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ABSTRACT 

In this paper, we develop a supply network model for a 

service facility system with perishable inventory (on hand) by 

considering a two dimensional stochastic process of the form 

(L, X) =  0));(),(( ttXtL  , where L (t) is the level of the 

on hand inventory and X (t) is the number of customers at 

time t. The inter-arrival time to the service station is assumed 

to be exponentially distributed with mean 1/λ. The service 

time for each customer is exponentially distributed with mean 

1/ µ. The maximum inventory level is S and the maximum 

capacity of the waiting space is N. The replenishment process 

is assumed to be (S-1, S) with a replenishment of only one 

unit at any level of the inventory. Lead time is exponentially 

distributed with parameter β. The items are replenished at a 

rate of β whose mean replenishment time is 1/β. Item in 

inventory is perishable when it’s utility drops to zero or the 

inventory item become worthless while in storage. Perishable 

of any item occurs at a rate of γ.  Once entered a queue, the 

customer may choose to leave the queue at a rate of α if they 

have not been served after a certain time (reneging). The 

steady state probability distributions for the system states are 

obtained. A numerical example is provided to illustrate the 

method described in the model. 
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1. INTRODUCTION 
The production-inventory systems or service-inventory 

systems can be described by queuing systems with inventory 

by considering the behavior of the customer in the queue and 

the perish nature of the product kept in stock. In a 

production/service-inventory model a queue may be formed at 

the service/production centre, because for such model each 

customer who succeeds to enter the system has a demand and 

satisfying each demand needs an on hand inventory and a 

process, where some amount of time is required for the 

process. 

Even in a pure inventory system where there is no production, 

items in inventory require some time for retrieval, preparation, 

packing, and loading. Hence, it is reasonable to assume that 

every inventory system consists of a pure inventory section 

and a service/production facility section that can be properly 

modeled by a queuing system. A production/service-inventory 

system is in connection with the integrated supply chain 

management. Using queuing system with inventory every 

segment in a supply chain can be described. Recently many 

researchers have been done on production-inventory systems. 

As an early contribution to this field, Sigman and Simchi-Levi 

applied approximation procedures to find performance 

descriptions for an M/G/1 queue with limited inventory. 

Berman, Kaplan and Shimshak (1993) [1] considered an 

inventory management system at a service facility which uses 

one item of inventory for each service provided by assuming 

that both demand and service rates are deterministic and 

constant and such queues are formed only during stock outs. 

They determined the optimal order quantity Q that minimizes 

the total cost rate. Berman and Kim (1999) [2] analyzed the 

situation in a stochastic environment where customers arrive 

at service facilities in a Poisson process and service times are 

exponentially distributed with mean inter-arrival times greater 

than the mean service time and each service require one item 

from inventory. A logically related model was studied by, He, 

Q-M, E.M. Jewes and Buzzacott, who analyzed a complete 

Markov production – inventory system, where demands arrive 

at a workshop and are processed one by one in order. Berman 

and Sapna (2000) [3] studied extensively an inventory control 

problem at a service facility system which uses one item of 

inventory for each service provided. 

 A continuous review perishable inventory system at service 

facilities was studied by Elango, (2002) [9]. The importance 

of inventory management for the quality of service of today’s 

service system is generally accepted and optimization of 

system parameters such as inventory level and service rate in 

order to maximize quality of service is therefore a vital factor. 

A few analytical models in this field have been developed up 

to now. He et al [12] derived optimal inventory policy for a 

make-to-order inventory-production system with Poisson 

arrival process of demands, exponentially distributed 

processing times and zero replenishment lead times of raw 

material. They used a Markov decision process approach to 

determine when and how much raw material should be 

ordered. Berman and Kim [4] considered a service system 

with an attached inventory, with Poisson customer arrival 

process, exponential service times and Erlang distribution of 

replenishment lead times. They formulated model as a 

Markov decision problem to characterize an optimal inventory 

policy as a monotonic threshold structure which minimizes 

system costs. Berman and Sapna [5] considered a similar 

model, with perishable products where replenishment is 

instantaneous and service times have general distribution. 

They derived optimal control of service rates which 

minimizes long-run average costs. As an extension of Berman 

and Kim [4], Berman and Kim [6] presented a similar model 

where revenue is generated upon the service. They found an 

optimal policy which maximizes the profit.  

For the last two decades, research on service facility 

systems with inventory has found much attention. 

Mathematical methods associated with service facility system 
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along with inventory are usually aggregation – disaggregation 

techniques or simulation or hybrid techniques. Analytical 

models are very rare. Schwarz and Daduna (2006) [20] have 

had a continuous review of M/M/1 queue with inventory 

along with back ordering in which the time between two 

successive orders follow an exponential distribution. Also the 

stationary distribution of the model has been processed in an 

explicit product form. Also Saffari & Haji (2009) [18] studied 

and applied the same procedure to a two-echelon supply 

chain. Later Saffari et al extended the above concept to 

several suppliers with lead time following a mixed 

exponential distribution.  
  In this article we consider a service facility system 

with perishable inventory for service completion in a queue 

having reneging behavior. The steady state probability 

distribution of the inventory level and queue size is obtained 

by using the Markov Decision process and the block transition 

matrix techniques. The content of the paper is presented as 

follows. Section 2 deals with the proposed model for service 

facility system and the notations used in the paper. The 

subsection of Section 2 deals with the analysis of the system 

and its solution procedure. In section 3 the equilibrium 

distribution of the system under consideration is discussed in 

detail. In section 4 a numerical example is provided to have a 

clear concept of the method analyzed. Section 5 provides a 

brief conclusion about the topic. 

2.  MODEL DESCRIPTION 
Consider a service facility system in which inventory is 

maintained to perform service.  The items are delivered to the 

demanding customers. The demand is for single item per 

customer. The maximum capacity of the inventory is S and 

the maximum number of customers allowed in the waiting 

space is N, i.e., an arriving customer who sees N customers 

already waiting in the system does not enter the system. The 

following assumptions are made:  

 The time arrival of customer to the service 

station is a Poisson process with 

parameter  (>0).  

 The service time for each customer 

follows negative exponential distribution 

with parameter µ (>0). 

 The replenishment process is (S-1, S) 

policy with exponential lead time having 

parameter β (>0). 

 The items in inventory are perishable at a 

rate of γ (>0) when its utility drops to zero 

or the inventory items will become 

worthless while in storage.  
 Once entered a queue, the customer may 

choose to leave the queue at a rate of α 

(>0) if their wait time is intolerable. 
 Once entered a queue, the customer may 

choose to leave the queue at a rate of α 

(>0) if their wait time become intolerable.  

2.1 Analysis 

2.1.1 Notations 
 SE ,,3,2,1,01   
 NE ,,2,1,02    

21 EEE   
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2.1.2 Steady state analysis 

 

 

                                                                                       

                                                                                    

 

               

 

 

 

 

Let L (t) denote the inventory level and X (t), the number of 

customers (waiting and being served) in the system, at time 

t+. From the assumptions made on the input and output 

processes, it can be verified that (L, X) =  0));(),(( ttXtL  

is a Markov process on the state space E. The infinitesimal 

generator of this process ErjqirjqiaA  ),(),,(,))),,,(((  

can be obtained using the following arguments: 

 

 The arrival of a customer makes a transition from  

(i, q) to (i, q + 1) with intensity of transition λ. 

 Completion of service makes one customer leave 

the system and decrease the inventory level by 1. 

Thus a transition takes place from (i, q) to (i-1, q-1) 

with intensity of transition µ. 

 Whenever an item in stock perishes, the transition 

takes place from (i, q) to (i-1, q) with intensity of 

transition γ. 

 Whenever a customer reneges from the system, the 

transition takes place from (i, q) to (i, q-1) with 

intensity of transition α.  

 If the number of customer is zero or one there is no 

reneging in the system. 

 Whenever the vendor orders for the system, the 

transition takes place from (i, q) to (i + 1, q) with 

intensity of transition β. 

 

    whereEjiErqrjqiaADefine ij 12 ,;,;,,, 
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The infinitesimal generator A can be written in terms of sub 
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3.  EQUILIBRIUM DISTRIBUTION 
The equilibrium distribution,  is the unique solution to the 

equations  Q=0 and  e=1, where Q is the transition rate 

matrix obtained in the steady state analysis and e is the 

column vector with all the components equal to 1. 

From  Q =0 we have, the following steady state equations 

using which we can find out the steady state probabilities 

 ),( qi where i = 0, 1, …, S and q = 0, 1, …, N respectively. 
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 Solving  e=1, and all the above equations from  Q =0, the 

steady state probabilities of the service facility system can be 

obtained. The equilibrium distribution of the state space (i, q) 

where i = 0, 1, 2 …, S; q=0, 1, 2... N is given by 
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4. NUMERICAL EXAMPLE  
Consider a service facility system with S=2, N=3 whose 

arrival and service rate are λ & µ respectively. The 

replenishment rate, the perishable rate and the service rate are 
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4.1 Transition matrix 
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and is given by 
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4.2   Equilibrium distribution 
The equilibrium distribution,   is obtained using the 

equations  Q=0 and  e=1, where Q is the block transition 

rate matrix given by A and e is the column vector with all the 

components equal to 1. 

 

From  Q =0 we have, 
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The stationary distribution vector can be found by the phase 

of the Markov Chain Reduction Principle (MCRP). The above 

equations were solved to find the equilibrium distribution. 

5. CONCLUSIONS 
In this work we analyzed a new single server queue with 

reneging accomplished by a service facility system having a 

perishable inventory. The proposed method for the steady 

state analysis and an equilibrium distribution employs the 

Markov Decision process with Markov Chain reduction 

principle using block transition matrix. In this work the 

replenishment is done using ((S-1, S) policy). Also as the 

stock level does not increase beyond the warehouse capacity, 

the need for costly emergency storage is eliminated and 

facilitates capacity planning at the system centre. This 

simplifies the system and reduces it logically equivalent to a 

queuing system. Future directions for research are wide open. 

However an exact optimal cost analysis of the service facility 

system is challenging. Another direction of research is the 

analysis and optimization of systems with general 

distributions of inter-arrival and processing times. 
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