
International Journal of Computer Applications (0975 – 8887)

Volume 44– No14, April 2012

39

New Paradigm for Software Reliability Estimation

Ritika Wason

PhD Scholar,
Dept. of Computer Science and

Engineering,
Sharda University,

P. Ahmed
Professor,

Dept. of Computer Science and
Engineering,

Sharda University,

M.Qasim Rafiq
Professor,

Dept. of Computer Engineering,
Aligarh Muslim

University,Aligarh

ABSTRACT

In common parlance, the traditional software reliability

estimation methods often rely on assumptions like statistical

distributions that are often dubious and unrealistic. This paper

analyzes the assumptions of traditional reliability estimation

methods and further evaluates the practical viability of the

predictions offered by these models in the current scenario.

We further propose a novel Finite Automata (FA) based

reliability model that implicitly scores over the traditional

models on many factors, most importantly due to the fact that

it is based on the realistic assumption that a software system

in execution is a Finite State Machine (FSM).

General Terms

Automata- Based Software, Software Reliability, Software

Reliability Growth Model (SRGM).

Keywords

Software Reliability, Software Reliability Growth Model

(SRGM), Finite-State Machine (FSM), Finite State Automata,

Automata-Based Software Reliability Model.

1. INTRODUCTION
The fundamental goal of all software design and engineering

is the production of dependable systems. Requirements

Elicitation, Software Design, Implementation, Software

Testing, Operation and Maintenance phases of any software

system are expected to aid in the same. During the above

software life cycle phases, software reliability is generally

estimated during the software testing phase as it involves

assimilating failure data that can be fitted to the mathematical

expression of the reliability model. This evaluation of the

correctness of the expected functionalities of the software,

results in software reliability estimates which can be defined

as the probability of failure-free software action for a

particular period of time in a specific environment.

Many different software reliability models have been

suggested for reliability prediction, estimation and

measurement of real-time software. However, posterior black-

box approaches remain the prevalent approaches for such

modeling as they are based on post-implementation data

regarding the interactions of the software with its operational

environment. The inaccuracy of the traditional approaches

does not require proof, as despite establishment of software

reliability as an important quality characteristic of software,

software failures continues to proliferate both in number and

effects. Hence, software reliability continues to haunt

developers even today. An effective software reliability

prediction, estimation and measurement model could play an

important role in managing the risks posed by unreliable

software systems [17]. The above realization sufficiently

justifies the need for an efficient and dependable software

reliability estimation process that should be supplemented

using different formal verification techniques like state-based

models, model checking [10], [4] or finite state machines

[15], [18],[21] which continue to be deployed in realization

of processes that claim to provide an accurate, efficient and

dependable reliability estimate.

Section 2 of this paper critically examines and evaluates the

practicality of the existing reliability estimation models and

processes. The evaluation further justifies the need for an

innovative approach for reliability estimation as proposed in

Section 3. Section 4 examines how attributes like intelligence

and self-learning can further strengthen the reliability

estimation model proposed in Section 3. Section 5 discusses

how the proposed model shall expand the scope of the

traditional reliability estimation models from simple reliability

measurement and quantification to thorough software

evolution through overall quality improvement.

2. SOFTWARE RELIABILITY:

LIMITATIONS AND CHALLENGES
Software Reliability modeling is largely influenced by

hardware reliability modeling which was well-established by

the time efforts for estimating software reliability started.

However, it is well-established that hardware reliability is an

incorrect foundation for software reliability as software is not

the same as hardware. Critiques [11], [12], [13] of software

reliability models analyzed and pointed out the unrealistic

assumptions of these models as early as late 1970s and early

1980s when the term software implied just a computer

program. However, this criticism was never given due

attention and reliability engineers and researchers continued

to churn out one reliability model after another based on the

same assumptions to determine the same set of parameters.

This ignorance of important details created the reliability

challenge of software we know of today. Conversely in

present times when the software engineering economics has

transformed and reliability of software systems is no longer a

negotiable option we can no longer afford to follow such

erroneous models and practices.

Software Reliability estimation became a dynamic research

domain since the early 1970s [24]. Since then, many diverse

reliability estimation models have been developed and

implemented for different commercial applications employing

different software systems deployed under varying operational

International Journal of Computer Applications (0975 – 8887)

Volume 44– No14, April 2012

40

environments. However, even after dozens of reliability

estimation models and decades of research the software

industry still continues to suffer what we would term as the

reliability challenge, due to which there still exists no single

known model that can be applied under all contexts or even a

model that can be repeatedly applied to the same software

under different operational environments.

In order to better evaluate the above the challenge, this section

critically examines the underlying assumptions of software

reliability and the different models used for its estimation.

Comparative research [11], [12], [13], [14] on traditional

reliability estimation models reveals that the cause for the so-

called reliability challenge is rooted in the dubious and

unrealistic assumptions that form the basis of all the

traditional models. To further support the claim, Table 1

below classifies some of the popular reliability estimation

models along with their underlying assumptions and

parameters used to predict system reliability.

A careful examination of the assumptions listed in Table 1

reveals that the cause for the inaccuracy of the predictions of

traditional reliability estimation models is mainly due to their

unrealistic nature and absence of mathematical

implementation. All traditional software reliability growth

models use system test data fitted to some distribution to

predict the number of defects remaining in the software.

However, real-time data was never actually fitted to these

distributions or the distributions were never actually

estimated. Further, the efficacy of each of these models is

directly related to their analytical ability which implies that

the number of residual defects predicted by the model should

be same as the actual number found in field use [23].

Conversely under real-time operation this is never the case

and hence the major reason for the inaccurate estimates by the

traditional models. Having understood the underlying cause of

the inaccuracy we now analyze the foundations for faulty

predictions by the traditional models. The term software

reliability quantifies our confidence in the ability of software

to provide acceptable levels of performance under a given

operational environment [25]. The inherent probabilistic

nature of the term itself is a source of headache for the

software designers and developers. Software performance

under a given operational environment can be influenced by a

large number of internal and environmental factors like

schedule pressure, unstructured development practices,

resource limitations, volatile and evolutionary user

requirements, interdependence among modules etc. All the

above factors can negatively impact software reliability

estimation and measurement. Further it also becomes difficult

to estimate whether the software being implemented is as

reliable as predicted or not until the software is actually

implemented. The above reliability estimation problem stems

from the fact that we generally estimate the reliability of a

software component during the testing phase on the

assumption that its behavior during real-time execution is

similar to the testing times when the failure data was actually

collected. However, a hard to ignore fact that overrules the

above assumption is that testing is always limited by the lack

of realistic inputs and hence this is never the case in real-life.

All software reliability models make their own set of

assumptions about testing and defect repair. However, many

of these assumptions are questionable in the current scenario

as they completely contrast the actual practice. Table 2 lists

some common assumptions of traditional models and

compares them with their corresponding real-time notions.

In times when software systems are a part and parcel of

human life, unreliability of software becomes unbearable.

Despite many different Software Reliability Growth Models

(SRGMs) and practices [1], [2], [7], [8], [9], [11], [16] fact

remains that software reliability still remains a dark grey area

of software engineering. Table 2 clarifies that the underlying

problem with all reliability estimation models is that all of

them suffer under their own unrealistic foundations and

assumptions like statistical distributions that are dubious

themselves. A major misinterpretation being that though all

models agree that reliability is the absence of failures, they

quantify reliability using some kind of failure data (brute

force). Also all reliability techniques can be classified as

either a priori technique (build the software right) or a

posteriori techniques (right the wrongs). Much of the current

practice today is in a posteriori techniques. We build software

that’s not very good and through brute force, debug it into

correctness [3]. By shifting some of the balance towards a

priori efforts; we can go a long way towards correcting some

of the most serious problems.

International Journal of Computer Applications (0975 – 8887)

Volume 44– No14, April 2012

41

Table 1: Classification of Traditional Reliability Mode

From the above discussion we can now conclude that all the

above factors converge to a common point, namely the need

for realistic modeling and accurate quantification of the

software development process [23].

Despite numerous reliability estimation models and decades

of ongoing reliability research all the current software

reliability literature is still inconclusive about the fact that

which models and techniques are best for reliability

estimation [23]. Hence the need of hour is the development a

strong theoretical automata-based reliability model that can be

mathematically verified and has its roots in state-based

approach.

The main reason for suggesting an automata-based reliability

model as the model for accurate reliability estimations and

S.

No

Category Class Example Assumptions Parameters

1.

Time-Domain

Models [8]

Basis: Observed

failure history used

to estimate residual

faults and fault-

detection time.

Practice: Model the

underlying failure

process of the

software under

consideration and

use the observed

failure history as a

guideline to

estimate the residual

number of faults in

the software.

Limitation:

Underestimate the

number of

remaining errors.

Time Between

Failure/

Deterministic

Models/

Homogeneous

Markov

Models

[8],[14],[25]

Jelinski- Moranda

De-eutrophication

Model (1972)

i. Fixed, unknown number of

independent, initial faults in

software.

ii. Instantaneous and perfect

repair process.

µ(t) = N(1-exp(-φt)

λ(t) = NΦexp(-Φt)

Goel-Okumoto

Imperfect

Debugging Model

(1978)

i. Independent times between

failures

ii. Equal probability of each

fault exposure

iii. Embedded faults

independent of each other

iv. Debugging and perfect fault

removal after each occurrence.

v. Allow for imperfect

debugging

µ(t) = (1/θ)[ln(λ0θT+1)]

λ(t) = Φ [N- p(i-1)]

Other Models Littlewood-

Verrall Bayesian

Model(1981)

i. Similar to Jelinski-Moranda

Model, only assumes that

different sized faults may

contribute unequally to failures.

ii. Larger Sized Faults detected

and fixed earlier.

Θ(i) = ti + ψ(i) / α

λ(t) = ω0e
-ω

1
t

Fault Count

Models/Non-

Homogeneous

Markov

Models

[8],[14],[25]

Goel-Okumoto

NHPP Model

i. Random number of faults in

software.

ii. Independent testing intervals.

iii. Homogeneous testing during

intervals

iv. Number of faults detected

per interval independent of each

other.

µ(t) = a(1-e–bt)

λ(t) = abe –bt

Musa’s Execution

Time Model

(1975)

i. Explicitly emphasizes the

dependence of hazard function

on execution time.

ii. Finite failures experienced in

infinite time.

 µ(t) = V0(1-exp(λ0t)/V0)

λ(t) = λ0exp(-λ0t)/ V0

2.

Data Domain

Models [8]

Basis: Reliability

estimate of a system

by exercising all

input combinations.

Practice:

Reliability

Estimation through

Sample data set.

Limitation: Full

input prediction

impossible.

Fault Seeding

Models

[8],[14],[25]

Mills

Hypergeometric

Model

i. Software products with

unknown number of faults

seeded with known number of

faults and tested.

ii. Estimation of actual number

of indigenous faults obtained

through ratio of discovered

seeded faults and discovered

actual faults.

Var (R) = (f+a) (s+b)/

(f+s+a+b)2 (f+s+a+b+1)

Input

Domain

Based Model

[8],[14],[25]

Nelson Model;

i. Random input testing.

ii. Reliability estimation

through ratio of discovered

seeded and actual faults.

µ(t) = E[N(t)] for all t>=0

 OR

MTBF=1/f Σ ti

International Journal of Computer Applications (0975 – 8887)

Volume 44– No14, April 2012

42

self-learning failure conditions is motivated by the fact that a

Finite State Machine can be considered as a mathematically

defined object that can provide structured and precise

understanding of what is going on in systems represented as

complex state machines. The major advantage of this formal

model for software system representation is the fact that any

system can be easily represented as a control flow graph

consisting of a number of states and transitions which may

further result in some particular states.

Table 2: Comparison of Key Assumptions of Software

Reliability Models versus Reality

S.

No

Assumption Reality

1. Immediate defect

repair.

Defects are not repaired

immediately.

2. Perfect repair

process.

Defect repair introduces new

defects. (imperfect debugging)

3. No new code is

introduced during

testing.

New code may be introduced

both during debugging as well

as extensions to the software.

4. Independent times

between failures.

The assumption is not

universally true as test cases

are not always chosen

randomly.

5. Testing is

representative of the

operational usage.

Software behavior during

testing is widely distinct from

software behavior during

actual operation.

6. Number of bugs in

the program is itself a

measure of

unreliability.

Program with more bugs in

relatively unexercised portions

of code will be more reliable

than a program with less,

frequently encountered bugs.

7. Equal probability of

each fault exposure.

Unequal probabilities of

different size fault occurrences.

8. Input profile

distribution is known.

Complete input profile

distribution cannot be known.

3. PROPOSED FRAMEWORK FOR

AUTOMATA-BASED RELIABILITY

MODEL
All software reliability growth models are approximations of

the real testing process, thus none of the models can be

regarded to be perfect [2]. The traditional reliability models

and their underlying assumptions as discussed in the previous

section are in no way exhaustive and complete. However, this

sample set is enough to establish that none of the current

software reliability estimation models can individually suffice

to provide the breakthrough that the field of software

reliability requires today. To accurately estimate the reliability

of critical business applications in the present day we need a

realistic, mathematically sound model of reliability

estimation. To realize such a model we first need to look for

alternate approaches for reliability estimation which can

replace the current black box approaches that form the basis

of all existing models.

A natural, realistic and mathematically sound replacement to

the prevalent black box approaches is the use of structured

models [2]. Reliability and availability of a software system

can easily be estimated using models of system structure

along with failure data regarding the same. The simple

philosophy that drives this proposed reliability measurement

model is the fact that if we know how the program behaves

for every possible input by identifying all the states that a

software can acquire based on user inputs, then the reliability

of the complete software can easily be estimated as the sum of

its component state reliabilities at any point of time during its

life cycle [5]. The above approach shall implicitly estimate

system reliability in an accurate fashion as it considers the

actual system structure of the software instead of failure data.

To realize the above reliability model we further suggest that

a novel Finite Automata (FA) based approach based on the

realistic assumption that a software system in execution is a

Finite State Machine (FSM) is the best choice. The suitability

of the proposed FSM approach is further established due to its

strong mathematical foundations in the theory of automata.

The proposed Finite Automata-based reliability estimation

model scores over the traditional models due to its inherent

characteristics. Firstly, the model is based on the realistic

assumption that a software system in execution is a Finite

State Machine (FSM). Secondly, the proposed model can be

realized as a state-space system that can further be enhanced

with efficient and well-established problem solving processes

required to handle modern, complex, real-time software

systems.

We thus hypothesize that a state-based approach for software

representation can be universally applied to software and all

its component parts. This mode of software representation

will help in easily tracing how a particular piece of code

changes the state of software computation and hence results in

correct or incorrect system state. To prove the validity of the

above hypothesis, we further propose the development of an

algorithm and a formal model that can help in guiding and

monitoring the design and implementation of a software to

control system reliability at any point in its life. The proposed

model will help realize an intelligent, self-learning software

reliability estimation model that can easily detect system error

state, register the particular state and the transition that led to

such a state in its memory and never repeat the transition that

leads to the particular error state.

To realize the above design we first propose that software

should be represented using state-based approach as suggested

by Hoare [20]. The basic idea behind the proposed model is

depicted through a small illustration in Figure 1, Each

software module/ block of software if represented as a group

of nodes called the Learning Automata. Each node in the

group marked as the Learning Automata should be achievable

from the initial node and may result in either the correct state

International Journal of Computer Applications (0975 – 8887)

Volume 44– No14, April 2012

43

(output node) or error state (error node). Further if each such

node is assigned a probability, then the reliability of the whole

cluster can be defined as the sum of probabilities of the

correct nodes.

Figure 1: Representation of a Software Block/ Component

/ Module as a set of distinct states

If every software system is represented as a combination of

such mutually interacting nodes, then the reliability of the

software can also be estimated through the individual

reliabilities of each of these groups.

To realize the proposed model we further outline the

component phases required for the same. To initiate, the

model shall monitor a software system by parsing it into its

component sub-systems which can further be represented as a

cluster of inter-connected nodes (State-based Software

Representation Phase) depicted in Figure 2. After

representation the framework should be able to compute all

possible independent paths through the system and also

accumulate knowledge regarding which transitions could lead

to undesirable failure states (Knowledge-Acquisition Phase).

Further, in its knowledge implementation phase the

framework should be able to utilize its accumulated

knowledge to ensure operationally reliable software at any

point of the software life cycle. The various phases discussed

above are depicted in Figure 2 below:

Figure 2: Phases of the Automata-Based Software

Reliability Model

Subsequent algorithms for realization of the proposed model

are being worked out at the time of this writing and shall be

discussed in future work.

4. FUTURE ENHANCEMENTS
Section 3 lays down the basic framework for an automata-

based formal reliability model which besides being used for

simple reliability predictions can be further trained to perform

many other functions. The proposed FSM approach with its

strong mathematical foundations in the theory of automata is

an ideal choice for a generic, intelligent, self-learning

reliability model for complex, ever-evolving software

systems. The proposed reliability model can further be

extended to function as an intelligent, self-learning and self-

correcting model that can dynamically handle failure

conditions in real time. The proposed model has its basis in

network reliability estimation studies [5] and software

reliability estimation models for component-based software

systems [22].

The proposed model can also be realized as a state-space

system that can further be supported with efficient and well

established problem solving processes for embedding

intelligence and self-learning capabilities in the proposed

reliability model. These capabilities of the automata-based

reliability model should prove beneficial in reliability

estimation and forecasting of complex, ever-evolving

software systems in real-time. We further propose the

inculcation of self-healing properties in software system such

that whenever system arrives at an error state (actual output

differs from expected output) due to any operational or design

anomalies, the system should be capable enough to recall its

previous correct state and should retreat back to the same in

order to resume its operation.

II.

Knowledge

Acquisition

IV.

Reliability

Estimation

I. State-

Based

Software

Representati

on

III.

Knowledge

Implementa

tion

Initial Node

i

1/4

1/4

1/4

1/4

¼, Incorrect

State

¾,

Correct

State

International Journal of Computer Applications (0975 – 8887)

Volume 44– No14, April 2012

44

5. CONCLUSION
Inaccurate reliability estimations with the traditional

reliability models are no longer an acceptable option. In

current times when software rules the mankind and the globe,

demand for certified reliable software need to be met. In such

a competitive scenario a generic reliability model that can be

used for all software systems under all contexts is an essential

requirement. The study establishes the fact that traditional

software reliability estimation models fail to succeed under all

operational contexts due to their dubious and faulty

assumptions and misrepresentations of the reality. This paper

further ascertains that only a formal automata-based reliability

model can be successful in providing accurate reliability

estimates for our current and future complex, critical, real-

time software systems. However, to realize such a model we

require an effective monitoring as well as self-learning model

that can learn different states acquired by system components

during its life and then apply this knowledge for estimating

system reliability at any point on its life or for recovering

from a fault.

6. REFERENCES
[1] Faqih, K.M.S. 2009. What is Hampering the

Performance of Software Reliability Models? A

Literature Review. International MultiConference of

Engineers and Computer Scientists.

[2] Chung, D.W. 2007. Quantitative Reliability Assessment

for Safety Critical System Software Journal of Electrical

Engineering and Technology, Vol 2. No.3, 386-390.

[3] Sharma, V.S. and Trivedi, K.S. 2007. Quantifying

software performance, reliability and security: An

Architecture-Based Approach the Journal of Systems and

Software, vol 80, 493-509.

[4] Dai, Y.S., Marshall, T. and Guan, X. 2006. Autonomic

and Dependable Systems: Moving Towards a Model-

Driven Approach Journal of Computer Science.

[5] Bowles, J. 1989. A Model for Assessing Computer

Network Reliability, IEEE Proceedings.

[6] Chan, H. and Chieu, T. 2003. An approach to monitor

application states for self-managing (autonomic)

systems. 18th Annual ACM SIGPLAN Conf. on Object-

Oriented Programming, Systems, Languages and

Applications, 312-313.

[7] Dai, Y.S. , Xie M. and Poh, K.L. 2005. Markov renewal

models for correlated software failures of multiple types,

IEEE Trans. On Reliability, Vol. 54, 100-106.

[8] Gokhale, S.S., Marinos, P.N. and Trivedi, K.S. 1996.

Important Milestones in Software Reliability Modeling

Communications in Reliability, maintainability and

Serviceability, SAE International.

[9] Yang, B. , Li, X., Xie, M. and Tan, F. 2010. A generic

data-driven software reliability model with model mining

technique, Reliability Engineering and System Safety,

Vol. 95, 671-678.

[10] Huth, M. 2007. Some current topics in model checking,

Intl. Journal Software Tools Technology Transfer, Vol 9,

25-36.

[11] Littlewood, B. 1879. How to measure Software

Reliability and How Not To IEEE Transactions on

Reliability, Vol 28 (2), 103-110.

[12] Littlewood, B. 1975. MTBF is meaningless in software

reliability, (letter) IEEE Trans. Reliability, vol R-24, 82.

[13] Littlewood, B. 1980. Theories of Software Reliability:

How Good Are They and How Can They Be Improved?

IEEE Transactions on Software Engineering, SE 6, 489-

500.

[14] Goel, A.L. 1985. Software Reliability Models:

Assumptions, Limitations and Applicability, IEEE

Transactions on Software Engineering, vol SE11, No.

12, 1411-1423.

[15] Li, Juncao 2010. An Automata Theoretic Approach to

Hardware/Software Co verification, Doctoral Thesis,

Portland State University.

[16] Gokhale, S. Accurate Reliability Prediction Based on

Software Structure, http:// www.engr.uconn.edu/ ~ssg/

cse300/ 397-232.pdf.

[17] Fenton, N., Krause, P. and Neil, M. 2002. Software

Measurement: Uncertainty and Causal Modeling, IEEE

Software, vol. 19(4), 116-122.

[18] Carmely, T. 2010. Using Finite State Machines to Design

Software, Embedded Systems Design, vol.23, Ed.6.

[19] Ghosh et. al, D. 2007. Self-Healing Systems- Survey and

Synthesis Decision Support Systems, vol.42, 2164-2185.

[20] Hoare, C.A.R 1969. An Axiomatic Basis for Computer

Programming Communications of the ACM, vol 12(10),

576-583.

[21] T.S Chow, Testing software design modeled by finite

state machines, IEEE Transactions on Software

Engineering, 1978, vol.4 (3), pp. 178-187.

[22] Reusnner, R.H., Schmidt, H.W. and Poernomo, I.H.

2003. Reliability prediction for component-based

software architectures The Journal of Systems and

Software, vol. 66, 241-252.

[23] Wood, A. 1996. Software Reliability Growth Models in

TANDEM.

[24] Yadav, A. and Khan, R.A. 2009. Critical Review on

Software Reliability Models International Journal of

Recent Trends in Engineering, Vol 2(3), 114-116.

[25] Ramamoorthy, C.V. and Bastani, F.B. 1982. Software

Reliability-Status and Perspectives IEEE Transactions

on Software Engineering, Vol SE-8, No. 4, 354-369.

