
International Journal of Computer Applications (0975 – 8887)

Volume 44– No15, April 2012

28

Web Search Result Clustering using Heuristic Search
and Latent Semantic Indexing

Mansaf Alam

Dept of Computer Science
Jamia Millia Islamia

New Delhi, India

Kishwar Sadaf

Dept of Computer Science
Jamia Millia Islamia

New Delhi, India

ABSTRACT
Giving user a simple and uncomplicated web search result

representation is an active area of Information Retrieval

research. Traditional search engines use the hyperlink

structure of the web to retrieve documents or pages and give

them in a ranked fashion to the user. In this paper, we propose

a technique for grouping web search results into meaningful

clusters. The proposed method performs heuristic search on

the query result graph to prune undesired edges to form

cluster and carries out Latent Semantic Indexing within these

clusters to make them refined, meaningful, and relevant to the

query.

General Terms

Document Clustering, Heuristic Search, Semantic Similarity,

LSI et al.

Keywords

Web search, clustering, heuristic search, LSI, web graph.

1. INTRODUCTION
The information available on the web is unstructured,

disorganized, dynamic and heterogeneous in nature. Moreover

the process of retrieval is highly affected by the ill formed

query put up by the average user. Today’s search engines

return too many results which are not necessarily relevant to

the user’s need. Usually a user has to traverse several search

result pages to get to the desired result. A way of assisting

users in finding what they are looking for quickly is to group

the search results by topic. The user does not have to

reformulate the query, but can merely click on the topic most

accurately describing his or her specific information need.

This grouping of result is called Clustering. More specifically,

it is a process of grouping similar documents into clusters so

that documents of one cluster are different from the

documents of other clusters. Web search result clustering has

been the focus of IR community since the emergence of web

search engine. Therefore numerous works has been done in

this area. The Scatter/Gather system by Cutting et al [1] is one

of the pioneer works and conceptual father of all web search

result clustering systems. It’s based on two clustering methods

namely Buckshot and Fractionation. There are many web

clustering engines available on the web (Carrot2, Vivisimo,

SnakeT, Grouper etc) which give the search results in forms

of clusters. The main drawback of many web clustering

engines is that they take into account only the topical

similarity between documents that are returned by the search

engine. A common technique used by search result clustering

engines is to cluster so-called document snippets rather than

entire documents. Snippets are the small paragraphs often

displayed along with web search results to give the user a hint

of the document contents. A web search result clustering

engine takes the result i.e., returned by the search engine as

input and performs clustering and labeling on that result. They

are usually seen as complementary rather than alternative to

the search engine [2]. The main use for web search result

clustering is not to improve the actual ranking, but to give the

user a quick overview of the results. Users want whole picture

of their search result. Having divided the result set into

clusters, the user can quickly narrow down his search further

by selecting a cluster. An important text-based clustering,

Suffix Tree Clustering (STC), is based on the Suffix Tree

Document (STD) model which was proposed by Zamir et al

[3]. The similarity between documents is based on matching

phrases rather than on single words only. A phrase in this

context is an ordered sequence of one or more words. The

STC algorithm focuses on clustering document snippets

returned by the search engine, faster than standard data

mining approaches. They build Grouper – a clustering

interface to the HuskySearch meta-search engine, which uses

STC as its clustering algorithm. There are numerous works

which have been derived from STC algorithm [4, 5, & 6]. Yao

et al [7] present a token-based web snippet clustering. A

snippet is composed of several tokens. These token are used

as basic units for clustering. Sha et al [8] propose a web

search result clustering based on lexical graph. Authors show

that lexical graph structure is suitable in finding the word

relationship and synonyms. The search result is partitioned

according to the graph where the large degree node becomes

the center of the cluster. Orthogonal clustering can also be

applied in web search clustering [6]. The authors propose a

Semantic, Hierarchical, Online Clustering (SHOC) approach

to cluster web search result. The approach consists of three

phases: Data collection and cleaning, Feature extraction &

Identifying and organizing clusters. Kummamuru et al [9]

notice that monothetic document clustering algorithm is best

suited for web search result summarization and browsing of

the search result. The proposed technique works by defining

an optimality criterion and progressively selecting new

concepts from a set of candidates at each level of the

hierarchy. The selection process attempts to maximize

coverage (defined as the number of documents covered by a

concept) and maintain distinctiveness between the candidate

concept and other concepts on the same branch of the

hierarchy.

Zeng et al [10] propose a web search clustering technique

wherein phrases from snippets are extracted and ranked to

form cluster labels. The documents are assigned to relevant

clusters labels to form initial candidate clusters and then these

candidate clusters are merged to form final clusters.

The paper is organized as follows. In section 2, related works

are introduced. Some important methods are identified in

section 3. In section 4, proposed approach is explained.

Finally we derive the conclusion in section 5. Page, node and

document are used interchangeably throughout the paper.

International Journal of Computer Applications (0975 – 8887)

Volume 44– No15, April 2012

29

2. RELATED WORK
The web search result clustering has been investigated in a

number of earlier works starting from Scatter/Gather system.

Some of them are [11, 12]. The problem of clustering web

search result using web graph and heuristic search is quite

new to the area of IR. As far as we know, Bekkerman et al

[13] is the only work based on heuristic search in web graph.

Our proposed method makes use of this work. Mecca et al

[14] use Singular Value Decomposition (SVD) on

documents returned by the search engine as a whole

instead of document snippets. Our approach differs from

this work. We first cluster the documents and then apply LSI

(which uses SVD) to each cluster to make it more coherent

and refined.

3. BACKGROUND
Giving user a simple and uncomplicated web search result

representation is an active area of Information Retrieval

research. Search engine like Google uses the hyperlink

structure of the web to retrieve documents or pages and give

them in a ranked fashion to the user. This hyperlink structure

is basically a graph, where a node represents a page and a link

is characterized by an edge.

3.1 Link Analysis
Link analysis uses information about the structure of the web

graph to aid search. Using links, collection of documents or

pages can be viewed as a graph. The structure of this graph,

independent of content, can provide interesting information

about the similarity of documents and the structure of the

web. The pioneer works in the field of link-based web search

are [15] and [16]. They have inspired many other works. [16]

is based on hyperlink structure of the web pages. Authors of

Hits propose that there are two kinds of pages in search

results: Hub and Authority. Authorities are pages that are

recognized as providing valuable, significant, reliable, and

useful information on a topic. Hubs are index pages that

provide lots of useful links to relevant content pages (topic

Authorities) i.e. their role is advertise authority pages.

However, if the document collection consists of several

topics, authority and hub pages may only cover the most

popular subjects and leave out the less popular ones.

PageRank uses an alternative link-analysis method. It ranks

pages using authority. Its applied to the entire web rather than

a local neighborhood of pages surrounding the results of a

query. Many commercial search engines such as Google

(based on PageRank) and Yahoo are being used by people

across the globe, the relevancy of documents returned in the

search engine result still lacks. That’s why rigorous researches

are being carried out in the field of IR. The objective of a

search engine must be to satisfy the user’s information need in

a lucid way. Clustering techniques are undeniably useful in

this context. They have the potential to group similar

documents into cohesive factions.

Applying clustering on the hyperlink structure of web

documents is a promising area in IR research. Clustering has

become a vital technique for web search results grouping into

meaningful and significant clusters. There are many clustering

engines available, like Kartoo, Carrot, SnakeT etc. Further

research in this area is being done to make information

retrieval more relevant. Leuski et al [17] propose a method

where ranking and clustering are combined. The approach

first traverses through the ranked list returned by the search

engine until a relevant document is found. This document is

then used as a cluster seed and clustering is performed on

unexamined documents. The result set returned by the search

engine preserves the essential properties of the entire

hyperlink structure used by search engine. Wang et al [18]

propose a web search result clustering which makes use of the

hyperlinks between the pages and employs the HITS

algorithm and k-means clustering. Many studies [19 & 20]

show that the web graph (the underlying hyperlinked

graphical structure of web documents) follows the power-law

distribution of degrees. This phenomenon has become a basic

web graph property. In [21], authors analyze a subset of the

web graph- web of Spain and observe that this subgraph

follows the power-law distribution same as the web graph.

Based on this web property, Bradic [22] shows that the

underlying graph of the search result is basically a subgraph

of the whole web graph and follows the same degree

distribution. He applies graph partitioning method using

random walk on this subgraph to form clusters.

3.2 Heuristic Search
Heuristic Search is an Artificial Intelligence searching

technique that applies heuristics. Heuristic is a rule of thumb.

It exploits additional knowledge about the problem that helps

direct search to more promising paths. Heuristics help to

reduce the number of alternatives from an exponential number

to a polynomial number.

Heuristics can play a major role in searching optimal paths in

the web search result graph exponential nature of the web.

Bekkerman et al [13] propose a multiagent, and bidirectional

based heuristic search in the web graph. They apply beam

search in the search result graph in parallel to traditional

topical clustering method on the clusters so formed. Hybrid

approach like [18] and [13] has not been used in its full

potential. It may prove costly in term of time but the resultant

clusters will be topologically and topically similar.

All the methods mentioned above only consider lexical

similarity between documents. That means if a document

doesn’t have lexical words same as documents in a cluster yet

having same meaning is not welcome to the cluster. The

method Latent Semantic Indexing (LSI) overcomes this

problem. It groups words that are semantically same. Our

proposed method uses this technique.

3.3 Latent Semantic Indexing
The Latent Semantic Indexing (LSI) is the machine-learning

technique that identifies, represents, and compares concepts

existing within a collection of documents or data. Latent

Semantic Indexing [23], also known as Latent Semantic

Analyses (LSA) means analyzing documents to find the

underlying meaning of those documents. LSI is a pure

mathematical method. Although the LSI algorithm doesn't

understand anything about what the words mean, the patterns

it detects can make it seem surprisingly intelligent.

LSI arose from the problem of how to find relevant

documents out of million ones from user query words. The

fundamental difficulty arises when we compare words to find

relevant documents, because what we really want to do is

compare the meanings or concepts behind the words. English

language in general, is very amusing mostly because of

synonymous and polysemous words. Search engines cannot

assume the exact meaning of the synonymous or polysemous

query words. LSI attempts to solve this problem by mapping

both words and documents into a "concept" space, with

“latent” semantic dimensions and doing the comparison in this

space. The latent semantic space that we project query and

documents into has fewer dimensions than the original space

(which has as many dimensions as terms). LSI is thus a

International Journal of Computer Applications (0975 – 8887)

Volume 44– No15, April 2012

30

method for dimensionality reduction. A dimensionality

reduction technique takes a set of objects that exist in a high-

dimensional space and represents them in a low-dimensional

space, often in a two-dimensional or three-dimensional space

for the purpose of visualization. Latent semantic indexing

applies a particular mathematical technique, called Singular

Value Decomposition or SVD, to a word-by-document

matrix. SVD project an n-dimensional space onto a k-

dimensional space where n ≫k. In our application (term-

document matrices), n is the number of word types in the

result set. The projection transforms a document's vector in n-

dimensional word space into a vector in the k-dimensional

reduced space.

The SVD is computed by decomposing the word-by-

document matrix 𝐴𝑡×𝑑 into product of three matrices, 𝑇𝑡×𝑑 ,
𝑆𝑛×𝑛 and 𝐷𝑑×𝑛 :

 𝐴𝑡×𝑑 = 𝑇𝑡×𝑑 𝑆𝑛×𝑛 𝐷𝑑×𝑛
𝑇

where t is the number of terms or words in the document set,

d is the number of documents, 𝑛 = 𝑚𝑖𝑛 𝑡, 𝑑 , T and D have

orthonormal columns, i.e. 𝑇𝑇𝑇 = 𝐷𝑇𝐷 = 𝐼, and 𝑟𝑎𝑛𝑘 𝐴 =
𝑟, singular values on the diagonal of the matrix 𝑆 =
𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝜎1, 𝜎2, ⋯𝜎𝑛 . 𝜎𝑖 = 0 for 1 ≤ 𝑖 ≤ 𝑟, and 𝜎𝑗 = 0

for 𝑗 ≥ 𝑟 + 1 [24].

SVD can be viewed as a method for revolving the axes of the

n-dimensional space such a way that the first axis runs along

the direction of largest variation among the documents; the

second dimension runs along the direction with the second

largest variation and so forth. The T matrix gives us the

coordinates of each word on our “concept” space, the DT

matrix gives us the coordinates of each document in our

“concept” space, and the S matrix of singular values gives us

a clue as to how many dimensions or “concepts” we need to

include. By truncating the matrices T, DT and S to their first

k< n rows, we get the matrices 𝑻𝒕×𝒌, 𝑺𝒌×𝒌 and 𝑫𝒅×𝒌
𝑻.

Their product 𝑨𝒕×𝒌

𝐴𝑡×𝑘 = 𝑇𝑡×𝑘 𝑆𝑘×𝑘 𝐷𝑑×𝑘

𝑇

is the best projection of original matrix A into a k-dimensional

space. Choosing the number of dimensions (k) for A is an

interesting problem. A small k can remove much of the noise,

but too few dimensions may lose important information. The

parameter k should be large enough to allow fitting the

characteristics of the data and small enough to filter out the

non-relevant representational details. LSI works well with a

relatively small number of dimensions (k) [25]. The query is

also represented as a vector in a k-dimensional space

𝑞 = 𝑞𝑇 𝑇𝑘×𝑘 𝑆−1

𝑘×𝑘

where q is the vector of words in the users query, multiplied

by the appropriate term weights. The sum of these k-

dimensional terms vectors is reflected by the term 𝒒𝑻 𝑻𝒌×𝒌 in

the above equation, and the right multiplication by

𝑺−𝟏
𝒌×𝒌 differentially weights the separate dimensions. Thus,

the query vector is located at the weighted sum of its

constituent term vectors. This query vector is then compared

to all documents in the dataset to determine the proximity

between query and documents.

4. PROPOSED METHOD
In this paper, we propose a method for clustering web search

result using heuristic search and LSI. This is the first

application of LSI for clustering the web search result

involving heuristic search as far as we know. Our goal is to

present a cluster in a list form where tightly semantically

related pages are near to each other. We are not concerned

with the effectiveness of the search engine, but the way the

result is presented. Search engine like Google takes many

factors into consideration other than hyperlink like

determining the popularity of the page, the position and size

of the search terms within the page, and the proximity of the

search terms to one another on the page. But still many a

times a user has to traverse through several search engine

pages to get to the relevant page, which is quite cumbersome

and a novice user seldom traverse to fourth or fifth page of the

search result. We need a system which identifies the user

information need and give the same on the first page of result.

Our method tries to do that by combining heuristic search and

LSI. Much about LSI and heuristic search is given above.

First, we use heuristic search to form clusters. Bekkerman et

al [13] is the only work so far, as we know, that employs

heuristic search on the web graph. We use this idea of

heuristic search only in pruning the undesired links of web

graph that is preserved in the search result to form clusters.

Initially each node of the result set web graph is assigned an

agent and each node is assigned to a singleton cluster. Each

agent maintains a list which refers to all its connected nodes.

Each agent selects a seeker node from the list which is most

promising. Initially the source node is the seeker node. At

each iteration, an agent selects a seeker node to find its

connected nodes and add them to the list. This selection of

seeker node is made using heuristic: find a node with high

number of links. If a node has many links, implies that there

are many edges between nodes. Clusters in a graph can be

identified by high number of edges within and less number of

edges between them. Unlike Bekkerman’s heuristic, we select

a node to be seeker if it would lead to more connected nodes.

After that the lists obtained by agents are intersected. If a

common node is found in two lists, we merge the clusters that

their source nodes belong to. In this way we get pages that are

topologically similar. To get coherent, refined and meaningful

clusters with features more related to the query, we use LSI

which transforms all the pages or documents in a cluster, into

LSI feature vectors. The query is also represented as a vector

in a k-dimensional space. The query vector can then be

compared to all existing document feature vectors in a cluster,

and the documents are ranked by their similarity (nearness) to

the query. One common measure of similarity is the cosine

between the query vector and document vector. We would use

this method. This comparison of query with all the document

vectors in all clusters will be done parallel. The document

which has the highest similarity with the query is positioned

first in the cluster list, since query is the only clue to the user

information need. Other documents are placed according to

their similarity with the query, in the list, in decreasing order.

The cluster with the highest number of members is offered on

the first page of the Clustering system.

We describe our method step-by-step as follows:

Step 1: Parse the search result and form a hyperlink graph.

Step 2: Assign an agent to each node of the graph.

Step 3: Each agent maintains a list of connected nodes.

Initially the list contains the source node or page. Each agent

International Journal of Computer Applications (0975 – 8887)

Volume 44– No15, April 2012

31

selects a promising node “Seeker node”, which, at each

iteration is to be searched for more connected nodes. Initially

the source node is the seeker node. Also each node is assigned

to a singleton cluster.

Step 4: At each Iteration, an agent renews the list by selecting

a seeker node using heuristic: find a node with high number of

links. If a node has many links, implies that there are many

edges between nodes. Clusters in a graph can be identified by

high number of edges within and less number of edges

between them.

Step 5: After that, all the lists obtained by each agent are

intersected. If a common node found for two source nodes, the

clusters they belong to, are merged. This step continues for

predefined number of iterations. At the end of this step, we

get clusters that are topologically similar.

Step 6: Extract the contents of nodes of each cluster and

preprocess them. Preprocessing involves stop-word removal,

tokenization, stemming etc.

Step 7: For every document set in a cluster, build a term-

document matrix.

Step 8: Compute SVD for each cluster.

Step 9: Truncate SVD into reduced-K LSI space.

Step 10: Map the query to reduced K-space.

Step 11: Determine documents proximity with query using

cosine method for each cluster.

Step 12: The document with the highest similarity with the

query is positioned first in the cluster list. The cluster with the

highest number of members is offered as expanded on the first

page of the Clustering system.

On the basis of above defined steps, we describe our proposed

method algorithmically as follows:

Search Result Acquisition

 Form graph of the search result using hyperlink.

 Let 𝑃 = 𝑝1, 𝑝2 ⋯ , 𝑝𝑛 , nodes of the graph

Assignment of agents to each node of the graph

 For each node 𝑝𝑖 ∈ 𝑃

 Assign agent 𝑎𝑖 𝑡𝑜 𝑝𝑖 : 𝑎𝑖 𝑝𝑖

 Initialize agent𝑎𝑖’s seeker_node 𝑆 𝑎𝑖 ← 𝑝𝑖

 Initialize agent𝑎𝑖’s list_of_nodes 𝐿𝑗 𝑎𝑖

Search Phase

 For each node 𝑝𝑖 ∈ 𝑃

 Expand list_of_node L

𝐿𝑗 𝑎𝑖 ← connected node 𝑆𝑗 𝑎𝑖

 Filter 𝐿𝑗 𝑎𝑖 for new seeker using heuristics

 Update seeker 𝑆𝑗 𝑎𝑖

 Cluster Construction phase

 Initialize singleton Cluster 𝐶𝑖 ← 𝑝𝑖

 Construct all pairs 𝑝𝑖 , 𝑝𝑖′ 𝑠. 𝑡. 𝐿𝑗 𝑎𝑖 ∩ 𝐿𝑗 𝑎𝑖′ = ∅

 For each node pair 𝑝𝑖 , 𝑝𝑖′

 If 𝑝𝑖 ∈ 𝐶𝑚 ∩ 𝑝𝑖′ ∈ 𝐶𝑚′ ∩ 𝐶𝑚 ≠ 𝐶𝑚′ then

 Merge 𝐶𝑚 and 𝐶𝑚′

 Cluster Refinement

 Let 𝑘 = LSI space

 Reform Query q as 𝑞 = 𝑞𝑇 𝑇𝑘×𝑘 𝑆−1
𝑘×𝑘

 For each cluster 𝑐𝑖 ∈ 𝐶 do

 For each node 𝑝𝑗 ∈ 𝑐𝑖 do

 Extract content of each node

 𝑑𝑗 ← 𝑝𝑗

 Preprocess 𝑑𝑗 and extract terms into T

 Construct term-document matrix 𝑀𝑖 |𝑇|×|𝑐𝑖 |

 Decompose 𝑀𝑖 using SVD

 Perform LSI by truncating SVD into k-LSI space

 Map q into k-LSI space

 Measure similarity between query vector and

document

𝑑𝑗 𝑐𝑜𝑠𝑖𝑛𝑒 𝑞

Positioning of Result

 For each document 𝑑𝑗 of the cluster

 Place document into the cluster list according to its

similarity with query q

Our main goal is to combine the powers of links and

clustering to give user relevant result in an effective format.

Our approach takes care of the topological as well as semantic

property of the documents. Semantic Similarity relates to

computing the similarity between concepts which are not

necessarily lexically similar. Pages with no to low “lexical”

similarity with query end up last in the ranked search result of

the search engine but that doesn’t make them less relevant to

the query. They may be conceptually similar to the query. LSI

is a method which retrieves documents based on concept

matching rather than index term matching. Matching based on

concept allows documents to be retrieved even though they

are not indexed by the query index terms. The advantage of

our approach is its usefulness as it takes into account the

whole document rather than just small snippets. A two or

three lines of snippet cannot provide the whole perspective of

the document. One of the drawbacks of ranked result system

International Journal of Computer Applications (0975 – 8887)

Volume 44– No15, April 2012

32

is the dependence of result on the lexical similarity between

user query and documents. Documents with significant

semantic similarity but less term-to-term similarity with query

fall deeper in the search result where users hardly take pains

to dig. Other web search clustering methods that exploit

document snippets that are returned by the search engines,

have only limited feature of documents and only lexical

similar terms of query. A document which has insignificant

lexical similarity but semantically similar with query fails to

become a member of a relevant cluster. Our method clearly

overcomes this limitation. Our method not only utilizes the

strong link structure of the web documents to create clusters

but also applies powerful technique LSI to claim semantic

similarity The computing overhead of using whole document

is diminished by the fastness of LSI.

5. CONCLUSION AND FUTURE WORK
A user wants to quickly locate his/her information need and

search engine result list seems endless to the user. Although

similar documents tend to link each other, the ranked result

doesn’t give a compact and precise result. Clustering can

solve this problem. It’s is an empowering tool that is yet to be

used in its full potential. Heuristic Search is well suited for the

domain of web documents since there are multiple links or

paths between documents and it can be used in pruning of

undesired links. It is advantageous to cluster documents in a

reduced dimension LSI space rather than term space, because

original term space is not a good representation of the

document collection as a whole. Two documents may be

semantically very close even if they do not share a particular

keyword, LSI does not require an exact match to return useful

results. Where a plain keyword search in term space will fail

if there is no exact match, LSI will often return relevant

documents that don't contain the keyword at all. For future

work, we are planning to implement this new approach on a

real system. It would be interesting to see the actual results.

Also we are planning to give the clusters meaningful labels so

that users can get to a particular cluster directly. Labeling is of

immense importance since a good and up to point label gives

the exact account of what a cluster holds.

6. REFERENCES
[1] Cutting, D.R., Kager, D.R, Pedersen, J. O., and Tukey,

J.W. 1992. Scatter/gather: a cluster-based approach to

browsing large document collections. The 15th annual

international ACM Sigir conference on Research and

development in information retrieval, pp.318-329.

[2] Carpenito, C., Osinski, S., Romano, G. and Weiss, D.

2009. A Survey of Web Clustering Engines. ACM

Computing Surveys, Vol. 41, No. 3, Article 17.

[3] Zamir O. and Etzioni, O. 1998. Web document

clustering: A feasibility demonstration. In Research and

Development in Information Retrieal ,1998, pp. 46-54.

[4] Branson, S. and Greenberg, A. 2009. Clustering Web

Search Results Using Suffix Tree Methods. Stanford

university.

[5] Janruang, J. and Guha, S. 2011. Semantic Suffix Tree

Clustering. First IRAST International Conference on

Data Engineering and Internet Technology (DEIT).

[6] Zhan, D. and Dong, Y. 2004. Semantic, Hierarchical,

Online Clustering of Web Search Results. Advanced

Web Technologies and Applications 6th Asia-Pacific

Web Conference, APWeb 2004, Hangzhou, China.

[7] Yao, T. and Li, J. 2006. A Token-based Online Web-

Snippet Clustering Approach based on Directed

Probability Graph. Second International Conference on

Semantics, Knowledge and Grid.

[8] Sha, Y. and Zhang, G. 2009. Web search result clustering

algorithm based on lexical graph. Journal Of

Computational Information Systems,Volume: 5, Pages:

283-290.

[9] Kummamuru, K., Lotlikar, R., Roy, S., Singal, K. and

Krishnapuram, R. 2004. A Hierarchical Monothetic

Document Clustering Algorithm for Summarization and

Browsing Search Results. In Proceedings of the 13th

international conference on World Wide Web.

[10] Zeng, H., He, Q., Chen, Z., Ma, W. and Ma, J. 2004.

Learning to Cluster Web Search Results. In Proceedings

of the 27th annual international ACM SIGIR conference

on Research and development in information.

[11] Hearst, M. A. and Pedersen, J.O. 1996. Reexamining the

cluster hypothesis: Scatter/gather on retrieval results.

SIGIR-96th ACM International Conference on Research

and Development in Information Retrieval pp. 76-84.

[12] Leouski, A. and Croft, W.B. 1996. An evaluation of

techniques for clustering search results. Technical Report

IR-76, University of Massachusetts, Amherst.

[13] Bekkerman, R., Zilberstein, S. and Allan, J. 2007. Web

Page Clustering using Heuristic Search in the Web

Graph. Proceedings of IJCAI-07, the 20th International

Joint Conference on Artificial Intelligence.

[14] Mecca, G., Raunich, S. and Pappalardo, A. 2007. A New

Algorithm for Clustering Search Result‖. Journal of Data

& Knowledge Engineering Volume 62 Issue 3,

September.

[15] Brin, S. and Page, L. 1998. The anatomy of a large-scale

hypertextual web search engine. In Proceedings of

WWW7, Brisbane, Australia.

[16] Kleinberg, J.M. 1998. Authoritative sources in a

hyperlinked environment. In proceedings of the 9th

ACM-SIAM Symposium on Discrete Algorithms

(SODA).

[17] Leuski, A. and Allan, J. 2000. Improving Interactive

Retrieval by Combining Ranked Lists and Clustering. In

Proceeding of RIAO, pp.665-681.

[18] Wang, Y. and Kitsuregawa, M. 2001. Link Based

Clustering of Web Search Results. In Proceedings of The

Second International Conference on Web-Age

Information Management (WAIM2001), Xi'An,

P.R.China, Springer-Verlag LNCS..

[19] Broder, A., Kumar, R., Maghoul, F., Raghavan, P.,

Rajagopalan, S., Stata, R., Tomkins, A. and Wiener,

J.2000. Graph structure in the web : Experiments and

model. Proceedings of the Ninth Conference on World

Wide Web, pp 309-320.

[20] Barabasi, A. and Albert, R. 1999. Emergence of Scaling

in Random Networks. Science 286 (509).

[21] Baeza-Yates, R., Castillo, C. and Lopez, V. 2005

Characteristics of the Web of Spain. Cybermetrics, Vol.

9, No. 1.

International Journal of Computer Applications (0975 – 8887)

Volume 44– No15, April 2012

33

[22] Bradic, A. 2009. Search Result Clustering via

Randomized Partitioning of Query-Induced Subgraphs.

Telfor Journal, Vol.1, No.1.

[23] Deerwester, S., Dumais, S.T., Furnas, G., Landauer, T.

and Harshman, R. 1990. Indexing by Latent Semantic

Analysis. Journal of the American Society for

Information Science, pp. 391-407.

[24] Rosario, B. 2000. Latent Semantic Indexing: An

overview. In Proceedings of Infosys, vol. 4.

[25] Berry, M.W., Dumais, S.T. and O’ Brien, G.W. 1995.

Using linear algebra for Intelligent Information

Retrieval. SIAM.

