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ABSTRACT 

This paper proposes a methodology to design filters that 

extract information from noisy signals. From a mathematical 

point of view, a method is used based on homogeneous 

polynomially parameter-dependent (HPPD) matrices of 

arbitrary degree. The optimal H  filter is then obtained by 

solving a convex optimization problem using off-the-self 

software. To show the effectiveness of the proposed filter 

design methodology some examples are solved, and the 

solution is illustrated using computer simulations.   
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1. INTRODUCTION 
Designing filters and observers is a well-studied problem in 

one-dimensional systems (see, for example, [1], [2], and 

references therein), and some two-dimensional systems in 

image processing applications (see [3] and references therein. 

More precisely, a solution to the H  filtering problem is 

given in this paper for the class of two dimensional (2-D) 

continuous systems that are described by a Roesser state space 

model with both state delays and parameter uncertainties. 

Delays are considered 2L  as they appear frequently in 

practical problems (see [5] and references therein). Similarly, 

uncertainties are inherent to any practical implementation (see 

[6] and references therein). 

 The H  estimation problem has attracted much interest in 

the past decades within the systems theory community [24], 

[38]. One of the reasons is the fact that it does not require a 

precise knowledge of the statistics of the noisy signals, as 

required by alternatives approaches. This estimation 

procedure just ensures that the 2L -induced gain from the 

noise to the estimation error is smaller than a prescribed level, 

with the noise signals described as energy-bounded signals. 

Many results on the H  filtering problem have been 

proposed in the literature, in both the deterministic and 

stochastic contexts: see, e.g., [4], [11], [15], [24], [27], [32], 

[37], [38] and references therein. In practice, system 

parameters are never perfectly known. When parameter 

uncertainties affect a system, the corresponding robust H  

filtering has also been investigated: see, e.g., [9], [21], [36]; in 

the particular case of for state-delayed systems, we can cite 

[13], [14], [22] and [26]. Note that all these mentioned H  

filtering results are obtained in the context of one-dimensional 

(1-D) system. The study of two-dimensional (2-D) filters has 

received much attention in past decades: [7], [10], [12], [16], 

[17], [19], [23], [30], [33], [34], [35]. For example, the 2-D 

H  filtering problem for Roesser models was solved in [10], 

although in the absence of uncertainties and delays, with the 

parallel results for the 2D Fornasini-Marchesini second model 

reported in [33] and [34]. We point out that these H  

filtering results were obtained for 2D discrete systems. 

However, as it is well known, partial differential equations 

actually correspond to 2-D or n-D continuous systems [23]. 

Therefore, the study of 2-D continuous systems is of practical 

and theoretical importance. 

 It is worth noting that most of the results regarding this topic 

only deal with 2-D systems without delays. However, delays 

are frequent in systems described by partial differential 

equations, for example in signal transmissions and biological 

systems. Examples of 2-D systems with time delays include 

the material rolling process [31] and systems described by 

delayed lattice differential equations [20] and partial 

difference equations [39], [40]. In addition, certain 2-D 

systems containing digital processors that need finite 

numerical computation time [8], [28] display also the delay 

phenomenon. The stability and control problems of uncertain 

2-D discrete state-delayed systems have been studies in [28], 

[29], whereas the H  filtering problem for 2-D continuous 

state-delayed systems (albeit with norm bounded 

uncertainties) was considered in [18].In this paper, motivated 

by the underlying idea in [25], we present a new approach, the 

structured polynomially parameter-dependent method, for 

designing the robust H  filters for uncertain 2D state-

delayed systems described by the Roesser state-space model. 

Assuming parameter uncertainties in a polytope, the focus is 

on designing a filter such that the filtering error system is 

robustly asymptotically stable and the H  norm of the 

filtering error system for the entire uncertainty domain 

minimized. This new polynomially parameter-dependent idea 

is based on using homogeneous polynomially parameter-

dependent matrices: by increasing its degree, less conservative 

filters are obtained. Moreover, the obtained conditions are 

expressed in terms of linear matrix inequalities which can be 

easily solved using computers and off-the-self software. This 

methodology includes as a particular case the quadratic 

framework, and the linearly parameter-dependent framework, 

special cases for zeroth degree and first degree, respectively. 

Notation: Throughout this paper, for real symmetric 

matrices X and Y, the notation X Y  (respectively, X Y ) 

means that the matrix X-Y is positive semi-definite 

(respectively, positive definite). I is the identity matrix with 

appropriate dimension (All matrices, if not explicitly stated, 

are assumed to have compatible dimensions). The superscript 

T represents the transpose of a matrix, with ( ) Ther S S S  . 

The symbol max (.)  denotes the spectral norm of a matrix. 
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The symmetric term in a symmetric matrix is denoted by *, 

e.g.,  .
* T

X YX Y

Z Y Z

  
   
    

 

2.  PROBLEM FORMULATION 
Consider a 2-D continuous system described by the following 

Roesser’s state-space model with delays in the states: 

1 2 1 2 1 1 2 2

1 2

1 2 1 1 2 1 1 1 2 2

1 1 2

1 2 1 2 1 2

( , ) ( ) ( , ) ( ) ( , )

( ) ( , )

( ) : ( , ) ( ) ( , ) ( ) ( , )

( ) ( , )

( , ) ( ) ( , ) ( ) ( , )

d

d

x t t A x t t A x t t

B w t t

y t t C x t t C x t t

D w t t

z t t C x t t D w t t

   



   



 

   





    
 

  



 

with  

2 2(0, ) ( )x t f t  for 2 2,0t     ,  1 1( ,0) ( )x t g t  for 

1 1,0t     , 
1 2

1 2

1 2

( , )
( , )

( , )

h

v

x t t
x t t

v t t

 
 
 
 

,  

1 2

1
1 2

1 2

2

( , )

( , )
( , )

h

v

x t t

t
x t t

x t t

t

 
 

 
  

 
  

 , 

1 1 2
1 1 2 2

1 2 2

( , )
( , )

( , )

h

v

x t t
x t t

v t t


 



 
   
  

, where 1 2( , ) hnhx t t    

and 1 2( , ) vnvx t t   are the horizontal and vertical states, 

respectively, 1 2( , ) py t t   is the measured output, 

1 2( , ) rz t t   is the signal to be estimated, 1 2( , ) mw t t   is 

the exogenous input, and 1 2, 0    are constant time delays. 

All matrices are assumed to be real, belonging to the polytope 
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1 1 11 1 1

( )( )

( ) ( )
, 1,  0

( ) ( )

( ) ( )

i did

N N
i i

i i i
d di ii i

i i

A AAA

B CB C

C C DD

C DC D



 
  

 

 

 

   
   
         
   
        

 P

   (1)  

Here, we are interested in estimating the signal 1 2( , )z t t  by a 

robust HPPD filter of the form 

1 2 1 2 1 2

1 2 1 2

ˆ ˆ( , ) ( ) ( , ) ( ) ( , )
( ) :

ˆˆ( , ) ( ) ( , ),

f f
f

f

x t t A x t t B y t t

z t t C x t t

 



  
 




 

where 

 
1 2

1 2

1 2

ˆ ( , )
ˆ( , )

ˆ ( , )

h

v

x t t
x t t

v t t

 
 
 
 

, 1 2ˆ ( , ) hnhx t t   and 1 2ˆ ( , ) vnvx t t   

are the horizontal and vertical states of the filter, respectively, 

1 2ˆ( , ) rz t t   is the estimate of 1 2( , )z t t . ( )fA  , ( )fB   and 

( )fC   are filter parameter-dependent matrices to be 

determined. 

By defining an augmented state vector and the filtering error 

output signal: 

1 2 1 2 1 2ˆ( , ) ( , ) ( , )
T

h h T h Tx t t x t t x t t 
 

 , 

1 2 1 2 1 2ˆ( , ) ( , ) ( , )
T

v v T v Tx t t x t t x t t 
 

 , 

1 1 2
1 1 2

1 1 2

( , )
( , )

ˆ ( , )

h
h

h

x t t
x t t

x t t






 
  
  

 ,  

1 2 2
1 2 2

1 2 2

( , )
( , )

ˆ ( , )

v
v

v

x t t
x t t

x t t






 
  
  

 , 

1 2 1 2 1 2( , ) ( , ) ( , )
T

h T v Tx t t x t t x t t 
 

   , 

1 1 2
1 1 2 2

1 2 2

( , )
( , )

( , )

h

v

x t t
x t t

x t t


 



 
   
  





, 

1 2 1 2 1 2ˆ( , ) ( , ) ( , )z t t z t t z t t  , 

 

the following augmented system can be obtained:  

1 2 1 2 1 1 2 2

1 2

1 2 1 2 1 2

( , ) ( ) ( , ) ( ) ( , )

( ) : ( ) ( , )

( , ) ( ) ( , ) ( ) ( , ).

d

e

x t t A x t t A x t t

B w t t

z t t C x t t D w t t

   



 

    


 


 

    



 

 

 

where 

 

( ) ( ) , ( ) ( ) ,T T
f d dfA A A A         

( ) ( ), ( ) ( ) ,T
f fB B C C         ( ) ( )D D   (2) 

and the augmented matrices are given by 

1

( ) 0
( ) ,

( ) ( ) ( )f
f f

A
A

B C A




  

 
  
  



1

( ) 0
( ) ,

( ) ( ) 0

d
df

f d

A
A

B C




 

 
  
  

  
1

( )
( ) ,

( ) ( )f
f

B
B

B D




 

 
  
  

   

( ) ( ) ( ) ,f fC C C    
 

  (3) 

0 0 0

0 0 0
,

0 0 0

0 0 0

h

h

v

v

n

n

n

n

I

I

I

I

 
 
 

   
 
 
  

 (4) 

The robust H  filtering problem to be addressed in this paper 

can be formulated as follows : Given a scalar  0    and the 

2D continuous system with delays ( ) , find matrices 

( ) n n
fA   , ( ) n p

fB    and ( ) r n
fC    of the 

filter realization ( )f  such that the filtering error system 

( )e  is asymptotically stable and the transfer function of the 

error system given as 

1 1 2 2
1

1 2 1 2( , ) ( ) ( , ) ( ) ( ) ( , )

                   ( ) ( )

s s
zw dT s s C I s s A A I e e

B D

   

 


    

 

 


  

 

 

  (5) 

satisfies 
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                                 zwT 

   (6) 

for all admissible uncertainties and with null initial conditions 

where  

 1 2 1 2( , ) ( , ),
h vn nI diag I I      (7)  

and 

 
1 2

1 2 max 1 2
,

( , ) sup ( , ) ,zw zwT s s T j j
 

  




    


 (8) 

In order to solve the filtering problem, we first introduce the 

following Theorem which considers a parameter independent 

structure for ( ),P   i.e., ( ) .TP P P    

 

Theorem 1: Given a scalar 0  , the continuous system with 

delays 0( )  is asymptotically stable and satisfies the H  

performance zwT 

  if there exist matrices 

( , ) 0h vP diag P P   and ( , ) 0h vQ diag Q Q   such that the 

following LMI holds: 

 

( ) ( ) ( ) ( ) ( )

* 0 0
0

* * ( )

* * *

T T
d

T

A P PA PA PB C

Q

I D

I

    

 



 
 

 
 

 
    (9) 

Proof: First, from (9), it is easy the see that  

( ) ( ) ( )
0

( )

T
d

T
d

A P PA Q PA

A P Q

  



  
  
  

 

which by Theorem 2, gives that system ( )  is asymptotically 

stable. Next, we show the H  performance, by applying the 

Schur complement formula to (9), we obtain 

2: ( ) ( ) 0TV I D D      and 

1 1

1 1 1

( )

   0

T T T
d d

T T T

her A P Q C C PA Q A P

PB C D V B P D C



 

 

  

  

      
   

 

Multiplying this inequality by I  yields  

1

1

( ( )) ( ) ( ) ( ) ( )

    ( ) ( ) 0

T T T
d d

T T T

her A P Q C C P A Q A P

P B C D V B P D C

    

 





  

      
   

 (10) 

Let 0P P   and 0Q Q  ; then, (10) can be rewritten 

as 

1

1     0

T T T
d d

T T T

A P PA Q C C PA Q A P

PB C D V B P D C





   

      
   

    

 
 

Therefore, there exists a matrix 0U   such that 

1

1

( )

     

T T T
d d

T T T

her A P Q C C PA Q A P

PB C D V B P D C U





   

      
   

   

 
 (11) 

Set  

1 2
1 2 1 2( , ) ( , ) ( , )

j j
dj j I j j A A I e e

      
     

 and 1 2
1 2( , ) ( , )

j j
dz j j PA I e e

    
   recalling that for any 

matrices 1,K 2K  and 3K  of appropriate dimension with  

2 0K    

1
1 3 3 1 1 2 1 3 2 3K K K K K K K K K K         (12) 

Therefore, 

1
1 2 1 2( , ) ( , ) T

d dz j j z j j PA Q A P Q           (13) 

Then, it can be verified that 

1 2 1 2( , ) ( , ) 0TPI j j I j j P         (14) 

By (12), (13) and (14), we have  

1 2 1 2

1 2 1 2

1

( , ) ( , )

 ( ) ( , ) ( , )

   ( ) ( )

T T

T T

T T T

j j P P j j C C

her A P z j j z j j C C

PB C D V B P D C U

   

   



      

   

   

 



 

 (15) 

Since system ( )  is asymptotically stable, we have 

1 2
1 2det ( , ) ( , ) 0,

j j
dI j j A A I e e       

 
   for 

all 1 2,  R . Therefore, 1
1 2( , )j j    is well defined for 

all 1 2,  R . Now, pre-and post multiplying 

(15) by 1 2( , )T TB j j    and 1
1 2( , )j j B    respectively,  

we have that for all 1 2,  R   

1 2

1 2 1 2

1
1 2

1
1 2 1 2

( , )

( , ) ( , )

( , )

( , ) ( , ) ,

T T

T T

T T

B j j

j j P P j j C C

j j B

B j j j j B

 

   

 

   





 



       
 



  

 
 

 (16) 

with 
1( ) ( ) .T T TPB C D V B P D C U       

 

Then, by noting (5), we have 
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2 2
1 2 1 2
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 
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1
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1
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   
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
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    

  







 

 (17) 

By using the relation (16), we obtain 

2
1 2 1 2

1

( , ) ( , )

  ( ) ( )

T
zw zw

T T T

I T j j T j j

V B P D C PB C D

    



  

     
 (18) 

Now, observe that 

1( ) ( ) 0T T TPB C D V B P D C U       

Then, by the Schur complement formula, we have 

0

T T

T

V B P D C

PB C D

 
  
   




 

which, by the Schur complement formula again, gives 

1( ) ( ) 0.T T TV B P D C PB C D        (19) 

Then, it follows from (18) and (19) that for all 1 2,  R   

2
1 2 1 2( , ) ( , ) 0.T

zw zwI T j j T j j         (20) 

Hence, by (20), we have. This completes the proof.      

3. MAIN RESULTS 
In this section, an LMI approach will be developed to solve 

the Robust H  filtering problem formulated in the previous 

section. 

3.1 Parameter-dependent LMIs 
In this section, we develop the parameter-dependent LMIs 

conditions stated in Theorem 1 in terms of generic parameter-

dependent matrix solutions. 

Theorem 2: Given a scalar  0,   the 2-D robust H  

filtering problem is solvable if the 2-D system ( )  is 

asymptotically stable with   performance, that is, if there 

exist matrices ( ),Z   ( ),  ( ),  ( , ) 0,h vX diag X X   

( , ) 0,h vY diag Y Y   and ( , ) 0h hS diag S S   with ,hX ,hY  

h hn n
hS


R and ,vX ,vY  v vn n

vS


R  such that the following 

LMIs hold  

 

12

22 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

* ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

* * 0 0
0

* * * 0 0

* * * * ( )

* * * * *

T T T
d d

T
d d d d

T

YA A Y Y J YA YA YB C

J XA C XA C XB D C

Y Y

S

I D

I

      

         

 



   
 
     
 

   
 
 
 
 

    (21) 

                                                                                                                                      0X Y   (22) 

                                                                                                                                      S 0Y   (23) 

 
where 

12 1( ) ( ) ( ) ( ) ( ) ,T T T TJ YA A X C Z Y         

22 1 1( ) ( ) ( ) ( ) ( ) ( ) ,T T TJ XA A X C C S          

23 12 1( ) ( ) ( )d f dJ XA X B C     

Then, a desired 2-D continuous filter in the form of  ( )f  

can be chosen with the following matrices: 

1 1
12 12( ) ( ) T

fA X Z Y Y     (24) 

1
12( ) ( )fB X    (25) 

1
12( ) ( ) T

fC Y Y     (26) 

where   
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12

12

12

0
,

0

h

v

X
X

X

 
  
  

 
12

12

12

0
,

0

h

v

Y
Y

Y

 
  
  

 

12

12

12

0
,

0

h

v

S
S

S

 
  
  

 (27) 

in which 
12

,hX  
12

,vX
12

,hY
12

,vY
12hS  and 

12vS  are 

nonsingular matrices satisfying  

1
12 12

TX Y I XY              (28)    

1
12 12

TS Y I SY    (29) 

Proof: Let 1,h hY Y   1,v vY Y   1Y Y  then the relations 

(22)-(23), can be written as  

0, 0.
X I X I

I Y I Y

   
    

   
  (30) 

By the Schur complement formula, it follows from (30) that 

1 10, 0,Y X Y S                                         which 

implies that I XY  and I SY  are nonsingular. Therefore, 

by noting the structure of X and Y, we have that there always 

exist nonsingular matrices 
12

,hX  
12

,vX  
12

,hY  
12

,vY  
12hS  and 

12vS  such that (28) and (29) is satisfied, that is                                          

12 12
,T

h h h hX Y I X Y   
12 12

T
v v v vX Y I X Y   (31) 

12 12
,T

h h h hS Y I S Y    
12 12

.T
v v v vS Y I S Y    (32) 

Set 

 

1

12

,
0

h

h T
h

Y I

Y

 
  
 
 

  
1

12

,
0

v

v T
v

Y I

Y

 
  
 
 

 
2

12

,
0

h

h T
h

I X

X

 
   

  

 

2

12

,
0

v

v T
v

I X

X

 
   

  

 
3

12

,
0

h

h T
h

I S

S

 
   

  

  
3

12

,
0

v

v T
v

I S

S

 
   

  

  

1

1

1

0
,

0

h

v

 
   

  

  
2

2

2

0
,

0

h

v

 
   

  

 
3

3

3

0
.

0

h

v

 
   

  

 

Then, by some calculation, it can be verified that 

1
2 1

0
: ,

0

h

v

P
P

P

  
     

 
 1

3 1

0
:

0

h

v

Q
Q

Q

  
     

 
 (33) 

where     

12

12 12 12

1
,

( )

h h

h T T
h h h h h

X X
P

X X X Y X

 
 
 
 

 

12

12 12 12

1
,

( )

v v

v T T
v v v v v

X X
P

X X X Y X

 
 
 
 

 

12

12 12 12

1
,

( )

h h

h T T
h h h h h

S S
Q

S S S Y S

 
 
 
 

 

12

12 12 12

1
.

( )

v v

v T T
v v v v v

S S
Q

S S S Y S

 
 
 
 

 

Observe that      

12 12 12

1
1

12 ( ) 0,T T
h h h h h h hX X X X Y X X Y


    

 
  

12 12 12

1
1

12 ( ) 0,T T
v v v v v v vX X X X Y X X Y


    

 
   

12 12 12

1
1

12 ( ) 0,T T
h h h h h h hS S S S Y S S Y


    

 
  

12 12 12

1
1

12 ( ) 0.T T
v v v v v v vS S S S Y S S Y


    

 
 

Therefore, it is easy to see that 0,hP   0,vP   0hQ   and 

0vQ  . Now, pre- and post-multiplying (21) by 

{ , , , , , , },diag Y I Y I I I I  we obtain     

 

   

12 12

22 23 12 1 1

( ( ) ( ) ) ( ) ( ) ( ) ( ) ( )

* ( ) ( ) ( ) ( ) ( ) ( ) ( )

* * 0 0 0
* * * 0 0

* * * * ( )

* * * * *

T T T
d d f

T
d f d

T

Y YA A Y Y Y YJ YYA Y YYA YYB YC YYY C

J J Y XA X B C XB D C

YYY YY

S

I D

I

      

      

 



   
 
   
 
    

 
 

 
  

  (34) 
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1 1 1 1 1 1 1 1

1 1

( )

* 0 0
0

* *

* * *

T T T T T T T T T T T T
f df f f

T T

T

her P A Q P A P B C

Q

I D

I





                      
 
    

 
 
 

  

  

    (35) 

,fA  fB  and fC  are given in (24)–(26),   is given in (4). 

By (33), the inequality (34) can be rewritten as (35), Pre- and 

post-multiplying (35) by 1 1( , , , )T T T Tdiag I I        and 

1 1 1 1
1 1( , , , )diag I I        we have  

( ) ( ) * * *

( ) * *
0

( ) 0 *

( ) 0 ( )

T

T
d

T

PA A P Q

A P Q

B P I

C D I

 



 

  

  
 
 

 
 
 

  

 





 

 (36) 

Finally, by Theorem 2, it follows that the error system ( )e  

is asymptotically stable, and the transfer function of the error 

system satisfies (6). This completes the proof.    

Remark 1: From Theorem 2, it is easy to see that the minimal 

value of the H  norm  0  , which, satisfies the LMIs in 

(21)-(23), can be determined by solving the following 

optimization problem : 

, , , ( ), ( ), ( )

min   
S X Y Z   


 

 

subject to 

0, 0, 0S X Y    and LMIs in (21)-(23). 

In the case when there is no parameter uncertainty and no 

delay in system ( ) , Theorem 2 reduces to Corollary 1 in 

[35]. 

3.2 HPPD filtering 
In what follows, based on Theorem 2, we propose a new 

method for designing robust H  filters via a structured 

polynomially parameter-dependent approach. Now before 

presenting the Theorem 2 in HPPD, some definitions and 

preliminaries are needed to represent and to handle products 

and sums of homogeneous polynomials. First, define the 

HPPD matrices of arbitrary degree g by 

1 2

( )

1 2

1

( ) ... ( )N

j

J g
kk k

g N

j

    



    (37) 

1 2

( )

1 2

1

( ) ... ( )N

j

J g
kk k

g N

j

    



     (38)    

1 2

( )

1 2

1

( ) ... ( )N

j

J g
kk k

g N

j

Z Z    



  (39) 

with              1 2... ( )N jk k k g  

The notations in the above are explained as follows. 

1 2
1 2 ... ,Nkk k

N    ,   ,ik   1,...,i N  are the 

monomials, ( ) ,j g  ( ) ,j g  and ( ) ,j gZ  are matrices 

valued coefficients. Here, by definition, ( )j g  is the jth N-

tuples of ( )g  which is lexically ordered, 1,..., ( )j g   and 

( )g  is the set of N-tuples obtained as all possible 

combinations of 1 2... ,Nk k k ,ik  1,...,i N  such that 

1 2 ... .Nk k k g     Since the number of vertices in the 

polytope P  is equal to N, the number of elements in ( )g  is 

given by ( ) ( 1)! ( !( 1)!).g N g g N      

For each 1,...,i N  define the N-tuples ( ),i
j g  that are equal 

to ( ),j g  but with 0ik   replaced by 1.ik   Note that the 

N-tuples ( )i
j g  are defined only in the cases where the 

corresponding ik  is positive. Note also that, when applied to 

the elements of ( 1)g  , the N-tuples ( 1)i
j g   define 

subscripts 1 2... Nk k k  of matrices 
1 2 ... ,

Nk k k  
1 2 ... Nk k k  and 

1 2 ... Nk k kZ  associated to homogeneous polynomial parameter-

dependent matrices of degree g. Finally, define the scalar 

constant coefficients 1 2( 1) ! ( ! !... !),i
j Ng g k k k    with 

1 2, ,..., ( 1).i
N jk k k g     

To clarify this notation, consider as an example a polytope 

with N = 3 vertices and g = 2. Then, (2) 6,J     

(2) {002,011,020,101,110,200}   and  

2 2
2 3 002 2 3 011 2 020 1 3 101

2
1 2 110 1 200

( )      

  

        

   
 

2 2
2 3 002 2 3 011 2 020 1 3 101

2
1 2 110 1 200

( )      

  

        

   
 

2 2
2 3 002 2 3 011 2 020 1 3 101

2
1 2 110 1 200

( )

.

Z Z Z Z Z

Z Z

      

  

   

 
 

Moreover, (2) ={{3},{2,3},{2},{1,3},{1,2},{1}},N                                                                         

 3
1 (2) 001,   2

2(2) 001,   3
2(2) 010,   2

3(2) 010,    
1
4(2) 001,   3

4(2) 100,   1
5(2) 010,   2

5(2) 100   and 

1
6(2) 100   are the only possible triples (2),i

j   

1,..., (2)j    associated to (2).    

 

To facilitate the presentation of our main results, denote 

( 1)i
j g   by  F.  Using this notation we now present the  

following result. 
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Theorem 3: Given a scalar  0   and the uncertain 2-D 

continuous system ( ), then, the robust H  filtering problem 

is solvable if there exist matrices ( ) ,j g  ( ) ,j g  ( ) ,j gZ  

( ) ( ),j g g   1,..., ( ),j g   ( , ) 0h vX diag X X   and 

( , ) 0h vY diag Y Y   with , hn
h hX Y   and , ,vn

v vX Y   

such that ( ) ( ),l g l g l     1,..., ( 1)l g    such that 

the following LMI holds : 

( 1) ( 1)

12 ( 1)

22 1 1 1( 1)
*

* * 0 0 0

* * * 0 0

* * * *

* * * * *

i
l

i i i
l g l g l

T T T
i i di di i i g

T
di di di di i i ig

T
i

YA A Y Y J YA YA YB C

J XA C XA C XB D C

Y Y

S

I D

I





 

 

   

   
 
 

     
 

   
 
 
 
 

  

F F F F F F F

F F F F

F F

F

F F

F

  (40) 

                                                                                                                                                                           0X Y   (41) 

                                                                                                                                                                           S 0Y   (42) 

where 

( 1) ( 1)
12 1 i i

l g l g

T T T T
i i iJ YA A X C Z Y

  
    F F + F

( 1) ( 1)
22 1 1i i

l g l g

T T T
i i i iJ XA A X C C S

  
     F F F         

then, the homogeneous polynomially parameter-dependent 

matrices given by (37)-(39) ensure (21)-(23) for all  . 

Moreover, if the LMIs of (40)-(42) are fulfilled for a given 

degree g, then the LMIs corresponding to any degree  ˆg g  

are also satisfied. 

In this case, the matrices of the 2D continuous-time HPPD 

filter are given by 
( )

( )

1

( )
j

g

k
fg f g

j

A A 







  (43) 

 

( )

( )

1

( )
j

g

k
fg f g

j

B B 







  (44) 

( )

( )

1

( )
j

g

k
fg f g

j

C C 







  (45) 

1 2... ( ),N jk k k g   1 2
1 2 ... Nkk kk

N     (46) 

1 1
( ) 12 ( ) 12j j

T
f g gA X Z Y Y  
   (47) 

1
( ) 12 ( )j jf g gB X 

    (48) 

1
( ) ( ) 12j j

T
f g gC Y Y 
    (49) 

 

Proof: Note that (21) for ( ( ),A   ( ),B   ( ),C   ( ),D   

1( ),C   1( ))D  P  and ( ),  ( ),  ( )Z    given by 

(40)-(42) are homogeneous polynomial matrices equations of 

degree g + 1 that can be written as  

( 1) ( 1)

12 ( 1)

22 1 1 1( 1)
( 1)

1 (

( )

*

* * 0 0

* * * 0 0

* * * *

* * * * *

i
l

i i i
l g l g l

T T
i di di i i g

T
di di di di i i ig

J g

k

l i g

T
i

her YA Y J YA YA YB C

J XA C XA C XB D C

Y Y

S

I D

I







 

 

   


 

  
 
 

       
   

 
 
 
 

  


N

F F F F F F

F F F F

F F

F

F F

F

1)

1 2

0

                                                                                                                                                ,..., ( 1).N lk k k g
















  



 (50) 

Condition (40)-(42) imposed for all 1,..., ( 1)l g    assure 

condition in (21) for all  , and thus the first part is 

proved. 

Suppose that the LMIs of (40)-(42) are fulfilled for a certain 

degree ˆ ,g  that is, there exist ˆ( )g  matrices ˆ( ) ,j g  

ˆ( )j g  and ˆ( ) ,j g ˆ1,..., ( )j g   such that ˆ ( ),g   

ˆ ( )g   and ˆ ( )gZ   are homogeneous polynomially 

parameter-dependent matrices assuring condition in (21)-(23). 

Then, the terms of the polynomial matrices ˆ 1( )g    

ˆ1( ... ) ( ),N g      ˆ ˆ11( ) ( ... ) ( )Ng g          and 

ˆ ˆ11( ) ( ... ) ( )Ng gZ Z        satisfy the LMIs of Theorem 

3 corresponding to the degree ˆ 1g   which can be obtained in 

this case by linear combination of the LMIs of Theorem 3 for 

ˆ.g   

4. ILLUSTRATIVE EXAMPLES 
In this section, we provide some numerical examples to 

illustrate that the proposed approach ensures a smaller H  

performance when increasing the degree. 
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Example 1: First, consider an uncertain 2-D continuous 

system ( )  with the following parameters: 

0.6 2
,

4 0.6
A

  
  

  
 

0 0
,

1.9 1.2
dA



 
  

 
 

0 0
,

1.5 0
B

 
  
 

 

1

0 1.2
,

0.9 2
C



 
  

 
1

0.1 1.1
,

0.1 1.1
D

 
  
 

 1

1.6 0.2
,

0 0
dC

 
  
 

 

0 3 ,C     0 0 .D      

with   and   uncertain parameters, bounded as follows : 

1.2 1.2    and 1.8 1.8,     which gives a four-

vertices polytopic system. 

To design a 2-D filter for this system, we apply Theorem 2, 

first with g = 0, (quadratic filtering), the LMIs are infeasible. 

Then, for g = 1 (linearly parameter-dependent approach), we 

get   =27.0765, whereas for g = 2, we obtain a better noise 

attenuation level:  =20.0570. The number of LMIs and the 

number of scalar variables are compared in Table 1. 

Table 1 

g   K L Time 

0 

1 

2 

3 

Infeasible 

27.0765 

20.0570 

20.0570 

17 

47 

107 

207 

32 

74 

144 

249 

1.154 

1.575 

2.293 

3.760 

K is the number of scalar variables, L is the number of LMI 

rows involved in the optimization problem, and the 

computational times is given in seconds. 

Example 2: Taking the same parameters in example 1 except 

replacing A  by  

0.6 4

4 0.6
A

  
  

  
  and  

2.6 2.6

1.8 1.8





  

  

 

first for g = 0, (quadratic filtering), the LMIs are infeasible. 

Then, for g = 1 (linearly parameter-dependent approach), we 

get  = 43.0885, whereas for g = 2, we obtain a better noise 

attenuation level:   = 21.3200. 

The number of LMIs and the number of scalar variables are 

compared in the following Table 2.  

Table 2 

g   K L Time 

0 

1 

2 

3 

Infeasible 

43.0885 

21.3200 

21.3200 

17 

47 

107 

207 

32 

74 

144 

249 

1.154 

1.575 

2.293 

3.760 

K is the number of scalar variables, L is the number of LMI 

rows involved in the optimization problem, and the 

computational times is given in seconds. 

5. CONCLUSIONS 
This paper has studied the robust H  filtering problem for 2-

D continuous systems described by Roesser state-space 

models with state delays and uncertainty of polytopic type. A 

design methodology has been proposed based on using 

homogeneous polynomially parameter-dependent matrices of 

arbitrary degree: with the increasing degree, the obtained H  

filter design is less conservative. Numerical examples 

illustrate the proposed methodology, showing that it is 

efficient for the design of parameter-dependent filters for this 

class of systems. 
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