

in the clustering of biological data with different 

representation (not sequence data) [16], [17], [18]. In this 

paper, the ability of K -means in the clustering of high 

and multi-dimensional data sets is investigated. In addition, 

the biological sequence data sets considered are naturally 

not numeric. The original objective of the K-means 

algorithm [4] and the subsequent findings [14] suggest that 

the numerical presentation of the categorical biological data 

set is needed for successful applications of K-means. For 

this, conversion from symbols to numeric is done by 

representing each sequence in the data set in a D-

dimensional space through the application of a comma 

delimited conversion format. In particular, the nucleic acid 

symbols are represented numerically as follows: A = 1, C = 

2, G = 3 and U or T = 4. For the clustering of a 

biological sequence data set, the following two separate 

approaches are adopted. 

• Firstly, the sequences in the data set were truncated to 

a uniform dimension before the clustering, leaving the 

sequences in their high-dimensional state. 

• Secondly, the dimension of each of the sequences was 

reduced to a uniform low dimension (Dr) before 

clustering. 

The dimension reduction is defined by introducing the 

following concepts and definitions. Let N represent the 

number of nucleotides in a sequence; l, the sequence length; 

ni, the ith individual nucleotides (symbols) in a sequence 

already represented in numeric format. It is important to note 

that it is conventional to state that N = l in cases where the 

delimiters are not counted to constitute part of the length e.g. 

as presented by equations (2) and (3). The coordinates of a 

sequence xi∈ S, can be derived as follows: 

  (6) 

where  


p
1i ip dd with 1d  = d1, p = 1, 2, …, j. The use of 

dp= dq, p ≠ q for all p, q = 1, 2,…, j, is made whenever 

possible. When this is not possible an integer in {d1, d2, …, dj} 

is selected at random and its value is adjusted so that  

   .DdD j

j

1k
kd 
















 

A two dimensional representation of Equation (6) is given by: 

  (7) 

If the coordinates of Qi become large then they can be 

represented in ratios of least common multiples, but this was 

not required for the data sets considered for numerical testing. 

The above procedures are implemented for the clustering of 

the nucleic acid sequences. 

4. THE SILHOUETTE INDEX 

The silhouette validity index for each data element is simply a 

measure of how similar that data element is to elements in its 

own cluster compared to elements in other clusters [19], [20]. 

It ranges from -1 to +1. The silhouette validation index is 

particularly useful when seeking to know the number of 

clusters that will produce compact and clearly separated 

clusters [21], [22], [10]. The silhouette index [10], [23] of the 

element xi of a cluster Sj is defined as 

 ,
)}(),(max{

)()(

ibia

iaib
q

i


  -1 ≤ qi ≤ 1 (8) 

where a(i) is the average similarity between xi and the rest of 

the objects in cluster Sj and b(i) is the minimum average 

similarity between object xi and the rest of the objects in all 

the clusters, defined as  Sx
mi

SS

d
jm

,min


 (m = 1, 2,…,K; m ≠ j). 
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Table 1. Effects of K in the K -means algorithm applied to the high 

dimensional data 
 

  Iterations Total distance Silhouette mean 
i N  D  K IE IC T dE  T dC ShE ShC 
1 117 128 5 

117 128 10 
7 11 

11 9 
16264.3 8.71803 
14791.7 7.99373 

0.0335 0.0338 
0.0533 0.0396 

2 117 198 5 
117 198 10 

20 10 
11 7 

25844.5 9.03496 
23776.3 8.32794 

0.0180 0.0288 
0.0309 0.0318 

3 100 50 4 
100 50 6 

12 10 
7 11 

4654.08 6.19611 
4968.8 7.8109 

0.0622 0.0561 
0.0663 0.0656 

4 50 50 5 
50 50 4 

8 5 
7 11 

2366.79 3.24409 
2512.22 3.3818 

0.0916 0.0742 
0.0707 0.0720 

5 50 20 5 
50 20 4 

6 5 
4 11 

865.011 2.93337 
937.727 3.13017 

0.1260 0.1270 
0.0995 0.1281 

6 20 50 4 
20 50 3 

4 3 
3 4 

829.083 1.16313 
919.786 1.30774 

0.1193 0.1134 
0.0962 0.1077 

 

(a)                                                     (b)                                                                      (c) 

 

                                (d)            (e)                                                                  (f) 

Figure 1. The Silhouette plots for clusters of high dimensional data with various values of K , with the squared Euclidean 

distance measure [(Figures. 1(a), (c) - (128D) and (f) - (50D)) and the Cosine similarity measure (Figures. 1(b) and (d) - 

(128D) and (e) - (50D))]. 
 

Every object xi with a silhouette index close to 1 indicates it 

belongs to the cluster being assigned. A value of zero 

indicates that the object could also be assigned to another 

closest cluster. A value close to -1 indicates that the object is 

in a wrong cluster or somewhere in between the clusters. The 

highest value indicates the best clustering, meaning that the 

number of clusters selected for the clustering is the best [10]. 

5. EXPERIMENTAL RESULTS AND 

PERFORMANCE ANALYSIS 

5.1 Application to high dimensional data 
Firstly, K-means algorithm is applied on high dimensional 

data sets using 6 data sets. Each data set contains data 

elements (sequences) of equal length, due to the truncation 

mentioned earlier. The K-means algorithm was applied more 

than once on a data set to see the effect of K in the clustering 

process. Results of this investigation are presented in Table 1. 

In Table 1, the following symbols are used: i (data set), N 

(size of data set), D (dimension), K (number of clusters), IE 

(number of iterations required when using squared Euclidean 

distance), IC (number of iterations required when using cosine 

similarity measure), TdE (distance using squared Euclidean), 

TdC (distance using cosine measure), ShE (silhouette mean 

under Euclidean distance) and ShC (silhouette mean under 

cosine measure). The data in columns under „Total distance‟ 

are the total intra cluster distance from the centroid of formed 
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(a)                                                                                (b) 

Figure 2.   The silhouette plots for clusters derived for reduced dimension e.g. for Dr =2 and without preprocessor: K = 10, 

N = 117, [(a) Euclidean,  (b) Cosine]. 

 

 
(a)                                                                             (b) 

 
(c)                                                                                 (d) 

Figure 3.  The silhouette plots for clusters of 100 data points (data set 4)[(a) Ko = 4 (Cosine measure) and (b) Ko =4 

(squared Euclidean measure)] and 88 data points (data set 10)[(c) Ko =3 (cosine measure), and (d) Ko =3 (squared 

Euclidean measure)] 
 

clusters1. That is if there are three clusters and dij is the 

distance the ith element (of the jth cluster Sj with nj elements) 

and its centroid Cj , then the total is calculated over the three 

centroids of clusters of the data set, generated during the 

iteration process. This means that the total sum of distance is 

                                                           
1
 The total sum of distances decreases at each iteration as K-

means reassigns points between clusters and recomputes 

cluster centroids. 

 

the value realized at the last iteration when the algorithm 

reaches a minimum, and the total is calculated over the set 

  

The data in columns under „Silhouette mean‟ are the average 

of the silhouette values. For example, the average silhouette 

index values for the mth cluster is given by 
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where qi (m) is the silhouette value for the ith member of the 

mth cluster, and n(m) is the total number of elements in the mth 

cluster. The values presented in the last two columns in Table 

1 are therefore the values  

K
mK

mQ1
1 )( ,where K is the total 

number of clusters. 

To see the effect of K, the 4th and 5th major columns (Total 

sum of distances and Silhouette mean) in Table 1are studied. 

The total sum of distances should be as low as possible – a 

better clustering should give a lower value of the total sum of 

distances. However, these values seem quite high. The next 

was to study the silhouette means in Table 1. These values 

determine how far apart the clusters are. With a high value, 

the cluster quality is near optimal. Again these values seem 

non-optimal. To visualize the cluster-wise silhouette index 

values, the silhouette plot of generated clusters is present in 

Figure 1. For this, data sets 1 and 3 in Table 1 are used. 

Figures 1(a) and 1(c) are, respectively, for K =5 and 10 using 

squared Euclidean measure, data set 1. Figures 1(b) and 1(d) 

are, respectively, for K =5 and 10 using cosine measure, data 

set 1. Figures 1(e) and 1(f) are for the data set 3 using cosine 

and Euclidean measures respectively. Figure 1 clearly shows 

that the many silhouette values are negative and the overall 

results are unsatisfactory. Observe from Table 1 and Figure 1 

that as the dimension decreases, the result of the clustering 

becomes better. It is clear from the figures that the value of K 

greatly determines the cluster quality. 

5.2 The introduction of preprocessor to the 

K - means algorithm 
To deal with the initialization problem of K, an automatic 

initialization scheme is proposed. The silhouette mean under 

Euclidean distance measure, ShE, presented in Table 1 plays 

the most important role in the scheme. For an initial value of 

K, provided by the user, the Algorithm 1 (the K-means 

algorithm) is run for a small number of iterations (e.g. 

typically 3) three times, respectively using K − 2, K and K + 

2. Three corresponding ShE values corresponding to K − 2, K 

and K + 2 are found (hereafter denoted as ShE (K − 2), ShE 

(K ) and ShE (K + 2), respectively). The initial value, Ko , 

of K is then assigned using the following procedure: 

1. If ShE (K −2) < ShE (K ) and ShE (K ) > ShE (K + 2) 

then the Algorithm 1 is run again twice (each time for 

3 iterations) using K + 1 and K − 1 and the 
corresponding ShE (K − 1) and ShE (K + 1) are found. 

The maximum value of three {ShE (K −1), ShE (K ) 

and ShE (K + 1)} then determines Ko . For example 

if ShE (K − 1) is the maximum then Ko = K − 1. 

2. If ShE (K +2) > ShE (K ) and ShE (K +2) > ShE (K 

−2) then the Algorithm 1 is run again using K + 1, 

K + 3 and K + 4. The K value corresponding to the 

maximum in {ShE (K + 1), ShE (K + 2), ShE (K +3), 

ShE (K + 4)} is then assigned to Ko . 
3. If ShE (K +2) < ShE (K −2) and ShE (K ) < ShE (K 

−2) then the value corresponding to the maximum in 

{ShE (K − 1), ShE (K − 2), ShE (K − 3), ShE (K − 4)}is 

then assigned to Ko . 

The initial value, Ko , of K found using the above 

procedure is then used to find Ko clusters using K -means 

algorithm, i.e. the Algorithm 1. To test the effectiveness of 

the above procedure two data sets from Table 1 are used 

namely, the first and the third data sets. The initial K in the 

preprocessor is used as given in Table 1. Results obtained are 

presented in Table 2. Table 2 clearly shows that the results 

have been improved for both data sets, although the problem 

dimension is very high. 

5.3 Application to reduced dimensional 

data without preprocessor 
The K-means algorithm is further tested with preprocessor 

scheme using the data sets presented in Table 1, but with 

reduced dimensions (Dr ). Data sets of dimension two 

obtained by equation (5) are first tested with the data sets 

presented in Table 1 and present the results obtained in Table 

3. To see the effect of reduced dimensionality the 

preprocessor is not incorporated in this experiment. The same 

K values as in Table 1 were used as this will allow a direct 

comparison of Tables 1 and 3. The results in Table 3 show 

significant improvement in all data sets with high silhouette 

means than those in Table 1. Two figures are presented, both 

for the data set 1 (K =10), corresponding to two different 

measures. Figures 2(a) and (b) correspond to the 

corresponding Figures 1(a) and (c). This comparison also 

establishes positive effect of dimension reduction. 

5.4 Application to reduced dimensional 

data with preprocessor 
The next is to study the effect of both reduced dimension and 

preprocessor on 10 data sets. Firstly, with Dr =2 the results 

obtained are presented in Table 4, where the first 6 data sets 

considered before are used. 

To see the effect of the dimension reduction the same data 

sets in Tables 2 and 4 are compared, i.e. the data set 1 in 

Tables 2 and 4. Results shows that Ko corresponding to this 

data set in both tables are very close. This proves the effect of 

preprocessor as well as the dimension reduction in the K-

means for categorical biological data sets. Notice that for data 

set 8 K and Ko are the same. This means that the initial K 

assigned to preprocessor remained the same. 

Furthermore, the silhouette values is presented in Figure 3 for 

two data sets of 109 and 88 data points, respectively, with 

reduced dimensions. These are respectively the 4th and 10th 

data sets presented in Table 4. These figures clearly show well 

separated clusters. The usefulness of the silhouette value in 

the clustering task as well as the incorporation of the 

preprocessor is now evident. 

An obvious question that one may rise is how to identify an 

appropriate value for the reduced dimension, Dr. To address 

this question, the values of dataset 1 in Table 3 are reproduced 

using Dr =3. Results obtained are very similar. For example, 

for K =10 the following values are obtained: TdE =4448.01, 

TdC =0.1872, ShE =0.4610, and ShC =0.6762. The 

corresponding graph for K =10 is presented in Figure 4. In 

addition, a graph for dataset 

3 is also presented. Although preprocessor has not been used 

for this experiment, the graphs produced show that silhouette 

values are fairly acceptable. These results can be further 

improved by the use of preprocessor. Our experiments have 

shown that the optimized values are not exactly the same, for 

Dr =2 and 3, but they are within an acceptable level of 
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Table 2. Effects of preprocessor in the K -means algorithm applied to the high dimensional data 

  Iterations Total distance Silhouette mean 
i N  D  K Ko IE IC T dE  T dC ShE ShC 
1 
3 

117 128 6 8 
100 50 4 5 

102 7 
6 5 

14576.1 7.8258 
3052.75 3.05384 

0.0437 0.0415 
0.1163 0.1143 

 

Table 3. Effects of reducing D in the K -means clustering, Dr =2 

  Iterations Total distance Silhouette mean 
i N  Previous D  K IE IC T dE  T dC ShE ShC 
1 117 128 5 

117 128 10 
8 12 

16 6 
7021.1 0.0110784 

3240.82 0.00461887 
0.5377 0.7014 
0.5184 0.6808 

2 117 198 5 
117 198 10 

12 9 
9 12 

10019.5 0.00600523 
5678.06 0.00242334 

0.5879 0.7000 
0.5118 0.6507 

3 100 50 4 
100 50 6 

15 5 
9 13 

2461.83 0.0221821 
1697.71 0.0106729 

0.5103 0.7254 
0.4941 0.7253 

4 50 50 4 
50 50 5 

9 4 
6 4 

1018.37 0.0074717 
815.016 0.00648176 

0.5014 0.7700 
0.5038 0.7492 

5 50 20 5 
50 20 4 

4 4 
13 5 

291.551 0.0144597 
350.375 0.0275186 

0.4524 0.6780 
0.4736 0.6206 

6 20 50 4 
20 50 3 

3 3 
2 6 

184.571 0.00327066 
329.19 0.00360131 

0.6619 0.5042 
0.5612 0.7446 

 
(a)                                                                           (b) 

Figure 4. The silhouette plots for clusters of 117 data points (data set 1)[(a) K = 10 (Euclidean measure) and 

(b) K =4 (Euclidean measure)] and 100 data points (data set 3) 
 

Table 4. Optimal Ko in the K -means algorithm 

  Iterations Total distance Silhouette mean 
i N  Ko K IE IC T dE  T dC SE  SC 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

117 7 4 
117 6 8 
100 5 7 
50 4 6 
50 6 3 
20 7 3 
88 6 7 
88 5 5 
88 4 3 
88 3 6 

6 7 
5 5 
5 7 
9 6 

10 7 
13 7 
5 9 
5 4 
6 5 
6 3 

3940.84 0.146286 
5767.98 0.608631 
6142.24 0.453146 
7338.64 0.625917 
12943.3 0.967989 
3322.21 0.137556 
4017.84 0.148084 
4210.39 0.319518 
8646.92 0.46525 
9514.41 0.64087 

0.6587 0.8110 
0.6837 0.7358 
0.6687 0.7923 
0.7508 0.7859 
0.7246 0.8021 
0.7537 0.7898 
0.6869 0.8072 
0.7433 0.8143 
0.6207 0.7772 
0.7546 0.8348 

 

closeness. Hence, it is suggested that Dr =2 is a good value to 

choose. 

6. CONCLUSION AND FURTHER 

RESEARCH 
The usefulness of the K-means algorithm clustering algorithm 

in the clustering of high- and multi-dimensional data have 

been studied. The clustering algorithm was applied to the 

categorical biological sequence data. These sequences consist 

of alphabets and are high- and multi- dimensional in nature. 

The study conducted in this paper regarding the dimension of 

data involved in a clustering task is, to the best of our 

knowledge, the first conducted on K-means clustering 

algorithm since it was developed. 

Series of procedures were followed. The introduction of a 

numerical equivalence of sequences of the categorical data 

was done. To reduce the effect of initial K in K-means a 

preprocessor scheme was introduced. It has been shown that 

significant gains in optimality can be achieved by using the 

preprocessor. In addition, a dimension reduction technique 

was introduced which when applied with the preprocessor 

produces well separated clusters. Results presented in the 

paper further establish that the K-means algorithm is not 

suitable in the clustering of biological sequences without con- 
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ducting a character-to-numeric conversion to transform the 

nucleic/amino acids symbols to numeric values. Although the 

silhouette index is not new, the clustering technique 

introduced in the paper is new and thus can be applied to 

many practical problems. A further work in this direction 

would be the application of preprocessor with the K-means in 

the clustering of complex data structures. 
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