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ABSTRACT 
Giving user a simple and uncomplicated web search result 

representation is an active area of Information Retrieval 

research. Traditional search engines use the hyperlink 

structure of the web to retrieve documents or pages and give 

them in a ranked fashion to the user. In this paper, we propose 

a technique for grouping web search results into meaningful 

clusters. The proposed method performs heuristic search on 

the query result graph to prune undesired edges to form 

cluster and carries out Latent Semantic Indexing within these 

clusters to make them refined, meaningful, and relevant to the 

query. 

General Terms 

Document Clustering, Heuristic Search, Semantic Similarity, 

LSI et al. 

Keywords 
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1. INTRODUCTION 
The information available on the web is unstructured, 

disorganized, dynamic and heterogeneous in nature. Moreover 

the process of retrieval is highly affected by the ill formed 

query put up by the average user. Today’s search engines 

return too many results which are not necessarily relevant to 

the user’s need. Usually a user has to traverse several search 

result pages to get to the desired result. A way of assisting 

users in finding what they are looking for quickly is to group 

the search results by topic. The user does not have to 

reformulate the query, but can merely click on the topic most 

accurately describing his or her specific information need. 

This grouping of result is called Clustering. More specifically, 

it is a process of grouping similar documents into clusters so 

that documents of one cluster are different from the 

documents of other clusters. Web search result clustering has 

been the focus of IR community since the emergence of web 

search engine. Therefore numerous works has been done in 

this area. The Scatter/Gather system by Cutting et al [1] is one 

of the pioneer works and conceptual father of all web search 

result clustering systems. It’s based on two clustering methods 

namely Buckshot and Fractionation. There are many web 

clustering engines available on the web (Carrot2, Vivisimo, 

SnakeT, Grouper etc) which give the search results in forms 

of clusters. The main drawback of many web clustering 

engines is that they take into account only the topical 

similarity between documents that are returned by the search 

engine. A common technique used by search result clustering 

engines is to cluster so-called document snippets rather than 

entire documents. Snippets are the small paragraphs often 

displayed along with web search results to give the user a hint 

of the document contents. A web search result clustering 

engine takes the result i.e., returned by the search engine as 

input and performs clustering and labeling on that result. They 

are usually seen as complementary rather than alternative to 

the search engine [2]. The main use for web search result 

clustering is not to improve the actual ranking, but to give the 

user a quick overview of the results. Users want whole picture 

of their search result. Having divided the result set into 

clusters, the user can quickly narrow down his search further 

by selecting a cluster. An important text-based clustering, 

Suffix Tree Clustering (STC), is based on the Suffix Tree 

Document (STD) model which was proposed by Zamir et al 

[3]. The similarity between documents is based on matching 

phrases rather than on single words only. A phrase in this 

context is an ordered sequence of one or more words. The 

STC algorithm focuses on clustering document snippets 

returned by the search engine, faster than standard data 

mining approaches. They build Grouper – a clustering 

interface to the HuskySearch meta-search engine, which uses 

STC as its clustering algorithm. There are numerous works 

which have been derived from STC algorithm [4, 5, & 6]. Yao 

et al [7] present a token-based web snippet clustering. A 

snippet is composed of several tokens. These token are used 

as basic units for clustering. Sha et al [8] propose a web 

search result clustering based on lexical graph. Authors show 

that lexical graph structure is suitable in finding the word 

relationship and synonyms. The search result is partitioned 

according to the graph where the large degree node becomes 

the center of the cluster. Orthogonal clustering can also be 

applied in web search clustering [6]. The authors propose a 

Semantic, Hierarchical, Online Clustering (SHOC) approach 

to cluster web search result. The approach consists of three 

phases: Data collection and cleaning, Feature extraction & 

Identifying and organizing clusters. Kummamuru et al [9] 

notice that monothetic document clustering algorithm is best 

suited for web search result summarization and browsing of 

the search result. The proposed technique works by defining 

an optimality criterion and progressively selecting new 

concepts from a set of candidates at each level of the 

hierarchy. The selection process attempts to maximize 

coverage (defined as the number of documents covered by a 

concept) and maintain distinctiveness between the candidate 

concept and other concepts on the same branch of the 

hierarchy. 

Zeng et al [10] propose a web search clustering technique 

wherein phrases from snippets are extracted and ranked to 

form cluster labels. The documents are assigned to relevant 

clusters labels to form initial candidate clusters and then these 

candidate clusters are merged to form final clusters.   

The paper is organized as follows. In section 2, related works 

are introduced. Some important methods are identified in 

section 3. In section 4, proposed approach is explained. 

Finally we derive the conclusion in section 5. Page, node and 

document are used interchangeably throughout the paper. 
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2. RELATED WORK 
The web search result clustering has been investigated in a 

number of earlier works starting from Scatter/Gather system. 

Some of them are [11, 12]. The problem of clustering web 

search result using web graph and heuristic search is quite 

new to the area of IR. As far as we know, Bekkerman et al 

[13] is the only work based on heuristic search in web graph. 

Our proposed method makes use of this work. Mecca et al 

[14] use  Singular  Value  Decomposition  (SVD)  on  

documents  returned  by  the  search  engine  as  a whole  

instead  of  document  snippets. Our approach differs from 

this work. We first cluster the documents and then apply LSI 

(which uses SVD) to each cluster to make it more coherent 

and refined. 

3. BACKGROUND 
Giving user a simple and uncomplicated web search result 

representation is an active area of Information Retrieval 

research. Search engine like Google uses the hyperlink 

structure of the web to retrieve documents or pages and give 

them in a ranked fashion to the user. This hyperlink structure 

is basically a graph, where a node represents a page and a link 

is characterized by an edge.  

3.1 Link Analysis 
Link analysis uses information about the structure of the web 

graph to aid search. Using links, collection of documents or 

pages can be viewed as a graph. The structure of this graph, 

independent of content, can provide interesting information 

about the similarity of documents and the structure of the 

web. The pioneer works in the field of link-based web search 

are [15] and [16]. They have inspired many other works. [16] 

is based on hyperlink structure of the web pages. Authors of 

Hits propose that there are two kinds of pages in search 

results: Hub and Authority. Authorities are pages that are 

recognized as providing valuable, significant, reliable, and 

useful information on a topic. Hubs are index pages that 

provide lots of useful links to relevant content pages (topic 

Authorities) i.e. their role is advertise authority pages. 

However, if the document collection consists of several 

topics, authority and hub pages may only cover the most 

popular subjects and leave out the less popular ones. 

PageRank uses an alternative link-analysis method. It ranks 

pages using authority. Its applied to the entire web rather than 

a local neighborhood of pages surrounding the results of a 

query. Many commercial search engines such as Google 

(based on PageRank) and Yahoo are being used by people 

across the globe, the relevancy of documents returned in the 

search engine result still lacks. That’s why rigorous researches 

are being carried out in the field of IR. The objective of a 

search engine must be to satisfy the user’s information need in 

a lucid way. Clustering techniques are undeniably useful in 

this context. They have the potential to group similar 

documents into cohesive factions. 

Applying clustering on the hyperlink structure of web 

documents is a promising area in IR research. Clustering has 

become a vital technique for web search results grouping into 

meaningful and significant clusters. There are many clustering 

engines available, like Kartoo, Carrot, SnakeT etc. Further 

research in this area is being done to make information 

retrieval more relevant. Leuski et al [17] propose a method 

where ranking and clustering are combined. The approach 

first traverses through the ranked list returned by the search 

engine until a relevant document is found. This document is 

then used as a cluster seed and clustering is performed on 

unexamined documents. The result set returned by the search 

engine preserves the essential properties of the entire 

hyperlink structure used by search engine. Wang et al [18] 

propose a web search result clustering which makes use of the 

hyperlinks between the pages and employs the HITS 

algorithm and k-means clustering. Many studies [19 & 20] 

show that the web graph (the underlying hyperlinked 

graphical structure of web documents) follows the power-law 

distribution of degrees. This phenomenon has become a basic 

web graph property. In [21], authors analyze a subset of the 

web graph- web of Spain and observe that this subgraph 

follows the power-law distribution same as the web graph. 

Based on this web property, Bradic [22] shows that the 

underlying graph of the search result is basically a subgraph 

of the whole web graph and follows the same degree 

distribution. He applies graph partitioning method using 

random walk on this subgraph to form clusters.  

3.2 Heuristic Search 
Heuristic Search is an Artificial Intelligence searching 

technique that applies heuristics. Heuristic is a rule of thumb. 

It exploits additional knowledge about the problem that helps 

direct search to more promising paths. Heuristics help to 

reduce the number of alternatives from an exponential number 

to a polynomial number.  

Heuristics can play a major role in searching optimal paths in 

the web search result graph exponential nature of the web. 

Bekkerman et al [13] propose a multiagent, and bidirectional 

based heuristic search in the web graph.  They apply beam 

search in the search result graph in parallel to traditional 

topical clustering method on the clusters so formed. Hybrid 

approach like [18] and [13] has not been used in its full 

potential. It may prove costly in term of time but the resultant 

clusters will be topologically and topically similar.  

All the methods mentioned above only consider lexical 

similarity between documents. That means if a document 

doesn’t have lexical words same as documents in a cluster yet 

having same meaning is not welcome to the cluster. The 

method Latent Semantic Indexing (LSI) overcomes this 

problem. It groups words that are semantically same. Our 

proposed method uses this technique. 

3.3 Latent Semantic Indexing 
The Latent Semantic Indexing (LSI) is the machine-learning 

technique that identifies, represents, and compares concepts 

existing within a collection of documents or data. Latent 

Semantic Indexing [23], also known as Latent Semantic 

Analyses (LSA) means analyzing documents to find the 

underlying meaning of those documents. LSI is a pure 

mathematical method. Although the LSI algorithm doesn't 

understand anything about what the words mean, the patterns 

it detects can make it seem surprisingly intelligent.   

LSI arose from the problem of how to find relevant 

documents out of million ones from user query words. The 

fundamental difficulty arises when we compare words to find 

relevant documents, because what we really want to do is 

compare the meanings or concepts behind the words. English 

language in general, is very amusing mostly because of 

synonymous and polysemous words. Search engines cannot 

assume the exact meaning of the synonymous or polysemous 

query words. LSI attempts to solve this problem by mapping 

both words and documents into a "concept" space, with 

“latent” semantic dimensions and doing the comparison in this 

space. The latent semantic space that we project query and 

documents into has fewer dimensions than the original space 

(which has as many dimensions as terms). LSI is thus a 
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method for dimensionality reduction. A dimensionality 

reduction technique takes a set of objects that exist in a high-

dimensional space and represents them in a low-dimensional 

space, often in a two-dimensional or three-dimensional space 

for the purpose of visualization. Latent semantic indexing 

applies a particular mathematical technique, called Singular 

Value Decomposition or SVD, to a word-by-document 

matrix. SVD project an n-dimensional space onto a k-

dimensional space where n ≫k. In our application (term-

document matrices), n is the number of word types in the 

result set. The projection transforms a document's vector in n-

dimensional word space into a vector in the k-dimensional 

reduced space.    

The SVD is computed by decomposing the word-by- 

document matrix 𝐴𝑡×𝑑  into product of three matrices, 𝑇𝑡×𝑑  , 
𝑆𝑛×𝑛  and 𝐷𝑑×𝑛 : 

     𝐴𝑡×𝑑  = 𝑇𝑡×𝑑   𝑆𝑛×𝑛   𝐷𝑑×𝑛 
𝑇  

where t is the number of terms or words in the document set,  

d is the number of documents, 𝑛 = 𝑚𝑖𝑛 𝑡, 𝑑 , T and  D have 

orthonormal columns, i.e. 𝑇𝑇𝑇 = 𝐷𝑇𝐷 = 𝐼, and 𝑟𝑎𝑛𝑘 𝐴 =
𝑟, singular values on the diagonal of the matrix 𝑆 =
𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝜎1,  𝜎2, ⋯𝜎𝑛 . 𝜎𝑖 = 0  for 1 ≤ 𝑖 ≤ 𝑟, and 𝜎𝑗 = 0 

for  𝑗 ≥ 𝑟 + 1 [24]. 

SVD can be viewed as a method for revolving the axes of the 

n-dimensional space such a way that the first axis runs along 

the direction of largest variation among the documents; the 

second dimension runs along the direction with the second  

largest variation and so forth. The T matrix gives us the 

coordinates of each word on our “concept” space, the DT 

matrix gives us the coordinates of each document in our 

“concept” space, and the S matrix of singular values gives us 

a clue as to how many dimensions or “concepts” we need to 

include. By truncating the matrices T, DT and S to their first 

k< n rows, we get the matrices   𝑻𝒕×𝒌,  𝑺𝒌×𝒌  and 𝑫𝒅×𝒌 
𝑻. 

Their product 𝑨𝒕×𝒌 

    
𝐴𝑡×𝑘 = 𝑇𝑡×𝑘  𝑆𝑘×𝑘   𝐷𝑑×𝑘 

𝑇 

is the best projection of original matrix A into a k-dimensional 

space. Choosing the number of dimensions (k) for A is an 

interesting problem. A small k can remove much of the noise, 

but too few dimensions may lose important information. The 

parameter k should be large enough to allow fitting the 

characteristics of the data and small enough to filter out the 

non-relevant representational details. LSI works well with a 

relatively small number of dimensions (k) [25]. The query is 

also represented as a vector in a k-dimensional space  

   
𝑞 = 𝑞𝑇  𝑇𝑘×𝑘  𝑆−1

𝑘×𝑘  

where q is the vector of words in the users query, multiplied 

by the appropriate term weights. The sum of these k-

dimensional terms vectors is reflected by the term 𝒒𝑻 𝑻𝒌×𝒌 in 

the above equation, and the right multiplication by 

𝑺−𝟏
𝒌×𝒌 differentially weights the separate dimensions. Thus, 

the query vector is located at the weighted sum of its 

constituent term vectors. This query vector is then compared 

to all documents in the dataset to determine the proximity 

between query and documents.   

4. PROPOSED METHOD 
In this paper, we propose a method for clustering web search 

result using heuristic search and LSI. This is the first 

application of LSI for clustering the web search result 

involving heuristic search as far as we know. Our goal is to 

present a cluster in a list form where tightly semantically 

related pages are near to each other. We are not concerned 

with the effectiveness of the search engine, but the way the 

result is presented. Search engine like Google takes many 

factors into consideration other than hyperlink like 

determining the popularity of the page, the position and size 

of the search terms within the page, and the proximity of the 

search terms to one another on the page. But still many a 

times a user has to traverse through several search engine 

pages to get to the relevant page, which is quite cumbersome 

and a novice user seldom traverse to fourth or fifth page of the 

search result. We need a system which identifies the user 

information need and give the same on the first page of result. 

Our method tries to do that by combining heuristic search and 

LSI. Much about LSI and heuristic search is given above. 

First, we use heuristic search to form clusters. Bekkerman et 

al [13] is the only work so far, as we know, that employs 

heuristic search on the web graph. We use this idea of 

heuristic search only in pruning the undesired links of web 

graph that is preserved in the search result to form clusters. 

Initially each node of the result set web graph is assigned an 

agent and each node is assigned to a singleton cluster.  Each 

agent maintains a list which refers to all its connected nodes. 

Each agent selects a seeker node from the list which is most 

promising. Initially the source node is the seeker node. At 

each iteration, an agent selects a seeker node to find its 

connected nodes and add them to the list. This selection of 

seeker node is made using heuristic: find a node with high 

number of links. If a node has many links, implies that there 

are many edges between nodes. Clusters in a graph can be 

identified by high number of edges within and less number of 

edges between them.  Unlike Bekkerman’s heuristic, we select 

a node to be seeker if it would lead to more connected nodes.  

After that the lists obtained by agents are intersected. If a 

common node is found in two lists, we merge the clusters that 

their source nodes belong to. In this way we get pages that are 

topologically similar. To get coherent, refined and meaningful 

clusters with features more related to the query, we use LSI 

which transforms all the pages or documents in a cluster, into 

LSI feature vectors.  The query is also represented as a vector 

in a k-dimensional space. The query vector can then be 

compared to all existing document feature vectors in a cluster, 

and the documents are ranked by their similarity (nearness) to 

the query. One common measure of similarity is the cosine 

between the query vector and document vector. We would use 

this method.  This comparison of query with all the document 

vectors in all clusters will be done parallel. The document 

which has the highest similarity with the query is positioned 

first in the cluster list, since query is the only clue to the user 

information need. Other documents are placed according to 

their similarity with the query, in the list, in decreasing order. 

The cluster with the highest number of members is offered on 

the first page of the Clustering system. 

We describe our method step-by-step as follows: 

Step 1: Parse the search result and form a hyperlink graph. 

Step 2: Assign an agent to each node of the graph. 

Step 3: Each agent maintains a list of connected nodes. 

Initially the list contains the source node or page. Each agent 
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selects a promising node “Seeker node”, which, at each 

iteration is to be searched for more connected nodes. Initially 

the source node is the seeker node. Also each node is assigned 

to a singleton cluster.  

Step 4: At each Iteration, an agent renews the list by selecting 

a seeker node using heuristic: find a node with high number of 

links. If a node has many links, implies that there are many 

edges between nodes. Clusters in a graph can be identified by 

high number of edges within and less number of edges 

between them.  

Step 5: After that, all the lists obtained by each agent are 

intersected. If a common node found for two source nodes, the 

clusters they belong to, are merged. This step continues for 

predefined number of iterations. At the end of this step, we 

get clusters that are topologically similar. 

Step 6: Extract the contents of nodes of each cluster and 

preprocess them. Preprocessing involves stop-word removal, 

tokenization, stemming etc. 

Step 7: For every document set in a cluster, build a term-

document matrix. 

Step 8: Compute SVD for each cluster. 

Step 9: Truncate SVD into reduced-K LSI space. 

Step 10: Map the query to reduced K-space. 

Step 11: Determine documents proximity with query using 

cosine method for each cluster. 

Step 12: The document with the highest similarity with the 

query is positioned first in the cluster list. The cluster with the 

highest number of members is offered as expanded on the first 

page of the Clustering system. 

On the basis of above defined steps, we describe our proposed 

method algorithmically as follows: 

Search Result Acquisition 

     Form graph of the search result using hyperlink.  

     Let 𝑃 =  𝑝1, 𝑝2  ⋯ , 𝑝𝑛 , nodes of the graph 

Assignment of agents to each node of the graph 

     For each node  𝑝𝑖  ∈ 𝑃 

 Assign agent 𝑎𝑖  𝑡𝑜 𝑝𝑖 : 𝑎𝑖  𝑝𝑖  

   Initialize agent𝑎𝑖’s seeker_node 𝑆 𝑎𝑖 ← 𝑝𝑖 

   Initialize agent𝑎𝑖’s list_of_nodes 𝐿𝑗   𝑎𝑖  

Search Phase 

      For each node 𝑝𝑖  ∈ 𝑃 

  Expand list_of_node L 

𝐿𝑗   𝑎𝑖 ← connected node 𝑆𝑗  𝑎𝑖  

                Filter 𝐿𝑗   𝑎𝑖  for new seeker using heuristics 

                Update seeker 𝑆𝑗  𝑎𝑖  

      Cluster Construction phase 

       Initialize singleton Cluster 𝐶𝑖 ← 𝑝𝑖  

       Construct all pairs 𝑝𝑖 , 𝑝𝑖′   𝑠. 𝑡.  𝐿𝑗  𝑎𝑖 ∩  𝐿𝑗  𝑎𝑖′ = ∅ 

       For each node pair  𝑝𝑖 , 𝑝𝑖′  

 If  𝑝𝑖 ∈ 𝐶𝑚  ∩  𝑝𝑖′ ∈ 𝐶𝑚′ ∩  𝐶𝑚 ≠ 𝐶𝑚′  then 

              Merge 𝐶𝑚  and 𝐶𝑚′  

 Cluster Refinement 

      Let 𝑘 = LSI space 

      Reform Query q as  𝑞 = 𝑞𝑇  𝑇𝑘×𝑘  𝑆−1
𝑘×𝑘  

      For each cluster 𝑐𝑖   ∈  𝐶 do 

 For each node 𝑝𝑗 ∈  𝑐𝑖  do 

    Extract content of each node 

  𝑑𝑗 ← 𝑝𝑗  

    Preprocess 𝑑𝑗  and extract terms into T 

    Construct term-document matrix 𝑀𝑖 |𝑇|×|𝑐𝑖 |  

    Decompose 𝑀𝑖  using SVD 

                   Perform LSI by truncating SVD into k-LSI space 

    Map q  into k-LSI space 

                   Measure similarity between query vector and          

document    

𝑑𝑗  𝑐𝑜𝑠𝑖𝑛𝑒 𝑞  

Positioning of Result 

     For each document 𝑑𝑗  of the cluster 

            Place document into the cluster list according to its             

similarity with query q  

Our main goal is to combine the powers of links and 

clustering to give user relevant result in an effective format. 

Our approach takes care of the topological as well as semantic 

property of the documents. Semantic Similarity relates to 

computing the similarity between concepts which are not 

necessarily lexically similar. Pages with no to low “lexical” 

similarity with query end up last in the ranked search result of 

the search engine but that doesn’t make them less relevant to 

the query. They may be conceptually similar to the query. LSI 

is a method which retrieves documents based on concept 

matching rather than index term matching. Matching based on 

concept allows documents to be retrieved even though they 

are not indexed by the query index terms. The advantage of 

our approach is its usefulness as it takes into account the 

whole document rather than just small snippets. A two or 

three lines of snippet cannot provide the whole perspective of 

the document. One of the drawbacks of ranked result system 
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is the dependence of result on the lexical similarity between 

user query and documents. Documents with significant 

semantic similarity but less term-to-term similarity with query 

fall deeper in the search result where users hardly take pains 

to dig. Other web search clustering methods that exploit 

document snippets that are returned by the search engines, 

have only limited feature of documents and only lexical 

similar terms of query. A document which has insignificant 

lexical similarity but semantically similar with query fails to 

become a member of a relevant cluster. Our method clearly 

overcomes this limitation. Our method not only utilizes the 

strong link structure of the web documents to create clusters 

but also applies powerful technique LSI to claim semantic 

similarity  The computing overhead of using whole document 

is diminished by the fastness of LSI.  

5. CONCLUSION AND FUTURE WORK 
A user wants to quickly locate his/her information need and 

search engine result list seems endless to the user. Although 

similar documents tend to link each other, the ranked result 

doesn’t give a compact and precise result.  Clustering can 

solve this problem. It’s is an empowering tool that is yet to be 

used in its full potential. Heuristic Search is well suited for the 

domain of web documents since there are multiple links or 

paths between documents and it can be used in pruning of 

undesired links. It is advantageous to cluster documents in a 

reduced dimension LSI space rather than term space, because 

original term space is not a good representation of the 

document collection as a whole. Two documents may be 

semantically very close even if they do not share a particular 

keyword, LSI does not require an exact match to return useful 

results. Where a plain keyword search in term space will fail 

if there is no exact match, LSI will often return relevant 

documents that don't contain the keyword at all. For future 

work, we are planning to implement this new approach on a 

real system. It would be interesting to see the actual results. 

Also we are planning to give the clusters meaningful labels so 

that users can get to a particular cluster directly. Labeling is of 

immense importance since a good and up to point label gives 

the exact account of what a cluster holds. 
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