
International Journal of Computer Applications (0975 – 8887)

Volume 44– No18, April 2012

37

Efficient String Matching Using Deterministic Finite

Automation Hardware: Speed vs Area Tradeoff

AakankshaPandey
Department of CSE & IT

MANIT, Bhopal.

NilayKhare , PhD
Department of CSE & IT

MANIT, Bhopal.

ABSTRACT
Pattern matching is a crucial task in several critical network

services such as intrusion detection and matching of the IP

address during packet forwarding by the router. In this paper

we present an speed vs area tradeoff of the the original DFA

and the DFA called delayed input DFA(D2FA) with

optimized area by eliminating the redundant transition

edges.In delayed input DFA the area required to store

transition table reduces to 60% of the original DFA but the

clock pulse required to execute the process increases almost

40% of the original DFA. The comparison of area and speed

is presented. This area optimized architecture of DFA is

simulated and synthesized using VHDL on the Xilinx ISE

12.4.

Keywords:

String Matching,DFA, VHDL.

1. INTRODUCTION
With the increased amount of data transferred by network the

amount of malicious packet also increased therefore it is

necessary to protect the network against malicious attack.

Intrusion Detection Systems (IDS) are emerging as one of the

most promising way of providing protection to systems on

the network against these malicious attacks. Intrusion

Detection System continuously monitors the network traffic

for suspicious pattern and informs the administrator to take

proper action. String matching is the heart of IDS. String

matching matches each incoming packet against some stored

patterns and identify the suspicious activity. The pattern

matching is also used by the router to identify the appropriate

outgoing line of the packet during packet transmission .The

pattern is matched against the text string. Suppose given text

string T = t1t2 …. tn and pattern (keyword)P = p1p2 ….pm,

verify if string P is a substring of text T. This task is very

simple but it is used very frequently in case of networks

application. Very fast algorithms are therefore necessary for

this task.

The pattern matching can be implemented in both software

and hardware. The main motivation of implementing it into

the

hardware is the performance gap. Hardware provides

efficientand flexible way of implementation. FPGA (field

Programmable Gate Array) provides flexibility and

FPGAincrease theperformance of software based system by

600x for large patterns.

There are several techniques that are exist for pattern

matching in hardware like comparator based architecture in

which discrete comparator are used to match particular

character similarly hash based function is also used which

uses the digest of the pattern for matching purpose. Finite

automata are also used for this purpose. This paper mainly

focuses on finite automata based pattern matching.

Finiteautomata are very useful way for understanding

andsolving manytext processing problems. Deterministic

FiniteAutomata (DFA) is widely used in existing work

toaccelerate regular expression matching. A deterministic

finite state automaton (DFA) is a simple language recognition

device. Finite automata provide the easiest way of pattern

matching but Depending on the application being considered,

it can be the case that the size of the input string tothe DFA is

large (e.g. the text T in secure pattern matching), or the size of

the DFA itself (e.g. whenmany patterns are combined into

one DFA). Therefore, it needs to ensure efficiency and

scalability when run on large DFAs and/or input strings.

In this paper we present the area vs speed tradeoff of the

Deterministic Finite Automata (DFA) and the delayed input

Deterministic Finite automata(D2FA).We will see how area

occupied by the state transition table drastically get decreased

by eliminating redundant transition in D2FAalong with how

the time taken by the input pattern for processing get

increased in detail.

The rest of the paper is organized as follows section I

describes the introduction part of the pattern matching and its

application in the network ,section II describe the related

work in this field and section III presents the background

information of the work, next section deals with the

implementation result and the comparison of speed and area

taken by the normal DFA and delayed input DFA and last

section is the conclusion part.

2. RELATED WORK
In the past few years numerous hardware based pattern

matching solution have been proposed.The main techniques

are CAM(based architecture [5,9,13] uses discrete

comparator results higher throughput with increased area and

low efficiency,hash function[2,6,12,13] used to compress the

string set find probable match and reduce the total number of

comparison. regular expression and finite automata based

patternmatching[1,2,3,4,5,11,14] results low throughput with

increase the area of implementation .the main aim of this

paper is to reduce the area of implementation and resource

used by applying the state minimization algorithm.

Ioannis et al[10] has given the CAM based architecture uses

discrete comparator for pattern matching in which the

frequency of the pattern matched get increased but the area

required to implement the model increases with number of

patterns so they uses decoded CAM architecture for better

performance and to reduce area density and pipelined Cam to

increase processing speed they conclude that pipelined

DCAM is the best choice for hardware implementation of

pattern matching.

International Journal of Computer Applications (0975 – 8887)

Volume 44– No18, April 2012

38

Recently Dhanpriya et al[11] have designed word split hash

algorithm in which on the basis of sub hash the pattern is

matched .So the malicious packet is detected at the initial

stage if so.This architecture reduces the total number of

comparison and also reduces the execution time.

Sidhu and Prasanna[14] mapped the NFA into an FPGA

results the modest throughput with large area so Karuppiah

and Rajaram[1] recently mapped the regular expression into

DFA which reduces the number of states used results the area

efficiency.

Sailesh et al [14] have given the architecture of D2FA in

which the redundant edges are removed and replaced by the

single default edge. This paper deals with the comparision of

the original DFA and the D2FA time and speed. Although the

required area of the state table reduces but the time is also a

very important factor in network environment . So the

contribution of this paper is will help to identify the good

technique for the pattern matching in the application over the

network.

3. BACKGROUND

3.1 Regular Expression
It is the most common way to represent the pattern to match.

Full regular expressions are composed of two types of

characters.The special characters (like the * from the filename

analogy) are called metacharacters, while everything else are

called literal.Literal text acting as the words and

metacharacters as the grammar. The words arecombined with

grammar according to a set of rules to create an expression

which generate patterns. Some metacharacters are

*,+,?,|,Repetition is specified with *, for zero or more, +, for

one or more, and ?, forzero or one, Alternation is specified

with |. In regular expression if ∑ is an alphabet, then ∑⃰

denotes the set of all finite strings of symbolsin ∑. Any subset

of ∑⃰ is a languageover ∑.Example of regular expression is

{^ (yes|YES|Yes)$}

This matches exactly “yes”, “Yes”, or “YES”.

Regular expressions have been used in a variety of practical

applicationsto specify regular languages in a perspicuous way.

The problem of decidingwhether a given string belongs to the

language denoted by a particular regular expression can be

implemented efficiently using finite automata. A regular

expression is used for pattern matching that matches one or

more string of characters. Regular expression is generated for

every string in the rule set and nondeterministic /

deterministic finite automata are generated that examines the

one byte input at a time.

3.2 Nondeterministic Finite Automata
An NFA is represented formally by a 5-tuple, (Q, Σ, Δ, q0, F),

consisting of a finite set of states Q ,a finite set of input

symbols Σ,a transition relation Δ : Q × Σ → P(Q),an initial (or

start) state q0∈Q,a set of states F distinguished as accepting

(or final) statesF⊆Q.Here, P(Q) denotes the power set of Q.

Let w = a1a2 ... an be a word over the alphabet Σ. The

automaton M accepts the word w if a sequence of states, r0,r1,

..., rn, exists in Q with the following conditions:r0 = q0,ri+1∈

Δ(ri, ai+1), for i = 0, ..., n−1,rn∈F.

3.3 Deterministic Finite Automata:
A deterministic finite automata is similar to the Non

Deterministic finite automata the only difference is in

transition function (δ :Q × Σ → Q) where Q is the only one

state instead of power set of Q.Let w = a1a2 ... an be a string

over the alphabet Σ. The automata M accepts the string w if a

sequence of states, r0,r1, ..., rn,exists in Q with the following

conditions:r0 = q0,ri+1 = δ(ri, ai+1)(for i = 0, ..., n−1)and rn∈F.

DFA differ substantially from NFA in the way they process

data.An essential property of DFA is that at any given point of

time only one state is active ie for each input symbol a single

state needs to be processed .In contrast , an NFA can have

multiple active states at the same time which all need to be

processed when the next input symbol is read.

3.4Delayed Input DFA(D
2
FA):

The space taken by any DFA is determined by the number of

states* number of transition edges and time taken by the DFA

is the time taken to process the input or the number of

transition that it needs to take to reach to the final state. For an

ASCII alphabet, there can be upto 256 edges leaving each

state, it makes the required space very high so it needs the use

of some compression technique. Sailesh et al [14] have given

the concept of D2FA in which the redundant edges

areeliminated. Here we will see the algorithm for the delayed

input DFA(3.4.2).

3.4.1 Lemma for the elimination of

redundant edges:
Lemma 1. Consider a D2FA with distinct states u and v,

where u has a transition labeled by the symbol a, and no

outgoing default transition. If δ(u,a)=δ(v,a), then theD2FA

obtained by introducing a default transition from u to v and

removing the transition from u to δ(u,a) is equivalent to the

original DFA.

3.4.2 Algorithm
The algorithm for constructing the Delayed input DFA is

given below considering the ASCII alphabet as set of input .

ProcedureDefine_DDFA

(1)Set state; set literal[255];

(2)default={};

(3)for each state[u,v]

(4) forinteger i=0 to 255

(5) Do a=literal[i]

(6) ifδ(u,a)= δ(v,a)

(7) then default={v}

 {make a default transition

from v to u}

(8)fi;

(9)oD;

(10)rof;

(11)rof;

End

4. IMPLEMENTATION AND RESULTS
The state machine bubble diagram in the below fig 1 shows

the operation of a five-state machine that reacts to a single

input and matches all the patterns having a+, b+c, and c*d+.

http://en.wikipedia.org/wiki/N-tuple
http://en.wikipedia.org/wiki/Set_%28mathematics%29
http://en.wikipedia.org/wiki/Input_symbol
http://en.wikipedia.org/wiki/Input_symbol
http://en.wikipedia.org/wiki/Input_symbol
http://en.wikipedia.org/wiki/Relation_%28logic%29
http://en.wikipedia.org/wiki/Power_set
http://en.wikipedia.org/wiki/Function_%28mathematics%29

International Journal of Computer Applications (0975 – 8887)

Volume 44– No18, April 2012

39

Fig 1:DFA1 for the pattern a+, b+c, and c*d+.

The set of literals are

Σ=(a,b,c,d),Q=(1,2,3,4,5),q0=(1),F=(2,4,5).From the above

DFA we can see that δ(acbd)=4, δ(bdca)=2, δ(bc)=5DFA1,

XST has used eight flip flops for implementing the state

machine and from Table 3 we can see that this schematic

needs 17 macrocels,35 product term,21 function block,8

registers and 7 pins.

Fig2:technology schematic1 of the DFA1.

The equivalent D2FA of the above DFA.The construction of

D2FA is done by eliminating the redundant transition and

maintain the equivalence with the original DFA(the number of

patterns accepted and rejected by the original DFA should not

change)(fig3).So it is necessary to perform this reduction

carefully. As you can see in above fig 2 by applying lemma

1 δ(1,c)= δ(2,c) so we can make a default transition from

state 2 to state 1similarily other default transition if found by

using the algorithm 3.4.2.Fig 3 shows the D2FA of the Fig 1.

Fig 3:D2FA,recognize the pattern a+, b+c, and c*d+

In fig 3 The set of literals are

Σ=(a,b,c,d),Q=(1,2,3,4,5),q0=(1),F=(2,4,5). As you can see

thatthe above DFA contain many number of default transition

for eliminating the redundant transition so this reduces the

space approximately 40% But the time taken to process the

input is double or more then the original DFA because to

match a single character two transitions needs to be taken so it

increases the processing time The technology schematic is

shown in fig 4.

Fig4:technology schematic2 of the DFA2

As you can see from the schematic of DFA, XST the other

resource summary of the technology schematic as we can see

in table 2 the macrocels required is only 1 ,product term is

2,the functional blocks are 3,registers used is 1 and the total

number of pins required are 5.

International Journal of Computer Applications (0975 – 8887)

Volume 44– No18, April 2012

40

Table 2: Functional blocks used in DFA and D
2
FA

As we can see from the table 2 that the resources used by the

DDFA is very much less compare to the original DFA.So we

can see that the area required is also reduces approximately

40% of the original.

Comparing the results of resources of DFA1 and D2FA we

can see that the macrocels required is 25% less for minimized

DFA,product term used is 30 % less, function block required

are 5%less ,registers used are 25 % less and pins used are also

30% less as the original DFA so overall we can conclude that

the total area is very less as compare to the original DFA.

Table 3 shows the complete resource summary of the original

DFA and D2FA.We can see that the macrocells required is 25

% less,total product term used is 30 % less, functional block

and registers used are 10% less and the pins required are 63%

less to the original DFA in the implementation of the pattern

that recognizes a+, b+c, andc*d+.So we can conclude that the

area reduced significantly in case of D2FA.

Table 3:Resource summary of DFA and D
2
FA

-Resources- DFA D
2
FA

Used/Total % Used/Total %

Macrocells 17 /36 47% 12/36 34%

Product

Terms

35 /180 19% 20/180 12%

Function

Block

21 /108 19% 6/36 17%

Registers 8 /36 22% 7/34 21%

Pins 7 /34 21% 15/108 14%

4.1 Simulation Result:
Fig 5 presents the simulation result for pattern “bba” and fig 6

is the simulation waveform for pattern”bbabb”.The graph can

be easily interpreted .The first column(fig 5 and fig 6) shows

the signal name it also shows the mode(direction)of the

signals(the inward arrow shows the input and the outward

arrow shows the output) .the second column shows the value

of each signal in the position where the vertical cursor is

placed(in fig 5 the cursor is at 710 ns and in this position the

value of the output signal is 1 and all other are 0 similarly in

fig 6 the cursor is at position 700 ns and in this position the

value of the input signal b and output signal is 1 and all other

are 0.The third column shows the simulation proper. The

simulation waveform is same for the DFA and D2FA but the

clock pulse will be different.

Fig5:Simulated Waveform of pattern “acbc”

Fig6:Simulated Waveform of pattern “abca”

4.2 PerformanceAnalysis
Table 4 Here presents the performance summary with the

comparison of Deterministic Finite Automata and delayed

input deterministic finite automata(D2FA). We can see the

difference of different clock period and memory usage the

total real time to completion in DFA is 6 sec whereas in D2FA

for the same is 7 secs and the total CPU time to completion in

case of DFA is 5.77 secs whereas in D2FA is 6.60 secs.So

from this table we can conclude that the time needed for the

completion in D2FA is more than the original DFA.

-Function Blocks- DFA D
2
FA

3-bit Register 1 1

#3-bit Latch 2 1

#IOs 7 7

AND 16 11

INV 27 23

OR 6 2

Flip-flops/Latches 8 6

IO Buffers 7 7

International Journal of Computer Applications (0975 – 8887)

Volume 44– No18, April 2012

41

Fig 7: memory size for the different value of p(simulation

result)

Fig 8: CPU time for the different value of p(simulation

result)

Fig 7 and fig 8 shows the comparison graph for the DFA with

the D2FA Fig 7 shows the memory size required to process

the input in KB for the different value of p (p is the pattern

size) simulated is Xilinx 12.4 so you can compare memory

usage in KB . The smallest pattern (p=1) requires 17151KB

memory usage in case of DFA and 17168 KB memory usage

in case of D2FA.The smallest pattern (p=1)requires 94 ms in

case of DFA and 104ms in case of D2FA.Similarily the graph

shows the memory required and CPU time for the patter

size(p=1,2,3,4,5….) so we can conclude that the time taken to

process any patterns needed more time than the original DFA

because we needs to take extra default transition for

processing. similarly fig 8 illustrate the CPU simulation time

in ms for the different size of pattern p.So from these two

graphs we can conclude that the both memory usage and CPU

time is high in case of D2FAcompare to the original DFA

during the pattern matching.

Table 3:Performance summary

5. CONCLUSION
In this paper delayed input DFA is implemented for pattern

matching which results the reduced area,but the increased

number of clock pulse to process the inputpattern compare to

the original DFA. In general the number of states required to

implement both DFA and D2FA is same but the number of

transition edges are different.Number of resources used for

the implementation reducedup to 60% of the original but the

time and memory usage for matching pattern increases to 40%

of the original. So the implementation in hardware with

delayed input DFA is very apparent but the processing time is

also very important factor so in future some techniques needs

to be used to reduce the processing time of input pattern by

reducing the total number of default edge transition.

7. REFERENCES:
[1] A. BabuKaruppiah, Dr. S Rajaram “Deterministic Finite

Automata for Pattern Matching in FPGA for intrusion

Detection” in International Conference on Computer and

Electrical Technoogy-ICCCET 2011,18th& 19th

March,2011.”

[2] Jan Kastil, Jan Korenek Hardware Accelerated Pattern

Matching Based onDeterministic Finite Automata with

Perfect Hashing,IEEE 2010,p-149-152.

[3] Kai Wang, Yaxuan Q, YiboXue, Jun LReorganized and

Compact DFA for EfficientRegular Expression

Matching,IEEE communication society

[4] Hiroki Nakahara,TsutomuSasao and Munehiromatsuura

“A Regular Expression Matching Using Non-

Deterministic Finite Automata” in IEEE 2010.

[5]IvanoBonesana,MarcoPaolieri,Marco D. Santambrogio

“An adaptable FPGA based system for regular

expression Matching” in IEEE 2008.

[6] Mother Aldwairi,ThomasConte,PaulFranzon

“Configurable string Matching Hardware for Speeding

up Intrusion detection” inACM SIGARCH Computer

Architecture News in,Vol. 33,No. 1, March 2005.

[7]Ashok kumarTummala and ParimalPatel”Distributed IDS

using Reconfigurable Hardware” in IEEE 2007.

[8]Hoang Le and Viktor K. Prasanna Ming Hsieh Department

of Electrical Engineering University of Southern

California Los Angeles, CA 90089, USA A Memory-

Efficient and Modular Approach for String Matching on

FPGAs ,2010

[9]M. Dhanapriya,C. Vasanthanayaki “Hardware Based

Pattern Matching Technique for Packet Inspection of

High Speed Network” International Conference on

“Control,Automation,Communication and energy

 -Performance Factor- DFA D2FA

Total REAL time to Xst completion 6.00 secs

7.00 secs

Total CPU time to Xst completion 5.77 secs 6.60 secs

Total memory usage 235256kb 231548kb

International Journal of Computer Applications (0975 – 8887)

Volume 44– No18, April 2012

42

Consevation-2009 4th -6thjune 2009.

[10] IoannisSourdis, DionisiosN.Pnevmatikatos, and

StamatisVassiladis,” Scalable Multigigabit Pattern

Matching for Packet Inspection,” in Proc. IEEE

Symp.Field program.Custom Comput. Feb. 2008.

[11] B. L. Hutchings and R. Franklin and D. Carver “Scalable

hardware implementation usonf Finite

Automata”Department of Electrical and Computer

Engineering.

 [13] J. Hasan, S. Cadambi, V. Jakkula and S. Chakradhar,

“Chisel: A Storage-efficient, Collision-free Hash-based

Network Processing Architecture,” 33rd International

Symposium on Computer Architecture,p.203-215.

[14]ReetinderSidhu,Vikot K. Prasanna “Fast Regular

Expression Matching using FPGAs”9th Annual

Symposium IEEE2001.

[15] Sailesh Kumar, SarangDharmapurikar, Fang Yu, Patrick

Crowley, Jonathan Turner “Algorithms to Accelerate

Multiple Regular Expressions Matching for Deep Packet

Inspection”, SIGCOMM'06, September 11-15, 2006,

Pisa, Italy, 2006 ACM.

