
International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.2, April 2012

5

Comparative Study of Scheduling Algorithms for Real
Time Environment

Ishan Khera Ajay Kakkar
Research Scholar Asstt. Prof.

Thapar University, Patiala. Thapar University, Patiala.

ABSTRACT:
Scheduling is a technique which makes an arrangement of

performing certain tasks at specified period. The intervals

between each function have been clearly defined by the

algorithm to avoid any overlapping. The real time computing

systems are those in which there are strict timing constraints

that have to be met to get the correct output i.e. the output not

only depend on the correctness of the outcome but also on the

time at which results are produced. Real time systems are

expected to change its state in real time even after the

controlling processor has stopped its execution. The bound in

which real time applications are needed to respond to the

stimuli is known as deadline. In order to achieve optimized

results in a real rime operations the scheduling techniques has

been used. In the paper we classify the various scheduling

techniques based on different parameters. Also techniques

used for scheduling in real time environment are analyzed and

comparison between different techniques have been done. The

various issues have been presented on which there is still a

need to work.

Key Words

Scheduling, Worst case execution time(WCET) power, real

time operations RM algorithm, EDF, comparison of real time

algorithms.

1. INTRODUCTION

Scheduling means how the processes can be assigned on the

available CPU(s). It is a key concept of multitasking,

multiprocessing and real-time operating system design. It is

done by a means of scheduler and dispatcher. It is a decision

making process that deals with the allocation of common

resources to various tasks at different time periods to achieve

multiple objectives. The resources and tasks can be of

different forms in homogeneous/heterogeneous organization.

Priorities have been associated with the tasks; each task has its

due date and earliest dead line. Deadline is the most important

parameter of real time systems which is defined as the instant

at which the results should be produced.

There can be three types of deadlines, which are mentioned

below[3].

Soft Deadline: If the results produced after the deadline has

passed and are still useful then this type of deadline is known

as soft deadline. Reservation systems come under this

category.

Firm deadline: This deadline is one in which the results

produced after the deadline is missed is of no utility.

Infrequent deadline misses are tolerable. These types of

deadlines are used in systems which are performing some

important operations.

Hard deadline: If catastrophe results on missing the deadline

then this type of deadline is known as hard deadline. The

systems which are performing critical applications like air

traffic control come under this category.

Long-term or high-level scheduling:
It decides which processes are to be added to the set currently

executing processes and which are to be exited. It controls the

degree of multiprogramming in multitasking systems with a

need of trade off between degree of multiprogramming and

throughput.[1]. Long-term scheduler is also known as

Admission Scheduler

Midterm Scheduling

 It is essentially concerned with memory management and

often designed as a memory management subsystem of an

operating system[1]. It temporarily removes a process from

the main memory which is of low priority or has been inactive

for a long time.

Short term Scheduling

It decides which of the in-memory process is executed

following an interrupt or operating system call. This scheduler

makes more frequent scheduling decisions than long-term and

mid-term schedulers[1].

Schedulability Test: A test that determines whether the ready

tasks can be scheduled in order to meet its specified deadlines.

An optimal scheduler is one which can always find a feasible

schedule whenever it exists[2]. There are three type of

schedulability tests.

a. Sufficient Schedulability test

The positive outcome of this test guarantees that all the

deadlines are always met.

b. Necessary Schedulability test

The failure of this test will definitely result in a deadline miss

at some point of time.

c. Exact Schedulability test

A test which is sufficient and necessary is known as exact

schedulability test.

2. LITERATURE SURVEY
The following sections show the work done by the various

researchers in the field of scheduling for real time processors.

In 2008 Euiseong Seo et. al. [6] presented an energy efficient

technique for scheduling real time tasks on multicore

processors to lower the power consumption and increasing the

throughput. They presented two techniques which modify

existing techniques of unicore processors for multicore

processors. The two techniques suggested by them are: (i)

Dynamic Repartitioning algorithm, which dynamically

balances the task loads multiple cores to minimize the power

consumption during execution. (ii) Dynamic core scaling

algorithm, which reduces leakage power consumption by

adjusting the number of active cores. The simulation results

show that 25% of energy consumed can be conserved by

dynamic repartitioning and 40 % is conserved by dynamic

core scaling.

In 2008, S. Roman et. al. [7] presented Constant complexity

scheduling for hardware multitasking in two dimensional

reconfigurable field-programmable gate arrays which

described the need of extending operating system to manage

the FPGAs. An algorithm has been presented which decides

the scheduling and placing of arrival tasks with real time

constraints, like deadline, in FPGA device. The division of

FPGA is done in four parts with different sizes and each

International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.2, April 2012

6

incoming task was placed in one of these partitins depending

upon its size and parameters. It was also possible to make

changes in the size of partition, number of partitions, queue

selection policy etc. at the run time. The results proved that

their four partition configuration is equally or more effective

than FF algorithm. Even in the worst case their algorithm is

better than FF, for eg., in case of pJPEG.

In 2008, Pravanjan Choudhary et. al. [8] presented hybrid

scheduling of dynamic task graphs with selective duplication

for multiprocessors under memory and time constraints which

describes the scheduling methodology for the task graphs to

embedded systems with multiple processors. Methodology

has been presented in three phases which was designed for

task graphs that were dynamic in nature due to the presence of

conditional tasks and tasks those were unpredictable and

bounded. The nodes were mapped in the first phase and the

critical nodes were identified in the second phase. Those

critical nodes were duplicated for the possible rescheduling at

runtime. The third phase is the online phase which perform

runtime scheduling. The experiments indicated that the

methodology proposed is suitable for task graphs that have

higher number of conditions, a higher parallelism, and a

significant nondeterminism in the execution time of its nodes.

It has been shown that computation time of the static phase

and overhead increases with increase in number of nodes but

still remained in acceptable limits. Overall the scheduling

overhead stayed in microseconds which was very low as

compared to conventional techniques.

In 2009, Enrico Bini et. al. [9] presented a response-time

bound in fixed-priority scheduling with arbitrary deadlines in

which they indentified the desirable properties of estimates of

the exact response time. Repeated computation of the worst

case response times slows down the system which is

undesirable for real time applications. They proposed a

technique which possessed the properties, those are,

continuity with respect to system parameters, efficient

computability and approximability for the estimation of worst

case response time of sporadic task systems which are fixed

priority scheduled on a preemptive uniprocessor. They have

derived the continuous upper bound on the response times of

task systems and the proved that the exact response time

should be as large as this bound if the system is implemented

on the processor which is at most only 50% as fast.

In 2009, Marko Bertogna et. al. [10] given the schedulability

analysis of global scheduling algorithms on multiprocessor

platforms in which they had addressed the problem of

preemptive scheduling of periodic and sporadic task sets with

constrained deadlines on a multiprocessor platform. They had

assumed that the global work conserving scheduler with

migration possibility of task from one processor to other was

there. The analysis had been applied to fixed priority and

Earliest deadline first scheduling techniques and the

schedulability conditions thus derived were tightened which

resulted in significant improvement in percentage of the

accepted task sets. The schedulability algorithm presented

could check whether a periodic or sporadic task set could be

scheduled on a multiprocessor platform in polynomial or

pseudo polynomial time. The iterative algorithm given by the

procedure SCHEDULABILITYCHECK could detect the

maximum number of schedulable task sets among all existing

task sets.

In 2012, Wan Yeon Lee [11] proposed energy-efficient

scheduling of periodic real-time tasks on lightly loaded

multicore processors which considered the processors

contained more processing cores than running tasks and had

dynamic voltage and frequency scaling capabilities. The

energy saving techniques are introduced which were turning

off the rarely used cores and exploiting the overabundant

cores for executing the task in parallel with lower frequency.

It had been verified if the techniques were supported then the

problem of minimizing energy consumption of real time tasks

was reduced to NP hard and deadlines were also met. A

polynomial time scheduling scheme was also proposed that

provided a near minimum energy feasible schedule. The

evaluation results showed that the proposed scheme saved up

to 64% of the energy consumed as compared to the other

schemes which considered the execution of each task on a

separate core.

3. OBJECTIVES OF SCHEDULING
From the work done by the various researchers in the field of

real time scheduling; so far, it has been observed that

a. Scheduling should be done in order to guarantee the

schedule of the processes fairly and throughput must be

maximum.

b. Real time scheduling algorithms are always pre-emptive

which can perform better if the pre-emption is limited.

c. Static priority scheduling algorithms are used for

scheduling real time tasks for maximum CPU utilization but it

can be increased more using dynamic priorities.

d. The schedulability of scheduling algorithm must be

checked using schedulability tests.

4. SCHEDULING ALGORITHMS
Allocation of various resources like bandwidth, processor

time etc are allocated to the processes using programs known

as scheduling algorithms. Scheduling is done by distributing

the workload among multiple computers or processing units in

order to achieve optimal resource utilization, maximize

throughput and minimize response time[4].

The goal of scheduling algorithm is to fulfil the following

criterion.

a.Starvation should not be there which means a particular

process should not be held indefinitely. Allocation of

resources should be such that all the processes get proper CPU

time in order to prevent starvation.

b.In case of priority based algorithms, there should be fairness

in the pre-emption policy. Low priority tasks should not wait

indefinitely because of higher priority tasks.

4.1 Classification of scheduling

algorithms
Algorithms are classified on the basis of different parameters.

The classification can be based on the type of application for

which scheduling needs to be done, whether the tasks need to

run time schedule or compile time schedule, whether the

scheduling is done on central site or distributed sites,

uniprocessor/multiprocessor scheduling.

4.1.1 Classification from user's point of view
From the user's point of view, scheduling algorithms are

classified into 3 categories.

a. Iterative Scheduling

Scheduling of processes is done iteratively and the algorithms

used for scheduling are known as iterative scheduling

algorithms[2]. Round Robin, shortest process next, lottery

scheduling etc are the examples of iterative scheduling

algorithms

b.Batch Scheduling

Processes are queued together in a batch and scheduling is

done in batches. Algorithms that are used to schedule the

batches are known as batch scheduling algorithms. FCFS,

Shortest remaining time next, highest response ratio next are

the examples of batch scheduling algorithms.

c.Real time scheduling

International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.2, April 2012

7

Real time tasks are those in which the accuracy of the

outcome not only depend on the correctness of result but also

depend on the time at which the results are produced.

Scheduling such tasks are done by real time scheduling

algorithms[3]. Rate monotonic and Earliest Deadline

First(EDF) are examples of real time scheduling algorithms.

4.1.2 Classification based on the time of

schedule
This classification is done on the basis of time of scheduling

the processes i.e. whether the processes are to be scheduled on

the compile time or run time.

a.Static Scheduling

In this technique, scheduling decisions are made at compile

time. For scheduling, complete prior knowledge of task-set

characteristics is required. The system's behaviour with static

scheduling is deterministic[4]. Rate monotonic scheduling is

the example of static scheduling used for scheduling real time

tasks.

b.Dynamic Scheduling

Scheduling decisions are made at run time by selecting one

task out of the set of ready tasks[3,4]. Dynamic schedulers are

flexible but also require run time in finding a substantial

schedule. System's behaviour is non-deterministic. EDF is the

example of dynamic priority scheduling algorithm used to

schedule real time tasks.

4.1.3 Classification based on the site of

scheduling
This classification is based on whether the processes are to be

scheduled on a central site or on distributed sites.

a.Centralized Scheduling

All decisions are made at the central site[1]. The central

scheduler in the distributed system is a critical point of failure.

Updated load situation information is needed on all nodes

which might lead to communication bottleneck.

b.Distributed scheduling

Scheduling of non-interactive processes or jobs in a network

of computers comes under this category[2]. It refers to the

chaining of different jobs into a coordinated workflow that

spans several computers.

4.1.4 Classification based on pre-emption
Pre-emption means prediction of higher priority task.

Depending upon, whether pre-emption is allowed or not,

scheduling algorithms can be classified into two categories.

a.Pre-emptive Scheduling

If the system can be interrupted during the execution of the

process on the arrival of higher priority task then this type of

system is known as pre-emptive system and scheduling

algorithms used to schedule such systems are known as pre-

emptive scheduling algorithms[2,4]. All real time scheduling

algorithms are examples of pre-emptive scheduling

algorithms.

b.Non Pre-emptive Scheduling

If no interruption is allowed during the execution of process

then scheduler is known as non pre-emptive scheduler. First

Come First Serve(FCFS) scheduler is non pre-emptive

scheduler.

4.1.5 Classification based on the number of

processes to be scheduled
This classification is done considering whether the scheduling

is done on single processor or multiple processors.

a.Uniprocessor Scheduling

If the scheduling is done on a single processor then it is

known as uniprocessor scheduling[3]. Round Robin, RM

scheduling etc are the examples of uniprocessor scheduling

algorithms.

b.Multiprocessor Scheduling

If number of events occurring close together are high then we

have to increase number of processors in the system. Such

system is known as multiprocessor systems and scheduling

techniques reuired to schedule a task on such system are

known as multiprocessor scheduling algorithm[1,4]. Global

scheduling algorithms and partitioning scheduling algorithms

fall under this category.

5. DYNAMIC SCHEDULING

ALGORITHMS WITH STATIC

PRIORITIES

5.1 Rate Monotonic Scheduling

algorithm (RMS)
It is a dynamic pre-emptive algorithm for scheduling set of

independent hard real time tasks. This was published in 1973

by Liu and Layland[5]. The algorithm was based on static task

priorities. The assumptions made about the task set are

mentioned below[3,4].

1. The request for all the task sets, for which hard deadlines

should be met, are periodic.

2. All tasks are independent of each other. No precedence

constraints or mutual exclusion constraints exist between any

pair of tasks.

3. The deadline interval of every task is equal to its period.

4. The required maximum computation time is known

beforehand and is constant.

5. Time required for context switching can be ignored.

6. Sum of utilization factors of n tasks with period

period p is given by

U=Σ(ci/pi) ≤ n(21/n - 1).

As n approaches infinity, term n(21/n - 1) reaches ln 2 (about

0.7).

The task priorities are assigned on the basis of their periods.

The task with shortest period gets the highest priority and the

task with longest period gets lowest priority. If all the

assumptions stated above are satisfied then this algorithms

guarantees that all the tasks will meet their deadlines. The

algorithm is optimal for single processor systems.

5.2 Deadline Monotonic (DM)
This technique is an extension of Rate Monotonic scheduling

algorithm. This is first proposed in 1982 by Leung and

Whiteland. This is also fully pre-emptive technique used for

scheduling tasks with static priorities[3]. The third assumption

mentioned in rate monotonic technique that says the deadline

interval of every task is same and equal to its period; has been

relaxed. The tasks have constrained deadlines i.e. relative

deadlines can be less than or equal to its period.

 Ti

 Ci

 Di

 di

Figure 1. Task parameters in Deadline Monotonic

scheduling [4]

Ci: Worst case computation time

Di: Relative Deadline

Ti: Period of the task

Each task is assigned a fixed priority inversely proportional to

its relative deadline Di. So, at any instant task with the

International Journal of Computer Applications (0975 – 8887)

 Volume 44– No.2, April 2012

8

shortest deadline is executed. As relative deadlines are

constant, DM is a static priority assignment technique.

6. DYNAMIC SCHEDULING

ALGORITHMS WITH DYNAMIC

PRIORITIES

6.1 Earliest Deadline First algorithm

(EDF)
It is the optimal dynamic pre-emptive algorithm for a single

processor systems which are based on dynamic priorities. The

tasks with the earliest deadline is given the highest priority[2].

That is why this algorithm is also known as deadline driven

scheduling algorithm(DDS). The jobs in the task set are put in

the ready queue on the basis of their priorities. The priorities

of all the jobs in the ready queue are fixed. So, this algorithm

is a job level fixed-priority algorithm. A task set can be

scheduled by this algorithm if the utilization factor, U ≤ 1.

6.2 Least Laxity algorithm (LL)
It is an optimal algorithm in single processor systems. Laxity

of the task is defined as a difference between deadline interval

and maximum computation. Laxity of a task i, li =di - ci. di is

the deadline interval of task i, which is the duration between

the deadline of the task and the task request instant. ci is the

computation time of task i. The assumptions about the task

sets are same as that of EDF algorithm. The priorities are

assigned on the basis of laxity[3]. The task with longest laxity

gets the lowest priority. This may cause frequent switching

between the tasks and thus increase the system overhead.

7. COMPARISON OF REAL TIME

SCHEDULING ALGORITHMS

8. CONCLUSION AND FUTURE SCOPE
From the comparative study it can be concluded that real time

systems have became an inevitable part of our lives and their

accurate performance has been a challenge. Scheduling a real

time systems is done by static priority scheduling algorithms.

Although dynamic priority scheduling algorithms can perform

better than static priority in terms of CPU utilization, but it

increases the overhead on the system. So, dynamic priority

scheduling algorithms are not available in commercial real

time systems. The various objectives of scheduling have been

discussed. Study of scheduling algorithms have been done and

it has been observed that pre-emptive scheduling with

dynamic priorities works very well in case of scheduling tasks

on real time systems. From the comparison of real time

scheduling algorithms, it is clear that earliest deadline first is

the efficient scheduling algorithm if the CPU utilization is not

more than 100%. For hard real time systems, schedulability

analysis can be done and calculations of probabilistic Worst

Case Execution Time (WCET) analysis can also be done.

Implementation of scheduling algorithm on FPGA can be

done for scheduling tasks with dynamic priorities and

schedulability of the task can be checked.

9. REFERENCES
[1] Daniel P. Bovet and Marco Cesati, "Understanding the

Linux Kernel", O'Reilly Online Catalogue, October

2000.

[2] Hermann Kopetz, "Real-Time Systems: Design

Principles for Distributed Embedded Applications",

Springer, second edition.

[3] Peter Brucker, "Scheduling Algorithms", Springer, fifth

edition.

[4] Giorgio C. Buttazzo, "Hard Real Time Computing

Systems: Predictable Scheduling Algorithms and

Applications", Springer, Third edition.

[5] C.L. Liu and James W. Layland, "Scheduling Algorithms

for Multiprogramming in a Hard Real Time

Environment", Journal of the Association of Computing

Machinery, Vol. 20, No. 1, January 1973, pp. 46-61.

[6] Euiseong Seo Jinkyu Jeong, Seonyeong Park, and

Joonwon Lee., "Energy Efficient Scheduling of Real-

Time Tasks on Multicore Processors", IEEE transactions

on parallel and distributed systems, vol. 19, no. 11,

November 2008, pp 1540-1552.

[7] S. Roman, H. Mecha, D. Mozos and J. Septien, "
Constant complexity scheduling for hardware

multitasking in two dimensional reconfigurable field-

programmable gate arrays", IET Computer Digit. Tech.,

2008, Vol. 2, No. 6, pp. 401–412.

[8] Pravanjan Choudhury, Rajeev Kumar and P.P.

Chakrabarti, "Hybrid Scheduling of Dynamic Task

Graphs with Selective Duplication for Multiprocessors

under Memory and Time Constraints" IEEE Transactions

On Parallel And Distributed Systems, Vol. 19, No. 7,

July 2008, pp. 967-980.

[9] Enrico Bini, Thi Huyen Chau Nguyen, Pascal Richard,

and Sanjoy K. Baruah, "A Response-Time Bound in

Fixed-Priority Scheduling with Arbitrary Deadlines",

IEEE Transactions On Computers, Vol. 58, No. 2,

February 2009, pp. 279-286.

[10] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari,

"Schedulability Analysis of Global Scheduling

Algorithms on Multiprocessor Platforms", IEEE

Transactions On Parallel And Distributed Systems, Vol.

20, No. 4, April 2009, pp. 553-566.

[11] Wan Yeon Lee, "Energy-Efficient Scheduling of

Periodic Real-Time Tasks on Lightly Loaded Multicore

Processors", IEEE Transactions On Parallel And

Distributed Systems, Vol. 23, No. 3, March 2012, pp.

530-537

 Rate

Monoton

ic(RM)

Deadline

Monotonic

(DM)

Earliest

Deadline

First

(EDF)

Least

Laxity

First

(LL)

Implementa

tion

Simplest Simple Difficult Difficult

Processor

Utilization

Less More as

compared

to RM

Full

Utilization

Full

Utilization

Priority

Assignment

Static Static Dynamic Dynamic

Scheduling

criterion

Task

Period

Relative

Deadline

Deadline Laxity i.e.

di-ci

Jitter

Control

Only for

highest

priority

task

Only for

highest

priority

task

Inefficient

in

overloade

d systems

Inefficient

in

overloade

d systems

