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ABSTRACT 

In this paper, we present a fuzzy observer based on Takagi- 

Sugeno (TS) models, to estimate simultaneously the system 

state and the sensors faults of discrete time nonlinear systems. 

The method uses the technique of descriptor systems, by 

considering the sensor faults as auxiliary states variables. 

More precisely, This paper addresses the problem of index 

fault detection observer to ensure the sensitivity against the 

faults. The proposed method is based on the use of the 

Lyapunov theory to ensure the stability of the system. 

Necessary and sufficient conditions are obtained in terms of 

Linear Matrix Inequalities (LMIs), in order to determine the 

observer gains.  An application of the fault estimation method 

on an hydraulic process with three tanks,  using TS models is 

realized. Simulation and experimental results show the 

effectiveness of the proposed method.   
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Keywords 
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1. INTRODUCTION 
As it is well known, model based fault detection has attracted 

several directions in research; among them we can cite the 

works of [1, 4, 9, 10, 12, 25]. Several methods have been 

developed to detect and  identify sensor faults when they 

appear [2, 11, 13, 14, 16, 17]. Among these techniques, 

Takagi-Sugeno (TS) fuzzy model has been used to represent 

the nonlinear systems [21, 22, 23]. In this context, the 

nonlinear systems can be represented by a set of linear models 

interpolated by member ship functions [18]. In order to detect 

and estimate faults, some results on fault detection observers 

have been developed in the literature [5, 7, 8, 15, 20], such as 

the fuzzy observer using LMI approach presented in [19], the 

unknown inputs observer and the nonlinear descriptor 

estimator [24]. Recently in [25], a method using a descriptor 

representation, to estimate simultaneously the system state 

and the sensor faults, has been proposed.  

[9] has proposed a sensitive fault observer by using the 

H norm. In this work, the objective is the synthesis of the 

sensitive fault observer for a TS discrete time fuzzy model. 

The TS model is considered with the sensor faults. The 

synthesis uses the H  norm to ensure the sensitivity against  

 

the faults. The synthesis conditions are solved in terms of 

linear matrix inequalities (LMIs).  

This paper is organized as follows. In section 2, we present 

the structure of the TS model and the observer. The synthesis 

conditions of the robust fault observer are formulated by using 

the H  performance in section 3. Section 4 is devoted to 

present the tanks laboratory system and to give the 

corresponding nonlinear model. In section 5, some results 

obtained experimentally and by simulation are presented to 

illustrate the efficiency of the proposed method. Finally, 

section 6 gives some conclusions. 

Notation. In this paper, the following notations are used: TX  

and 1X   are the transpose and the inverse of matrix, 

respectively. I  is the identity matrix with appropriate 

dimension. 0P   indicates that the symmetric matrix P  is 

positive definite. The symbol   in a symmetric matrix 

denotes the transposed block in the symmetric position.  

2. PROBLEM FORMULATION 

2.1 TS fuzzy model 
We considered a TS model described by fuzzy IF-THEN 

rules. The ith rule of the model is of the following form: 

Rule i 

IF 
1( )z k

 
is 1iM

 
and … ( )qz k  is qiM THEN 

( 1) ( ) ( )

( )  C ( )
i ix k A x k Bu k

y k x k





  


                                            (1) 

where ( ) nx k R
 
is the state vector, ( ) mu k R

 
is the input 

vector and ( ) py k R
 
is the measurable output vector. 

iA , 
iB  

and C  are matrices with appropriate dimension. 

1( ) ( )... ( )qk k k   
 

 are the premise variables, 1 .... qiiM M
 

are the fuzzy sets and r is the number of rules. 

Then the TS system is written as follows: 

 
1

( 1) ( ) ( ) ( )

( )  C ( )

r

i i i
i

x k A x k Bu k

y k x k

 








  





                             

(2) 

where  
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1

( ( ))
( )

( ( ))

i
i r

ii

w t

w t


 







, 
1

( ( )) ( ( ))
q

i ji
j

w t M t 


             (3) 

Hence, ( )i 
 
satisfies: 

1

( ) 1
r

i
i

 


  and ( ) 0i    for 1,...,i r                          (4) 

In this paper, we considered TS models in discrete time with 

sensor faults. Then, the system (2) is rewritten in the 

following form: 

 
1

( 1) ( ) ( ) ( )

( )  C ( ) ( )

r

i i i
i

s s

x k A x k Bu k

y k x k D f k

 








  

 


                             (5)                        

where ( )sf k
 
represents the additive sensor fault and sD

 
is a 

matrix of appropriate dimensions. 

In order to estimate the state and the sensor faults, we 

considered the faults as an auxiliary state of the augmented 

system.   

An augmented system descriptor is then constructed as 

follows: 

 
1

0

 ( 1) ( )  ( )  ( )  ( )

( )  C ( ) ( ) ( )

r

i i i s
i

s

E x k A x k B u k D x k

y k x k C x k x k

 








   

  



     

(6)      6) 

where: 

( )
( )

( )s

x k
x k

x k

 
 
 

 , ( ) ( )s s sx k D f k , 
0

0 0
nI

E
 
 
 

 , 
0

i
i

B
B

 
 
 

  

0

0
i

i
n

A
A

I

 
 
 




,  
0

p

D
I

 
  
 

 ,  0 0C C ,  pC C I  

 In this study, we considered the following observer structure: 

 
1

 ( 1) ( ) ( ) ( )

ˆ( ) ( )  ( )

r

i i i

i

E z k N z k B u k

x k z k M y k

 










  

 



                       

(7)

 

where ( ) n pz k R 
 
is an auxiliary state vector, ˆ( ) n px k R 

 
is 

the estimate of ( ) n px k R  . E , ( ) ( )  n p n p
iN R     and 

( )  n p pM R    are the design parameters of the observer.

 
2.2 Residual generation 
The error estimation and the residual signal are defined as: 

ˆ( ) ( ) ( )e k x k x k                                                                   (8) 

ˆ( ) ( ( ) ( ))r k V y k y k                                                          (9) 

where V  is the residual weighting matrix. 

Definition:  

Given system (2) and a scalar 0  , the observer (7) is 

called H fault detection observer if it is asymptotically 

stable and the following inequality is satisfied: 

2( ) ( ) ( ) ( )T T
s sr k r k f k f k                                                  (10) 

The objective is to design an allowable observer (7) to 

maximize  , i.e., a sensitive fault observer. In the following, 

we determine the error dynamics equation. From the 

equations (6) and (7), we considered the following system: 

1

0

ˆ( ) ( 1) ( 1) ( )

ˆ( ) ( ) ( ) ( ) ( )     

r

i
i

i i i s i s

E ELC x k Ex k

A N MC x k N x k D N M x k

 



 

    

   



 

    (11) 

In order to determine the observer gains, we consider the 

following assumption:                      

0i i iN A N MC                                                                                                         

iD N M                                                                          (12) 

E E EMC                                                                                   

The error dynamics can be writing as follows: 

1

 ( 1) ( )  ( )
r

i i
i

E e k F e k 


   for 1,  ...,i r                   (13) 

We can easily show that the constraints (12) are checked with 

the following choice: 

0i
i

n

A
N

C I

 
 
 


 

                                                               (14) 

0

p

M
I

 
  
 

                                                                           (15) 

0nI
E

QC Q

 
 
 

                                                                    (16) 

where   pxpQ R
 
is a full-rank matrix, that is a parameter to 

determine. By taking account of (14)-(16), the error dynamics 

becomes: 

1

( 1) ( ) ( )
r

i i
i

e k S e k 


       for      1, ...,i r               (17) 

where 

 

1

1

1 1

00

0

in
i i

n

i

i

AI
S E N

C IQC Q

A

CA Q C Q





 

  
  

   

 
 
 

 
 


  

                                   (18) 

Remark:  

Therefore, the problem of the observer synthesis comes down 

to the determination of the matrix R
 

and the residual 

weighting matrix V such that simultaneously: 

    The observation error ( )e k aims asymptotically towards 

zero; 

    The residual ( )r k  provides good fault sensitivity.                      

We can write in this case: 

0( ) ( ( ) ( ))s sr k V C e k D f k                                             (19) 
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3. SYNTHESIS OF THE ROBUST 

FAULT OBSERVER 
In this section, we consider the robust residual problem ( )r k

 
via the fault ( )f k . To attain the objective, the H  

performance is used as measurement of the worst case fault 

sensitivity of the residual generator on the presence of a fault.      

Theorem: 

 The system (17) and (18) is asymptotically stable and 

guarantee the performance (10), if there exist matrices 1 0P   

, 2 0P  , matrices 1Z  , 2Z
 
and V  and a scalar 0   , such 

that the following LMI holds: 

2

2

1
2

1

2

2

2

2

0
2 ( , )

0 0

0
0

2 ( , )

0

T

T

i T T T T T
ik

c

T T
sk

f

A C Z C V C Z
G V V

P Z

I
D V

G V V

I

P



 
 
 
 
 
 
 
 
 
 
 
 
 



 


 

   

    
           

                                                                                       (20) 

where:  

1 1 2 2 2 1

T T T T T T T

i i i i i i iA PA A C PCA A C Z C C Z CA P     
  

(21) 

1

2

( , ) ( ) ( )

( , ) ( ) ( )

k k T k k T T T k
c c c c c

k k T k k T T T k
s s s s s s s

G V V V V V VC C V V

G V V V V V VD D V V

  

  
                   

 (22) 

The observer (7) is defined by (14)-(16) with  
1 1

2 2( )Q P Z 
.
 

Proof: 

The candidate Lyapunov function is defined as:  

( ) ( ) ( )T
a aV k e k Pe k ,  > 0P                                                (23) 

( 1) ( )

( 1)  ( 1) ( )  ( )T T
a a a a

V V k V k

e k P e k e k P e k

   

           
 

Thus,  

1

( 1) ( )  ( )

r

i i

i

e k S e k 



   

Then, 

1

( ) ( ) 

r
T T

i i i

i

V e S PS P e 



 
  

    

2

2

2
0 0

1

1

)

( ) ( ) ( ) ( )

    =( ( ) ( ) ( ) ( ) ( )) ( )

    =(( ) ( )

( ) ( ) ( )

 = ( ) ( )

T T
s s

T T
s s

T T T
s s s s s s

T T
i i i

i

T

i i
s si

J r k r k f k f k

r k r k f k f k V e V e

C e D f V V C e D f f f

e S PS P e V e

e e
J V e

f f







 

  













   
      
   

 

   

   

  






          

(24) (24)

 

With 0 0 0

2

( )T T T T T
i i s

i T T
s s

S PS P C V VC C V VD

I D V VD




 
 
 
 

  


  
 

Consequently, if 0i  , we can guarantee 0J  , that is, 

0 0 0

2
0

T T T T T
i i s

T T
s s

S PS P C V VC C V VD

I D V VD

 
 
 
 

 


 
                 

(25) 

Replacing 
1 1

0i
i

i

A
S

CA R C R 

 
 
 
 


  

  and supposing that 

1 2( , )P diag P P , we obtain: 

11

1
2 2

2

0 0

T T T T
si

T

T T
s s

C V VC C V VD

R P R P

I D V VD

 

 
 
 
 
 
 

  

  

  

                                                                                             (26) 

where 

1 1
1 2 2

1 1 2 2 2

1
1 2

T T T T
i

T T T T T T T
i i i i i ii

T T

A C P R C R P R

A P A A C P CA A C Z C C Z CA

P C R P R C

  

 

  

    

   

Applying the Schur complement theorem to the LMI (26) and 

by the following change of variables 

 1k k
s sV V D  and 1k k

cV V C  , we obtain: 

1

1

1

1
2 2

2

1

0
2 ( , )

0 0
0

2 ( , )

i T T
k

c

T

sk
f

C V
G V V

R P R P

I
VD

G V V

I



 

 
 
 
 
 
 
 
 
 
  
 

 


 



 

   

                                                                                       (27)  

                                                                                             (27) 

This LMI (27) can also be rewritten as follows: 
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1 1
2

1

2

2

1

1 1
2 2

1
2

0
2 ( , )

0 0

2 ( , )

0 0

0 0 0
0 0

0

i T T T T
ik

c

sk
f

T T T T

T

A C P R C V
G V V

P

I
VD

G V V

I

C R P R C C R P R

R P R





   

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 



 



 

   

 
 

  

                                                                                       (28)  

 (28) 

Applying Schur complement theorem and assuming that 
1

2 2Z P R , we can get the following LMI easily: 

2

2

1
2

1

2

2

2

2

0
2 ( , )

0 0

0
0

2 ( , )

0

T

T

i T T T T T
ik

c

T T
sk

f

A C Z C V C Z
G V V

P Z

I
D V

G V V

I

P



 
 
 
 
 
 
 
 
 
 
 
 
 



 


 

   

    

 

4. THE THREE TANK SYSTEM 
In this section, we present the laboratory system that will be 

used to test the proposed methodology. Its nonlinear model is 

also derived. 

4.1 Process description 
Consider the three tanks system shown in Fig 1[6]. The 

system is composed of three tanks with instrumentation and a 

deposit . Two pumps permit the water supply of tanks R1 and 

R2 by adjustment of the control inputs 
1u  and 

2u , 

respectively. These tanks R1 and R2 are also connected 

through a manual valve that makes possible to change the 

dynamics when desired. Two electronic valves EV1 and EV2 

are used to fill tank R3, and an electronic valve EV3 is used to 

evacuate the water. 

The water levels are measured with ultrasonic sensors in each 

tank. 

 

 

 

 

 

 

4.2 System modeling  
To illustrate the effectiveness of the sensitive fault observer, 

we consider a nonlinear model of the three tank system as 

follows: 

8
( 1) ( )( ( ( )) ( ) ( ))

1

x k A x k x k B u ki i i
i

   


            (29) 

The output of the system is: 

 ( ) ( ) ( )s sy k Cx k D f k    (32) 

where  ( ) ( ) ( ) ( )1 2 3
T

x k n k n k n k
 

The matrices Ai , Bi  and C  are  

2

1 0 01 1
0 1 01 2 2

11 1 2 3 3

T pe
A T pe

T p T p T pe e e





  

 
 
 
 
 



 



;   

1 0 01 1
0 1 02 2 2

11 1 2 2 3 3

T pe
A T pe

T p T p T pe e e





  

 
 
 
 
 



 



 ; 

 

1 0 01 1
0 1 03 2 2

11 1 2 2 3 3

T pe
A T pe

T p T p T pe e e





  

 
 
 
 
 



 



; 

 

1 0 01 1
0 1 04 2 2

11 1 2 2 3 3

T pe
A T pe

T p T p T pe e e





  

 
 
 
 
 



 



; 

1 0 01 1
0 1 05 2 2

11 1 2 2 3 3

T pe
A T pe

T p T p T pe e e





  

 
 
 
 
 



 



;  

 

1 0 01 1
0 1 06 2 2

11 1 2 2 3 3

T pe
A T pe

T p T p T pe e e





  

 
 
 
 
 



 



;   

 

1 0 01 1
0 1 08 2 2

11 1 2 2 3 3

T pe
A T pe

T p T p T pe e e





  

 
 
 
 
 



 



 

0

0

0 0

11

22
B

p

p

 
 
 
 
 
 

   ;  

1 0 0

0 1 0

0 0 1

C

 
 
 
 
 

    

with  

1/ ( max) ;  1 1

1/ ( max) ;  2 2

1/ ( max) ;3 3
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5. SIMULATED AND EXPERIMENTAL 

RESULTS 
Some simulation results are shown in Figures 2-3 via the 

proposed sensitive fault observer. First, the estimations of the 

states are plotted in Fig 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3 shows the sensor faults and their estimates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some experimental results are shown in Fig 4-5. Fig 4 

compares the evolution of the levels in the three tanks with 

their estimations: it can be seen that the observer provides 

adequate estimation of the states, even in the presence of 

faults (presented in Fig 5).  
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Fig 2: Evolution of the tanks levels and their estimates 
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Fig 3: Evolution of the faults and their estimation  

 

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

 k samples 

 f
s
(c

m
) 

 

 

level fs1(k)

Estimate fse1(k)



International Journal of Computer Applications (0975 – 8887) 

Volume 44– No18, April 2012 

6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

In summary, by examining the trajectories presented in Fig 2-

5, we can confirm that the observer sensitive to the fault gives 

a good performance. The proposed method supplies adequate 

estimations of the state of the system and the faults sensors. 

The obtained results show the efficiency of the proposed 

approach. 

6. CONCLUSION 
In this paper, the design of an H  fault detection observer for 

Takagi-Sugeno discrete-time systems is investigated. This 

approach allows ensuring the sensitivity via the sensor faults, 

by using a descriptor systems technique. Sufficient conditions 

for the existence of a robust observer are expressed in terms 

of Linear Matrix Inequalities (LMI), by using a quadratic 

Lyapunov function. Indeed, the design condition ensures the 

convergence of the observer, guaranteeing an H  

performance. 

Finally, we have applied the proposed approach on a 

laboratory plant (a three tanks system). The simulation and 

experimental results show that the proposed observer gives 

good estimates for the system states and the sensor faults. 

Thus, we can confirm the effectiveness of the proposed 

method. 
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