
International Journal of Computer Applications (0975 – 8887)

Volume 44– No13, April 2012

34

An Empirical Evaluation of Adaboost Extensions for

Cost-Sensitive Classification

Ankit Desai
Charotar Univerisity of Science And Technology

Changa

P. M. Jadav
Dharmsinh Desai University

Nadiad

ABSTRACT

Classification is a data mining technique used to predict group

membership for data instances. Cost-sensitive classifier is

relatively new field of research in the data mining and

machine learning communities. They are basically used for

classification tasks under the cost-based model, unlike the

error-based model. Error based classifier AdaBoost is a

simple algorithm that reweights the training instances to build

multiple classifiers in training phase, without considering the

cost of misclassification. Out of all generated classifiers in

training, in classification, it collects the weighted votes from

each and classifies the new sample (example) according to

maximum votes collected. Intuitively, combining multiple

models shall give more robust predictions than a single model

under the situation where misclassification costs are

considered. Boosting has been shown to be an effective

method of combining multiple models in order to enhance

the predictive accuracy of a single model. Thus, it is natural

to think that boosting might also reduce the misclassification

costs. All the cost-sensitive boosters are studied and five new

extensions are proposed and their results are compared in this

paper. A few future extensions are notified.

General Terms

AdaBoost, Cost-sensitive classifiers, Data-Mining,

Misclassification cost.

Keywords

AdaBoost, Cost-sensitive classifiers, CSExtension1,

CSExtension2, CSExtension3, CSExtension4, CSExtension5

Misclassification cost, number of high cost errors.

1. INTRODUCTION
Several classification models have been proposed over the

years, e.g. neural networks, statistical models like

linear/quadratic discriminates, nearest neighbors, Bayesian

methods, Decision trees and Meta learners. Cost-sensitive

classifiers are Meta learners to make its base classifier cost-

sensitive. Moreover, many classifiers are studied under the

error based frame work, which concentrates on improving the

accuracy of the classifier. On the other hand, the cost of

misclassification is also an important parameter to consider in

many applications of classification, such as, credit card fraud

detection, medical diagnosis etc. All the error-based classifier

methods consider the classification errors as equally likely,

which is not the case in all the real-time applications. For

example, cost of classifying a credit card transaction as non-

fraudulent in case it is actually a fraudulent is quite higher

than the cost of classifying a non-fraudulent transaction as a

fraudulent. It is recommended that this misclassification costs

has to be incorporated into classifier model while dealing with

such cost-sensitive applications.

Learning with Cost-Sensitive (CS) algorithms is an essential

cluster because it considers cost of misclassification into

account apart from basic measures like accuracy and speed.

Two ways exists, to incorporate the misclassification cost.

First, cost-sensitive classifiers, the algorithm which

incorporate misclassification cost into its algorithmic steps.

Second, incorporate cost into preprocessing step to make

preprocessing stage cost-sensitive e.g. cost-sensitive attribute

selection, can be used to incorporate the misclassification cost

in pre-processing stage. In case of first type, e.g. AdaBoost

and AdaCost, the Meta classifiers are extended to incorporate

the cost of misclassification in weight update method. [7]

Many ways have been proposed to incorporate the cost of

misclassification. Among all these AdaBoost (Meta learner)

and decision tree method has been proven easy to implement

and efficient as compared to other methods. Reweighting [4]

the training instances by incorporating the cost of

misclassification help us to build the models while

considering the cost of misclassification.

Intuitively combining multiple models shall give more robust

predictions than a single model under the situation where

misclassification costs are considered. Boosting has been

shown to be an effective method of combining multiple

models in order to enhance the predictive accuracy of a

single model. Thus, it is natural to think that boosting might

also reduce the misclassification costs.

This paragraph will answer why exactly we require cost based

models for classification and what is cost matrix with respect

to ROC and lift? [17, 18] All error based learners are special

case of cost base learners, being cost matrix input [0 1; 0 1].

Lift is used to measure the degree to which the predictions of

a classification model over randomly-generated predictions.

In classification model, Receiver Operating Characteristic

(ROC) is another measure for comparing predicted and

original target values. Comparing ROC with lift; lift only

applies to binary classification and requires the description of

a positive class. Decision making ability of a model can be

insight by ROC. How prone is the model to accurately predict

the negative or the positive class? Impact of the changes on

probability threshold is measured by ROC. The probability

threshold is the value (decision point), used by the model for

classification. The default probability threshold for binary

classification is 0.5. (In multi-class classification, the

predicted class is the one predicted with the highest

probability.) Discriminating ability of a binary classification

model is measured by the area under the ROC curve (AUC)

[20]. ROC can be used to find the probability thresholds that

yield the highest overall accuracy or the highest per-class

International Journal of Computer Applications (0975 – 8887)

Volume 44– No13, April 2012

35

accuracy. For example, this is sometimes used to bias decision

of prediction over positive or negative class. Probability

threshold of a model could easily be changed by a cost matrix.

Moreover, Error based models do not answer which model out

of many is most advantageous. This can be identified by cost

based model (by considering the cost of prediction)[12].

This paper is organized in following sections. i.e. section 2

explains all existing algorithms of the type cost-sensitive

boosting. section 3 shows the proposed extensions. Section 4

shows empirical evaluation of all the algorithms. At the end

Section 5 concludes the paper.

2. DIFFERENT COST-SENSITIVE

BOOSTING ALGORITHMS
K. Ting & Z. Zheng [9] depicted in their research that,

Boosting trees has been proven an effective method of

reducing the number of high cost errors as well as the total

misclassification cost. Moreover, two boosting techniques to

incorporate the misclassification cost. Both variant performs

significantly better than its predecessor method of boosting

i.e. C4.5C. [2] The important thing to note is that both

algorithms incorporates the cost of misclassification in post-

processing or decision tree induction stage. They have nicely

answered the question that why boosting is considered more

powerful than other techniques in cost-sensitive classification.

Intuitively, combining multiple models shall give more robust

predictions than a single model under the situation where

misclassification costs are considered. Boosting has been

shown to be an effective method of combining multiple

models in order to enhance the predictive accuracy of a

single model. Thus, it is natural to think that boosting might

also reduce the misclassification costs of C4.5c.

Boosting in simple words it is boosting with decision trees but

as it utilizes the misclassification cost at minimum expected

cost criteria while classification thus boosting becomes cost-

sensitive.

Cost-Boosting weights are updated according to

misclassification cost associated with each sample. All trees

are cost-sensitive. Moreover, weight update rule is as follows:

correctly classified if weight old else

j class as assigned is samplehen w

 i, ofCost ication Misclassif (x)W

(y)Nw / (x)nw (x)W

1)(t

1y
y1)(t1)(t1)(t

N
n

Weights are normalized to ensure total weight is N.

The only difference is that Cost-Boosting incorporates the

misclassification cost during induction of the trees. It also

considers the minimum expected cost criteria of boosting

while classification of an example.

Discussion: Boosting technique with respect to cost-boosting

performs slightly down the line. It is natural because the trees

generated in cost-boosting are cost-sensitive (except the first

one) so in terms of reduced misclassification cost and reduced

number of high cost errors cost-boosting is better. The only

disadvantage of the cost-boosting is that in case of change in

misclassification cost all the trees have to be regenerated, as it

incorporates the cost of misclassification in tree building

stage. Further, K. Ting & Z. Zheng [10] added in to their later

research viz. UBoost and Cost-Uboost. Moreover, it is

important to notice that a slight variation in weight update rule

of previous proposal has made UBoost and Cost-UBoost work

better in terms of total misclassificaiton cost and number of

high cost errors.

Uboost (Boosting with unequal initial weights): this algorithm

is similar to the AdaCost algorithm.

w1 (n) = wj = Cj (N / ∑I Ci Ni) is the initial weight update

rule.

Misclassification cost incorporated only in first induction of

decision tree and at classification stage. Initially unequal

weights and minimum expected cost criteria makes this

algorithm cost-sensitive.

Cost-UBoost (UBoost with Cost-sensitive adaption): weights

are updated according to misclassification cost associated

with each sample. All boosted trees are cost-sensitive except

the first one. It uses the weight initialization rule of UBoost to

start with boosting. A minimum expected cost criterion is

used at classification stage. Weights are normalized to ensure

total weight is N [19].

Weight update rule:

correctly classified if weight old else

j class as assigned is samplehen w

 i, ofCost ication Misclassif (x)W

(y)Nw / (x)nw (x)W

1)(t

1y
y1)(t1)(t1)(t

N
n

The only difference is that Cost-UBoosting incorporates the

misclassification cost during induction of the trees. It also

considers the minimum expected cost criteria of boosting

while classification of an example.

Discussion: UBoost technique with respect to Cost-UBoost

performs slightly down the line. It is natural because the trees

generated in Cost-UBoost are cost-sensitive (except the first

one) so in terms of reduced misclassification cost and reduced

number of high cost errors Cost-UBoost is better. The only

disadvantage of the Cost-UBoost is that in case of change in

misclassification cost all the trees have to be regenerated, as it

incorporates the cost of misclassification in tree building

stage. If we compare the unequal initial weight methods with

equal initial weight methods than from the results it can be

seen that to start with unequal initial weight is better than its

competitor methods.

Wie Fan, Salvatore J. Stolfo, Junxin Zhang and Philip k. chan,

in their paper of AdaCost [11], which is based on the intuition

that in addition to assigning high initial weights to costly

examples like in case of Ting’s Boosting, Cost-Boosting,

UBoost and Cost-UBoost, the weight updating rule should

also take cost into account and increase the weights of costly

misclassification more but decrease the weights of costly

correct classification less. The most important thing

discussed, explained and proved in this paper is choice of cost

adjustment function ß and the hypothesis weight as to reduce

this upper bound. They explain the proof the choice for a and

ß both. Following comparison shows the difference between

original AdaBoost and AdaCost. AdaCost incorporates the

cost as a part of algorithmic step.

International Journal of Computer Applications (0975 – 8887)

Volume 44– No13, April 2012

36

Table 1. AdaCost modifies the discrete AdaBoost as follows

Descrite AdaBoost AdaCost

1. Construct

– Classifier is constructed using current

weights of samples. Confidence level of

prediction is saved.

2. Classify

3. Update weight

1. Construct

– Classifier is constructed using current

weights of samples. Confidence level of

prediction is saved.

2. Classify

3. Update weight

Table 2. Summarized comparison of cost-sensitive boosting algorithms

Algorithm
Initial

Weights
Base Classifier

Which Trees are

Cost-sensitive?
Voting Scheme

Weight

update

equation

used?#

Boosting 1/N (Equal) Decision Tree No Trees MECC@
No

Cost-Boost 1/N (Equal) Decision Tree
All Trees Except the

first one
MECC@ Yes

Uboost (Unequal) * Decision Tree No Trees MECC@ No

Cost-Uboost (Unequal) * Decision Tree
All Trees Except the

first one
MECC@ Yes

* = Initial Weights: w1(n) = wj = cj (N / ∑I C
i Ni)

= weight update rules: new weight = misclassification cost * old weight (if incorrectly classified);

new weight = old weight (if correctly classified.)
@ = MECC = Minimum Expected Cost Criteria

3. COST SENSITIVE EXTENSIONS

(CSEXTIONSIONS)
3.1 CSExtension1

AdaBoost is addressed in this algorithm. these evaluate cost

during training process. The simplest is the only variant that

does not use confidence rated predications in the weight

update rule as in step iii as indicated in following algorithm.

This variant can be obtained as follow.

Algorithm:

Given a training set T containing N examples (xn,yn) where xn

is vector of attribute values and yn Y is the class label, wk(n)

denotes the weight of the nth example at the kth trial.

Initialization: w1(n) = 1.

In each trial k = 1,…..,K the following three steps are carried

out.

i. A model Hk is constructed using the training set under the

weight distribution wk. let Hk(x) denotes the predicted class,

and H k (x) [0, 1] denote the confidence level of the

prediction.

Classify T using Hk and compute,

)()(
1

nkk

n

k xnw
N

r H

Where,

Then compute,

)
1

1
ln(

2

1

k

k
k

r

r

ii. The weight vector w(k+1) for next trial is updated as follows:

)()()1(nwCnw kk

Where, C = cost of classification.

After K models are included, they are ready for prediction.

For each classification, the final prediction is combined

prediction from the K models using the maximum vote

criterion, computed as follow.

)(maxarg)(*
)(:

xxH k

yxHk

k
Yy

k

H

3.2 CSExtension2

AdaBoost is addressed in this algorithm. these evaluate cost

during training process. Another variant is proposed to study

the effects of including cost and another parameter α in weight

update rule. This variant does not use α in weight update- rule.

This variant can be obtained as follow.

Given a training set T containing N examples (xn,yn) where xn

is vector of attribute values and yn Y is the class label,

wk(n) denotes the weight of the nth example at the kth trial.

Initialization: w1(n) = 1.

1 nnk yxH)(1 if and otherwise.

)()(
1

nkk

n

k xnw
N

r H

1 nnk yxH)(

1

 if

otherwise.

)
1

1
ln(

2

1

k

k
k

r

r

))(exp()()()1(knkkk xnwnw H

)()(
1

nkk

n

k xnw
N

r H

5.05.05.05.0 nn candc

))(exp()()()1(knkkk xnwnw H

International Journal of Computer Applications (0975 – 8887)

Volume 44– No13, April 2012

37

In each trial k = 1,…..,K the following three steps are carried

out.

i. A model Hk is constructed using the training set under the

weight distribution wk. let Hk(x) denotes the predicted class,

and H k (x) [0, 1] denote the confidence level of the

prediction.

ii. Classify T using Hk and compute,

)()(
1

nkk

n

k xnw
N

r H

Where,

Then compute,

)
1

1
ln(

2

1

k

k
k

r

r

iii. The weight vector w(k+1) for next trial is updated as follows:

))(exp()()()1(nkkk xnwCnw H

Where, C = cost of classification.

After K models are included, they are ready for prediction.

For each classification, the final prediction is combined

prediction from the K models using the maximum vote

criterion, computed as follow.

)(maxarg)(*
)(:

xxH k

yxHk

k
Yy

k

H

3.3 CSExtension3

AdaBoost is addressed in this algorithm. these evaluate cost

during training process. Another variant is proposed to study

the effects of including cost and another parameter α in weight

update rule. This variant uses α in weight update- rule. This

variant can be obtained as follow.

Given a training set T containing N examples (xn,yn) where xn

is vector of attribute values and yn Y is the class label,

wk(n) denotes the weight of the nth example at the kth trial.

Initialization: w1(n) = 1.

In each trial k = 1,…..,K the following three steps are carried

out.

i. A model Hk is constructed using the training set under the

weight distribution wk. let Hk(x) denotes the predicted class,

and H k (x) [0, 1] denote the confidence level of the

prediction.

ii. Classify T using Hk and compute,

)()(
1

nkk

n

k xnw
N

r H

)
1

1
ln(

2

1

k

k
k

r

r

Where,

Then compute,

)
1

1
ln(

2

1

k

k
k

r

r

iii. The weight vector w(k+1) for next trial is updated as follows:

))(exp()()()1(knkkk xnwCnw H

Where, C = cost of classification.

After K models are included, they are ready for prediction.

For each classification, the final prediction is combined

prediction from the K models using the maximum vote

criterion, computed as follow.

)(maxarg)(*
)(:

xxH k

yxHk

k
Yy

k

H

Further, we require that β+ is non-increasing with respect to

cn. This means that the reward for correct classification is low

when the cost is high, and vice versa. This seems to be

counter-intuitive, and it could be the source of AdaCost's poor

performance. Based on this fact we proposed another two

proposals namely CSExtension4 and CSExtension5. They are

elaborated as follow.

We alter the form of βδ and assume β+ is non-decreasing as is

β-, and they are both equal to the cost of misclassification, that

is, β+ = β- = cn and denote the resultant algorithm as

CSExtension4. We, also employ a second modification, called

CSExtension5, which is identical to CSExtension4 except that

βδ is excluded in rk equation. This is to investigate whether

cost needs to be taken into consideration in step (ii) of the

boosting procedure.

3.4 CSExtension4

Given a training set T containing N examples (xn,yn) where xn

is vector of attribute values and yn Y is the class label,

wk(n) denotes the weight of the nth example at the kth trial. In

each trial k = 1,…..,K the following three steps are carried

out.

i. A model Hk is constructed using the training set under the

weight distribution wk. let Hk(x) denotes the predicted class,

and Hk(x) [0, 1] denote the confidence level of the

prediction.

ii. Classify using Hk and compute,

)()(
1

nkk

n

k xnw
N

r H

)
1

1
ln(

2

1

k

k
k

r

r

Where, nc

iii. The weight vector w(k+1) for next trial is updated as follows:

))(exp()()()1(knkkk xnwnw H

After K models are included, they are ready for prediction.

For each classification, the final prediction is combined

prediction from the K models using the maximum vote

criterion, computed as follow.

)(maxarg)(*
)(:

xxH k

yxHk

k
Yy

k

H

3.5 CSExtension5

Given a training set T containing N examples (xn,yn) where xn

is vector of attribute values and yn Y is the class label,

wk(n) denotes the weight of the nth example at the kth trial.

In each trial k = 1,…..,K the following three steps are carried

out.

i. A model Hk is constructed using the training set under the

weight distribution wk. let Hk(x) denotes the predicted class,

and H k (x) [0, 1] denote the confidence level of the

prediction.

ii. Classify using Hk and compute,

)()(
1

nkk

n

k xnw
N

r H

1 nnk yxH)(1 if and otherwise.

1 nnk yxH)(1 if and otherwise.

International Journal of Computer Applications (0975 – 8887)

Volume 44– No13, April 2012

38

)
1

1
ln(

2

1

k

k
k

r

r

Where, 5.05.05.05.0 nn candc

iii. The weight vector w(k+1) for next trial is updated as follows:

))(exp()()()1(knkkk xnwnw H

After K models are included, they are ready for prediction.

For each classification, the final prediction is combined

prediction from the K models using the maximum vote

criterion, computed as follow.

)(maxarg)(*
)(:

xxH k

yxHk

k
Yy

k

H

Note: All the algorithms proposed here can use the minimum

expected cost criterion by implementation of the following

equation.

),(cos)(maxarg)(*
)(:

jitxxH k

yxHk

k
j

k

H

4. EMPIRICAL EVALUATION
In this section, we empirically evaluate the performances of

the cost-sensitive boosting procedures (Firstly, AdaBoost,

Boost, Cost-Boost, UBoost and Cost-UBoost with AdaCost.

Secondly, AdaBoost, CSExtension1, CS Extension2,

CSExtension3, CSExtension4 and CSExtension5 with

AdaCost). We have divided experiments in two groups

because there are in total eleven algorithms so to reduce the

complexity perform algorithms in two groups. Where the first

group is having the algorithms which use the boosting

concept and voting criteria to and differs as per table 2.

Whereas, the second group is having the algorithms which

modifies the weight update equation. AdaCost and AdaBoost

are in both the groups to provide mapping and comparisons.

Fourteen two-class natural data sets from the UCI machine

learning repository are used in the experiments [13-14]. They

are breast cancer (Wisconsin), liver disorder, credit screening,

echocardiogram, solar flare, heart disease (Cleveland),

hepatitis, horse colic, house-voting 84, hypothyroid, king-rook

versus king-pawn, pima Indian diabetes, sonar and tic-tac-toe

data sets. Only two-class data sets are used because

AdaBoost, in its basic form, is designed for two-class

problems only.

For each of the data sets, we report the sum of six averages,

where each average is the result of a run of two 10-fold cross-

validations using a fixed cost factor. The six cost matrices

used are [0 1; 2 0], [0 2; 1 0], [0 1; 5 0], [0 5; 1 0], [0 10; 1 0]

and [0 1; 10 0]. Thus, in each set of experiments (having six

cost factors and fourteen data sets), there are altogether 84

runs.

The key measure to evaluate the performance of the

algorithms for cost-sensitive classification is the total cost of

misclassifications made by a classifier on a test set (i.e., ∑m =

cost(actual(m), predicted(m))). In addition, we also use a

second measure: the number of high cost errors. [5-6], [15-

16] It is the number of misclassifications associated with costs

higher than unity made by a classifier on a test set. The

second measure is used primarily to explain the behavior of

the algorithms.[1]

To conduct the experiments described in the experiment

section, J48 underlies the model Hk in the boosting procedure

(J48 is used as a base classifier). Only the default settings of

J48 are used. In our implementation all variants incorporate

the minimum expected cost criterion. Moreover, a weight

initialization process is used defined in following equation.

where, C(i) be the cost of misclassifying a class i instance; the

weight of a class i instance can be computed as, such that the

sum of all instance weights is ∑i (i) Ni = N.

j

j

k
NjC

N
iCiw

)(
)()()(

– Performance of Boost, Cost-Boost, UBoost, Cost-UBoost

and AdaCost

1. Experiment for calculation of total misclassification

costs

Graph 3. shows the results of total cost of misclassification for

all selected datasets. From graph 3 and graph 1 it is clear that

AdaCost outperforms all competitors in terms of total

misclassification cost.

– Observation: By performing the above experiment we

were intend to find out that which existing cost-sensitive

booster performs better in terms of total misclassification cost.

2. Experiment for calculation of number of high cost

errors

Graph 4 shows the results of total number of high cost errors

for all selected datasets. From graph 4 and graph 2 it is clear

that AdaCost outperforms all competitors in terms of number

of high cost errors.

– Observation: By performing the above experiment we

were intend to find out that which existing cost-sensitive

booster performs better in terms of number of high cost errors.

From the above experiments we can conclude that AdaCost

wins in terms of both number of high cost errors as well as

total cost of misclassification.

– AdaBoost, CSExtension1, CSExtension2 and

CSExtension3, CSExtension4 and CSExtension5 with

AdaCost

1. Experiment for calculation of total misclassification

costs

Graph 7. shows the results of total cost of misclassification for

all selected datasets. From graph 7 and graph 5 it is clear that

CSExtension3 outperforms all competitors in terms of total

misclassification cost.

– Observation: By performing the above experiment we

were intend to find out that which existing cost-sensitive

booster performs better in terms of total misclassification cost.

2. Experiment for calculation of number of high cost

errors

Graph 8 shows the results of total number of high cost errors

for all selected datasets. From graph 8 and graph 6 it is clear

that CSExtension2 outperforms all competitors in terms of

number of high cost errors.

– Observation: By performing the above experiment we

were intend to find out that which existing cost-sensitive

booster performs better in terms of number of high cost errors.

From the above experiments we can conclude that

CSExtension3 wins in terms of total misclassification cost and

CSExtension2 in terms of number of high cost errors.

International Journal of Computer Applications (0975 – 8887)

Volume 44– No13, April 2012

39

Graph 1. Average misclassification cost of Boost, CostBoost,

Uboost, CostUBoost and AdaCost

Graph 2. Average number of high cost errors cost of Boost,

CostBoost, Uboost, CostUBoost and AdaCost

Graph 3.Total misclassification cost of Boost, Cost-Boost, UBoost, Cost-UBoost and AdaCost

Graph 4. Number of high cost errors of Boost, Cost-Boost, UBoost, Cost-UBoost and AdaCost

International Journal of Computer Applications (0975 – 8887)

Volume 44– No13, April 2012

40

Graph 5. Average misclassification cost of AdaBoost,

AdaCost, CSE1, CSE2, CSE3, CSE4 and CSE5

Graph 6. Average number of high cost errors of AdaBoost,

AdaCost, CSE1, CSE2, CSE3, CSE4 and CSE5

Graph 7.Total misclassification cost of AdaBoost, AdaCost, CSExtension1, CSExtension2, CSExtension3, CSExtension4 and

CSExtension5

Graph 8. Number of high cost errors of AdaBoost AdaBoost, AdaCost, CSExtension1, CSExtension2, CSExtension3,

CSExtension4 and CSExtension5

International Journal of Computer Applications (0975 – 8887)

Volume 44– No13, April 2012

41

5. CONCLUSION
This paper provides detail discussion on the algorithms of

cost-sensitive boosting. At the best of our knowledge we

believe, all the cost-sensitive boosters are studied.

Moreover, we believe that the comparative analysis,

summarized analysis depicted here is useful for many

researchers in their work for cost-sensitive boosting.

Emparical evaluation justified that as per Wie Fan, Salvatore

J. Stolfo, Junxin Zhang and Philip k. chan, have listed in their

paper of AdaCost, that AdaCost is the best algorithm available

for the type of data that we have selected to reduce number of

high cost errors and total cost of misclassification. The reason

for its better performance is that it incorporates the

misclassification cost as a part of its algorithmic step as well

as the selection of the parameter β in weight update rule plays

a vital role in reduction of the cost and number of high cost

errors.

Issues listed below in existing system leaves the wide scope of

improvments possible in the existing algorithms.

– Moreover, from [3] we can get an idea of how exactly the

confidence rated predictions help us increase the classification

accuracy.

– There is no comparative study which shows the effects of

minimum expected cost criterion versus maximum vote

criterion.
– In all the Meta classifiers analyzed above decision tree is

chosen as a base learner. One can further show the

comparative study of choosing Ibk, neural networks, naïve

base classifier or other learners as base learners.

6. REFERENCES
[1] Tao wang, Zhenxing Qin, Zhi Jin and Shichao Zhang ,

"Handling overfitting in test cost-sensitive decision tree

learning by feature selection, smoothing and pruning",

The journal of systems and software, 2010.

[2] Susan Lomax and Sunil Vadera, "An empirical

comparison of cost-sensitive decision tree induction

algorithms", july 2011.

[3] Schapire and Singer, "Improved boosting algorithms

using confidence-rated predictions". Machine learning,

1999.

[4] Bianca Zadrozny, John Langford, Naoki Abe, "Cost-

Sensitive Learning by Cost-Proportionate Example

Weighting", Proceedings of the Third IEEE International

Conference on Data Mining (ICDM’03).

[5] Geoffrey I. Webb, "Cost-Sensitive Specialization",

Proceedings of the 1996 Pacific Rim International

Conference on Artificial Intelligence, Cairns, Springer-

Verlag, pp. 23-34.

[6] Alan T. Remaley, Maureen L. Sampson, James M,

Deleo, Nancy A. Remaley, Beriuse D. Farsi and Mark H.

Zweig, "Prevalence-Value-Accuracy Plot: A new method

for comparing diagnostic tests based on misclassification

costs", 1999.

[7] P. Domingos. "Metacost: A general method for making

classifiers cost-sensitive", In KDD, pages 155–164,

1999.

[8] Artur Ferreira, "Survey on boosting algorithms for

supervised and semi-supervised learning", oct. 2007.

[9] Kai ming Ting and Zijian Zheng, "Boosting Cost-

sensitive trees", Tenth International Conference on

Discovery Science, LNAI-1038 (pp.134-145) Japan:

Springer- 2007.

[10] Kai Ming Ting and Zijian Zheng, "Boosting Trees for

cost-sensitive classificaiton" , Eighth International

Conference on DS, Singapore 2005.

[11] Wie Fan, Salvatore J. Stolfo, Junxin Zhang and Philip k.

chan "AdaCost: Misclassification Cost-sensitive

Boosting", 27th International Conference on Machine

Learning, july 2010.

[12] Web link: Oracle® Data Mining Concepts 11g Release 1,

http://download.oracle.com/docs/cd/B28359_01/datamin

e.111/b28129/classify.html

[13] Data-set downloaded from:

http://tunedit.org/repo/UCI/credit-a.arff

[14] UCI machine learning repository for dataset:

http://archive.ics.uci.edu/ml/datasets.html

[15] Wiki pedia page for Prevalence:

http://en.wikipedia.org/wiki/Prevalence, updated on 5

July 2011.

[16] Wiki pedia page for sensitivity and specificity:

http://en.wikipedia.org/wiki/Sensitivity_and_specificity,

updated on 19 July 2011.

[17] Tutorial on DB2 business intelligence, article on cost

matrix,

http://publib.boulder.ibm.com/infocenter/db2luw/v8/inde

x.jsp?topic=/com.ibm.im.model.doc/c_cost_matrix.html

[18] Tutorial on Oracle® Data Mining Concepts 11g Release

1,

http://download.oracle.com/docs/cd/B28359_01/datamin

e.111/b28129/classify.htm

[19] OAIDTB: Boosting extensions for WEKA, web-link:

http://pisuerga.inf.ubu.es/lsi/Software/oaidtb/

[20] Books: Data mining - Concept and Techniques by Han &

Kamber. Data mining: concepts and techniques. The

Morgan Kaufmann series in data management systems,

ISBN- 1558609016, 9781558609013,

publisher morgan, 2006.

