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ABSTRACT 

Classification is a data mining technique used to predict group 

membership for data instances. Cost-sensitive classifier is 

relatively new field of research in the data mining and 

machine learning communities. They are basically used for 

classification tasks under the cost-based model, unlike the 

error-based model. Error based classifier AdaBoost is a 

simple algorithm that reweights the training instances to build 

multiple classifiers in training phase, without considering the 

cost of misclassification. Out of all generated classifiers in 

training, in classification, it collects the weighted votes from 

each and classifies the new sample (example) according to 

maximum votes collected. Intuitively, combining multiple 

models shall give more robust predictions than a single model 

under the situation where misclassification costs are 

considered.  Boosting has  been  shown  to  be an  effective 

method  of combining multiple  models in order  to  enhance  

the  predictive  accuracy  of a single model.  Thus, it is natural 

to think that boosting might also reduce the misclassification 

costs. All the cost-sensitive boosters are studied and five new 

extensions are proposed and their results are compared in this 

paper.  A few future extensions are notified. 
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1. INTRODUCTION 
Several classification models have been proposed over the 

years, e.g. neural networks, statistical models like 

linear/quadratic discriminates, nearest neighbors, Bayesian 

methods, Decision trees and Meta learners. Cost-sensitive 

classifiers are Meta learners to make its base classifier cost-

sensitive. Moreover,  many classifiers are studied under the 

error based frame work, which concentrates on improving the 

accuracy of the classifier. On the other hand, the cost of 

misclassification is also an important parameter to consider in 

many applications of classification, such as, credit card fraud 

detection, medical diagnosis etc. All the error-based classifier 

methods consider the classification errors as equally likely, 

which is not the case in all the real-time applications. For 

example, cost of classifying a credit card transaction as non-

fraudulent in case it is actually a fraudulent is quite higher 

than the cost of classifying a non-fraudulent transaction as a 

fraudulent. It is recommended that this misclassification costs 

has to be incorporated into classifier model while dealing with 

such cost-sensitive applications. 

Learning with Cost-Sensitive (CS) algorithms is an essential 

cluster because it considers cost of misclassification into 

account apart from basic measures like accuracy and speed. 

Two ways exists, to incorporate the misclassification cost. 

First, cost-sensitive classifiers, the algorithm which 

incorporate misclassification cost into its algorithmic steps. 

Second, incorporate cost into preprocessing step to make 

preprocessing stage cost-sensitive e.g. cost-sensitive attribute 

selection, can be used to incorporate the misclassification cost 

in pre-processing stage. In case of first type, e.g. AdaBoost 

and AdaCost, the Meta classifiers are extended to incorporate 

the cost of misclassification in weight update method. [7] 

Many ways have been proposed to incorporate the cost of 

misclassification. Among all these AdaBoost (Meta learner) 

and decision tree method has been proven easy to implement 

and efficient as compared to other methods. Reweighting [4] 

the training instances by incorporating the cost of 

misclassification help us to build the models while 

considering the cost of misclassification.  

Intuitively combining multiple models shall give more robust 

predictions than a single model under the situation where 

misclassification costs are considered.  Boosting has  been  

shown to be an effective method  of combining multiple  

models in order  to  enhance  the  predictive  accuracy  of a 

single model. Thus, it is natural to think that boosting might 

also reduce the misclassification costs. 

This paragraph will answer why exactly we require cost based 

models for classification and what is cost matrix with respect 

to ROC and lift? [17, 18] All error based learners are special 

case of cost base learners, being cost matrix input [0 1; 0 1]. 

Lift is used to measure the degree to which the predictions of 

a classification model over randomly-generated predictions. 

In classification model, Receiver Operating Characteristic 

(ROC) is another measure for comparing predicted and 

original target values. Comparing ROC with lift; lift only 

applies to binary classification and requires the description of 

a positive class. Decision making ability of a model can be 

insight by ROC. How prone is the model to accurately predict 

the negative or the positive class? Impact of the changes on 

probability threshold is measured by ROC. The probability 

threshold is the value (decision point), used by the model for 

classification. The default probability threshold for binary 

classification is 0.5. (In multi-class classification, the 

predicted class is the one predicted with the highest 

probability.) Discriminating ability of a binary classification 

model is measured by the area under the ROC curve (AUC) 

[20]. ROC can be used to find the probability thresholds that 

yield the highest overall accuracy or the highest per-class 
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accuracy. For example, this is sometimes used to bias decision 

of prediction over positive or negative class. Probability 

threshold of a model could easily be changed by a cost matrix. 

Moreover, Error based models do not answer which model out 

of many is most advantageous. This can be identified by cost 

based model (by considering the cost of prediction)[12]. 

This paper is organized in following sections. i.e. section 2 

explains all existing algorithms of the type cost-sensitive 

boosting. section 3 shows the proposed extensions. Section 4 

shows empirical evaluation of all the algorithms. At the end 

Section 5 concludes the paper.  

2. DIFFERENT COST-SENSITIVE 

BOOSTING ALGORITHMS 
K. Ting & Z. Zheng [9] depicted in their research that, 

Boosting trees has been proven an effective method of 

reducing the number of high cost errors as well as the total 

misclassification cost. Moreover, two boosting techniques to 

incorporate the misclassification cost. Both variant performs 

significantly better than its predecessor method of boosting 

i.e. C4.5C. [2] The important thing to note is that both 

algorithms incorporates the cost of misclassification in post-

processing or decision tree induction stage. They have nicely 

answered the question that why boosting is considered more 

powerful than other techniques in cost-sensitive classification. 

Intuitively, combining multiple models shall give more robust 

predictions than a single   model under the situation where 

misclassification costs are considered.  Boosting has  been  

shown  to  be an  effective method  of combining multiple  

models in order  to  enhance  the  predictive  accuracy  of a 

single model. Thus, it is natural to think that boosting might 

also reduce the misclassification costs of C4.5c. 

Boosting in simple words it is boosting with decision trees but 

as it utilizes the misclassification cost at minimum expected 

cost criteria while classification thus boosting becomes cost-

sensitive. 

Cost-Boosting weights are updated according to 

misclassification cost associated with each sample. All trees 

are cost-sensitive. Moreover, weight update rule is as follows: 

correctly  classified if weight old else                   

j class as assigned is samplehen          w          

 i, ofCost ication Misclassif   (x)W

(y)Nw / (x)nw   (x)W
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Weights are normalized to ensure total weight is N. 

The only difference is that Cost-Boosting incorporates the 

misclassification cost during induction of the trees. It also 

considers the minimum expected cost criteria of boosting 

while classification of an example. 

Discussion: Boosting technique with respect to cost-boosting 

performs slightly down the line. It is natural because the trees 

generated in cost-boosting are cost-sensitive (except the first 

one) so in terms of reduced misclassification cost and reduced 

number of high cost errors cost-boosting is better. The only 

disadvantage of the cost-boosting is that in case of change in 

misclassification cost all the trees have to be regenerated, as it 

incorporates the cost of misclassification in tree building 

stage. Further, K. Ting & Z. Zheng [10] added in to their later 

research viz. UBoost and Cost-Uboost. Moreover, it is 

important to notice that a slight variation in weight update rule 

of previous proposal has made UBoost and Cost-UBoost work 

better in terms of total misclassificaiton cost and number of 

high cost errors. 

Uboost (Boosting with unequal initial weights): this algorithm 

is similar to the AdaCost algorithm.  

w1 (n) = wj = Cj (N / ∑I Ci Ni) is the initial weight update 

rule. 

Misclassification cost incorporated only in first induction of 

decision tree and at classification stage. Initially unequal 

weights and minimum expected cost criteria makes this 

algorithm cost-sensitive. 

Cost-UBoost (UBoost with Cost-sensitive adaption): weights 

are updated according to misclassification cost associated 

with each sample. All boosted trees are cost-sensitive except 

the first one. It uses the weight initialization rule of UBoost to 

start with boosting. A minimum expected cost criterion is 

used at classification stage. Weights are normalized to ensure 

total weight is N [19]. 

Weight update rule: 

correctly  classified if weight old else                  

j class as assigned is samplehen          w          

 i, ofCost ication Misclassif  (x)W

(y)Nw / (x)nw   (x)W
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The only difference is that Cost-UBoosting incorporates the 

misclassification cost during induction of the trees. It also 

considers the minimum expected cost criteria of boosting 

while classification of an example. 

Discussion: UBoost technique with respect to Cost-UBoost 

performs slightly down the line. It is natural because the trees 

generated in Cost-UBoost are cost-sensitive (except the first 

one) so in terms of reduced misclassification cost and reduced 

number of high cost errors Cost-UBoost is better. The only 

disadvantage of the Cost-UBoost is that in case of change in 

misclassification cost all the trees have to be regenerated, as it 

incorporates the cost of misclassification in tree building 

stage. If we compare the unequal initial weight methods with 

equal initial weight methods than from the results it can be 

seen that to start with unequal initial weight is better than its 

competitor methods. 

Wie Fan, Salvatore J. Stolfo, Junxin Zhang and Philip k. chan, 

in their paper of AdaCost [11], which is based on the intuition 

that in addition to assigning high initial weights to costly 

examples like in case of Ting’s Boosting, Cost-Boosting, 

UBoost and Cost-UBoost, the weight updating rule should 

also take cost into account and increase the weights of costly 

misclassification more but decrease the weights of costly 

correct classification less. The most important thing 

discussed, explained and proved in this paper is choice of cost 

adjustment function ß and the hypothesis weight as to reduce 

this upper bound. They explain the proof the choice for a and 

ß both. Following comparison shows the difference between 

original AdaBoost and AdaCost. AdaCost incorporates the 

cost as a part of algorithmic step. 
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Table 1. AdaCost modifies the discrete AdaBoost as follows 

Descrite AdaBoost AdaCost 

1. Construct 

– Classifier is constructed using current 

weights of samples. Confidence level of 

prediction is saved. 

2. Classify  

 
 

 

 

 

 

 

3. Update weight  

 

1. Construct 

– Classifier is constructed using current 

weights of samples. Confidence level of 

prediction is saved. 

 

2. Classify  

 

 

 

 
 

3. Update weight  

 

 

Table 2. Summarized comparison of cost-sensitive boosting algorithms 

Algorithm 
Initial 

Weights 
Base Classifier 

Which Trees are 

Cost-sensitive? 
Voting Scheme 

Weight 

update 

equation 

used?# 

Boosting 1/N (Equal) Decision Tree No Trees MECC@ 
No 

 

Cost-Boost 1/N (Equal) Decision Tree 
All Trees Except the 

first one 
MECC@ Yes 

Uboost (Unequal) * Decision Tree No Trees MECC@ No 

Cost-Uboost (Unequal) * Decision Tree 
All Trees Except the 

first one 
MECC@ Yes 

* = Initial Weights: w1(n) = wj = cj ( N / ∑I C
i Ni )  

#  = weight update rules: new weight = misclassification cost * old weight (if incorrectly classified);  

new weight = old weight (if correctly classified.) 
@ = MECC = Minimum Expected Cost Criteria 

3. COST SENSITIVE EXTENSIONS 

(CSEXTIONSIONS) 
3.1 CSExtension1 

AdaBoost is addressed in this algorithm. these evaluate cost 

during training process. The simplest is the only variant that 

does not use confidence rated predications in the weight 

update rule as in step iii as indicated in following algorithm. 

This variant can be obtained as follow.   

Algorithm:  

Given a training set T containing N examples (xn,yn) where xn 

is vector of attribute values and yn  Y is the class label, wk(n) 

denotes the weight of the nth example at the kth trial. 

Initialization: w1(n) = 1. 

In each trial k = 1,…..,K the following three steps are carried 

out.  

i. A model Hk is constructed using the training set under the 

weight distribution wk. let Hk(x) denotes the predicted class, 

and H k (x) [0, 1] denote the confidence level of the 

prediction.  

Classify T using Hk and compute, 
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ii. The weight vector w(k+1) for next trial is updated as follows:  

)()()1( nwCnw kk   

Where, C = cost of classification. 

After K models are included, they are ready for prediction. 

For each classification, the final prediction is combined 

prediction from the K models using the maximum vote 

criterion, computed as follow.  
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3.2 CSExtension2 

AdaBoost is addressed in this algorithm. these evaluate cost 

during training process. Another variant is proposed to study 

the effects of including cost and another parameter α in weight 

update rule. This variant does not use α in weight update- rule. 

This variant can be obtained as follow.  

Given a training set T containing N examples (xn,yn) where xn 

is vector of attribute values and yn  Y is the class label, 

wk(n) denotes the weight of the nth example at the kth trial. 

Initialization: w1(n) = 1. 
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In each trial k = 1,…..,K the following three steps are carried 

out.  

i. A model Hk is constructed using the training set under the 

weight distribution wk. let Hk(x) denotes the predicted class, 

and H k (x)   [0, 1] denote the confidence level of the 

prediction.  

ii. Classify T using Hk and compute, 
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iii. The weight vector w(k+1) for next trial is updated as follows:  

))(exp()()()1( nkkk xnwCnw H 
 

Where, C = cost of classification. 

After K models are included, they are ready for prediction. 

For each classification, the final prediction is combined 

prediction from the K models using the maximum vote 

criterion, computed as follow.  
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3.3 CSExtension3 

AdaBoost is addressed in this algorithm. these evaluate cost 

during training process. Another variant is proposed to study 

the effects of including cost and another parameter α in weight 

update rule. This variant uses α in weight update- rule. This 

variant can be obtained as follow. 

Given a training set T containing N examples (xn,yn) where xn 

is vector of attribute values and yn  Y is the class label, 

wk(n) denotes the weight of the nth example at the kth trial. 

Initialization: w1(n) = 1. 

In each trial k = 1,…..,K the following three steps are carried 

out.  

i. A model Hk is constructed using the training set under the 

weight distribution wk. let Hk(x) denotes the predicted class, 

and H k (x)   [0, 1] denote the confidence level of the 

prediction.  

ii. Classify T using Hk and compute, 
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iii. The weight vector w(k+1) for next trial is updated as follows:  

))(exp()()()1( knkkk xnwCnw  H
 

Where, C = cost of classification. 

After K models are included, they are ready for prediction. 

For each classification, the final prediction is combined 

prediction from the K models using the maximum vote 

criterion, computed as follow.  
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Further, we require that β+ is non-increasing with respect to 

cn. This means that the reward for correct classification is low 

when the cost is high, and vice versa. This seems to be 

counter-intuitive, and it could be the source of AdaCost's poor 

performance. Based on this fact we proposed another two 

proposals namely CSExtension4 and CSExtension5. They are 

elaborated as follow.  

We alter the form of βδ and assume β+ is non-decreasing as is 

β-, and they are both equal to the cost of misclassification, that 

is, β+ = β- = cn and denote the resultant algorithm as 

CSExtension4. We, also employ a second modification, called 

CSExtension5, which is identical to CSExtension4 except that 

βδ  is excluded in rk equation. This is to investigate whether 

cost needs to be taken into consideration in step (ii) of the 

boosting procedure. 

3.4 CSExtension4 

Given a training set T containing N examples (xn,yn) where xn 

is vector of attribute values and yn   Y is the class label, 

wk(n) denotes the weight of the nth example at the kth trial. In 

each trial k = 1,…..,K the following three steps are carried 

out.  

i. A model Hk is constructed using the training set under the 

weight distribution wk. let Hk(x) denotes the predicted class, 

and Hk(x)   [0, 1] denote the confidence level of the 

prediction.  

ii. Classify using Hk and compute, 
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iii. The weight vector w(k+1) for next trial is updated as follows:  
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After K models are included, they are ready for prediction. 

For each classification, the final prediction is combined 

prediction from the K models using the maximum vote 

criterion, computed as follow.  
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3.5 CSExtension5 

Given a training set T containing N examples (xn,yn) where xn 

is vector of attribute values and yn  Y is the class label, 

wk(n) denotes the weight of the nth example at the kth trial. 

In each trial k = 1,…..,K the following three steps are carried 

out.  

i. A model Hk is constructed using the training set under the 

weight distribution wk. let Hk(x) denotes the predicted class, 

and H k (x)   [0, 1] denote the confidence level of the 

prediction.  

ii. Classify using Hk and compute, 
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1 nnk yxH )( 1 if  and  otherwise. 
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Where, 5.05.05.05.0   nn candc   

iii. The weight vector w(k+1) for next trial is updated as follows:  
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After K models are included, they are ready for prediction. 

For each classification, the final prediction is combined 

prediction from the K models using the maximum vote 

criterion, computed as follow.  
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Note: All the algorithms proposed here can use the minimum 

expected cost criterion by implementation of the following 

equation.  
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4. EMPIRICAL EVALUATION  
In this section, we empirically evaluate the performances of 

the cost-sensitive boosting procedures (Firstly, AdaBoost, 

Boost, Cost-Boost, UBoost and Cost-UBoost with AdaCost. 

Secondly, AdaBoost, CSExtension1, CS Extension2, 

CSExtension3, CSExtension4 and CSExtension5 with 

AdaCost). We have divided experiments in two groups 

because there are in total eleven algorithms so to reduce the 

complexity perform algorithms in two groups. Where the first 

group is having the algorithms which use the  boosting 

concept and voting criteria to and differs as per table 2. 

Whereas, the second group is having the algorithms which 

modifies the weight update equation. AdaCost and AdaBoost 

are in both the groups to provide mapping and comparisons.  

Fourteen two-class natural data sets from the UCI machine 

learning repository are used in the experiments [13-14]. They 

are breast cancer (Wisconsin), liver disorder, credit screening, 

echocardiogram, solar flare, heart disease (Cleveland), 

hepatitis, horse colic, house-voting 84, hypothyroid, king-rook 

versus king-pawn, pima Indian diabetes, sonar and tic-tac-toe 

data sets. Only two-class data sets are used because 

AdaBoost, in its basic form, is designed for two-class 

problems only. 

For each of the data sets, we report the sum of six averages, 

where each average is the result of a run of two 10-fold cross-

validations using a fixed cost factor. The six cost matrices 

used are [0 1; 2 0], [0 2; 1 0], [0 1; 5 0], [0 5; 1 0], [0 10; 1 0] 

and [0 1; 10 0]. Thus, in each set of experiments (having six 

cost factors and fourteen data sets), there are altogether 84 

runs. 

The key measure to evaluate the performance of the 

algorithms for cost-sensitive classification is the total cost of 

misclassifications made by a classifier on a test set (i.e., ∑m = 

cost(actual(m), predicted(m)) ). In addition, we also use a 

second measure: the number of high cost errors. [5-6], [15-

16] It is the number of misclassifications associated with costs 

higher than unity made by a classifier on a test set. The 

second measure is used primarily to explain the behavior of 

the algorithms.[1] 

To conduct the experiments described in the experiment 

section, J48 underlies the model Hk in the boosting procedure 

(J48 is used as a base classifier). Only the default settings of 

J48 are used. In our implementation all variants incorporate 

the minimum expected cost criterion. Moreover, a weight 

initialization process is used defined in following equation. 

where, C(i) be the cost of misclassifying a class i instance; the 

weight of a class i instance can be computed as, such that the 

sum of all instance weights is ∑i (i) Ni = N. 
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j
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– Performance of Boost, Cost-Boost, UBoost, Cost-UBoost 

and AdaCost 

1. Experiment for calculation of total misclassification 

costs 

Graph 3. shows the results of total cost of misclassification for 

all selected datasets. From graph 3 and graph 1 it is clear that 

AdaCost outperforms all competitors in terms of total 

misclassification cost. 

– Observation:  By performing the above experiment we 

were intend to find out that which existing cost-sensitive 

booster performs better in terms of total misclassification cost.  

2. Experiment for calculation of number of high cost 

errors  

Graph 4 shows the results of total number of high cost errors 

for all selected datasets.  From graph 4 and graph 2 it is clear 

that AdaCost outperforms all competitors in terms of number 

of high cost errors. 

– Observation:  By performing the above experiment we 

were intend to find out that which existing cost-sensitive 

booster performs better in terms of number of high cost errors. 

From the above experiments we can conclude that AdaCost 

wins in terms of both number of high cost errors as well as 

total cost of misclassification. 

– AdaBoost, CSExtension1, CSExtension2 and 

CSExtension3, CSExtension4 and CSExtension5 with 

AdaCost 

1. Experiment for calculation of total misclassification 

costs 

Graph 7. shows the results of total cost of misclassification for 

all selected datasets. From graph 7 and graph 5 it is clear that 

CSExtension3 outperforms all competitors in terms of total 

misclassification cost. 

– Observation:  By performing the above experiment we 

were intend to find out that which existing cost-sensitive 

booster performs better in terms of total misclassification cost. 

2. Experiment for calculation of number of high cost 

errors  

Graph 8 shows the results of total number of high cost errors 

for all selected datasets.  From graph 8 and graph 6 it is clear 

that CSExtension2 outperforms all competitors in terms of 

number of high cost errors. 

– Observation:  By performing the above experiment we 

were intend to find out that which existing cost-sensitive 

booster performs better in terms of number of high cost errors. 

From the above experiments we can conclude that 

CSExtension3 wins in terms of total misclassification cost and 

CSExtension2 in terms of number of high cost errors. 
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Graph 1. Average misclassification cost of Boost, CostBoost, 

Uboost, CostUBoost and AdaCost 

 
Graph 2. Average number of high cost errors cost of Boost, 

CostBoost, Uboost, CostUBoost and AdaCost 

 
Graph 3.Total misclassification cost of Boost, Cost-Boost, UBoost, Cost-UBoost and AdaCost 

 
Graph 4. Number of high cost errors of Boost, Cost-Boost, UBoost, Cost-UBoost and AdaCost 
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Graph 5. Average misclassification cost of AdaBoost, 

AdaCost, CSE1, CSE2, CSE3, CSE4 and CSE5 

 
Graph 6. Average number of high cost errors of AdaBoost, 

AdaCost, CSE1, CSE2, CSE3, CSE4 and CSE5 

 
Graph 7.Total misclassification cost of AdaBoost, AdaCost, CSExtension1, CSExtension2, CSExtension3, CSExtension4 and 

CSExtension5 

 
Graph 8. Number of high cost errors of AdaBoost AdaBoost, AdaCost, CSExtension1, CSExtension2, CSExtension3, 

CSExtension4 and CSExtension5
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5. CONCLUSION 
This paper provides detail discussion on the algorithms of 

cost-sensitive boosting. At the best of our knowledge we 

believe, all the cost-sensitive boosters are studied.  

Moreover, we believe that the comparative analysis, 

summarized analysis depicted here is useful for many 

researchers in their work for cost-sensitive boosting. 

Emparical evaluation justified that as per Wie Fan, Salvatore 

J. Stolfo, Junxin Zhang and Philip k. chan, have listed in their 

paper of AdaCost, that AdaCost is the best algorithm available 

for the type of data that we have selected to reduce number of 

high cost errors and total cost of misclassification. The reason 

for its better performance is that it incorporates the 

misclassification cost as a part of its algorithmic step as well 

as the selection of the parameter β in weight update rule plays 

a vital role in reduction of the cost and number of high cost 

errors. 

Issues listed below in existing system leaves the wide scope of 

improvments possible in the existing algorithms.   

– Moreover, from [3] we can get an idea of how exactly the 

confidence rated predictions help us increase the classification 

accuracy.  

– There is no comparative study which shows the effects of 

minimum expected cost criterion versus maximum vote 

criterion. 
– In all the Meta classifiers analyzed above decision tree is 

chosen as a base learner. One can further show the 

comparative study of choosing Ibk, neural networks, naïve 

base classifier or other learners as base learners. 
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