
International Journal of Computer Applications (0975 – 8887)

Volume 44– No13, April 2012

26

Decentralized Principles: New Modular Software

Development Principles, a Robust Object Oriented

Approach

GholamAli Nejad HajAli Irani

University of Bonab
Velayat Avenue, East Azerbaijan,

Bonab 5551761167, Iran

ABSTRACT

Modularity as an object oriented principle helps to develop

appropriate large-scale and complex software. But modularity

has some deficits [14] such as modular decomposition etc.,

which is not allowed widely using modularity in software

development in current years. In this paper some principles

have been provided for increase modularity of software

systems and help for turn an existing system to a modular

system. These principles distribute functionalities of each

module to them and decrease dependency of modules.

To obtain this aim, object oriented principles and heuristics

has been analyzed then by considering a module as an object,

new modular principles have been provided. In the reminder

to evaluate new principles, a new modular architecture has

been provided. The strength of new principles has been shown

with two complete case studies.

New principles can be used in any large-scale software

architectures, modular architectures and any service oriented

platforms.

Keywords

Modular Software Architecture, Quality Attributes, Object

Oriented Analysis and Design.

1. INTRODUCTION
As increasing the scale and complexity of software systems,

several types of approaches and architectures are proposed to

overcome the complexity of there. Centralized approach is

one of the proposed approaches. In this approach, the most

common tasks of system have been extracted and assigned to

the common part of system as named Core. Architectures

consist of several components [3]. The main purpose of

centralized approaches is to reduce the complexity of

developing components. So components are developed

quickly and many quality attributes of system is improved. In

centralized approaches other components are highly depend

on Core and if we change the Core, other components has

changed as well. So extensibility, modifiability and flexibility

of software are increased.

Modularity as an object oriented principle helps to have

extensible, modifiable and flexible software. To reach perfect

modular software we must have maximum amount of

cohesion and minimum amount of coupling [14]. Therefore

independent parts of software are excellent.

Based on [14], the biggest problem in modular development is

decomposability problem, means that we can’t always

decompose each system to parts that are independent from

each other [14]. So the big trade-off has been made between

being modular and modular decomposition.

Most software has used centralized approaches. As increasing

the scale and complexity of system, scale and complexity of

Core is increasing as well. Then management of Core is

turned to a big problem. On the other hand, while extending

and modifying the Core, all modules might change. Therefore

as increasing scale of Core, the Core can turn a GOD module

[1], so we can’t reach to modularity and written modules for a

system can’t be used in other systems.

For example, more than 1200 web portal and CMS is

presented in web applications [2]. The CMS is composed of

several modules [4]. For example Drupal is composed of more

than 8700 modules [5]. So, each module has been written

thousands times in general. These problems are due to lack of

modularity.

In this paper, to reach a highest modularity between modules,

a new modular principles based on decentralized approach

have been provided and use object-oriented principles and

heuristics, and distributes the Core complexity between other

modules.

Steps of developing and evaluating new principles have been

defined as following:

1. To examine incompetence of previous approaches and

categorized requirement list.

2. To determine new principles of Modular Software

Development.

3. To develop a new architecture and describe architecture

modules, to prove the benefits of new principles.

4. To provide steps for developing new modules based on

provided principles and describe how to use them.

5. To provide complete case studies based on new

principles and develop new ideas.

6. To evaluate the new provided principles based on

gathered requirement list.

2. PROBLEMS OF CENTRALIZED

APPROACH
Being centralized in comparison with decentralized and

modularized can cause numerous problems in development

software which categorized as fallowing:

Req1: Modules have to use Core Functionalities (CF) – the

common functionalities that have been centralized and

implemented in Core. So, modules cohesion is increasing and

dependency on Core is increasing as well, therefore

modularity of system will be decreased.

International Journal of Computer Applications (0975 – 8887)

Volume 44– No13, April 2012

27

Req2: Developing small-scale modules need to follow the CF.

Consequently; complexity of developing small-scale modules

will be increased.

Req3: The implemented CF is not complete in general.

Probably, developing large-scale modules is needed to use a

new CF which is not supported by the Core.

Req4: Due to centralized approach and dependency of

modules on Core, performing a Unit Test on modules is

difficult and quality of testability is decreasing.

Req5: Due to variety of CF types and patterns, considering all

of them in the Core cause to complexity of Core.

Req6: Because of centralized approach, integration of

implemented modules into different systems with different

Cores takes some efforts due to lack of standard interface.

Therefore system integrity and modules portability decrease.

Req7: In centralized approach, the overall CP (so-called Big

Picture) is apparent to all modules. So, encapsulation of CP is

violated.

Table 1 presents the relationship obtained from the

categorizing of above-mentioned requirements with software

architecture quality attributes. In previous studies which are

described in the reminder, none of above-mentioned problems

are considered.

Table 1. Quality attributes affected by requirement list.

LEGEND T P Io I Mo M E
E: Extendibility;

M: Modifiability;

Mo: Modularity;

I: Integrity;

Io: Interoperability;

P: Portability;

T: Testability.

 x Req1

 x x Req2

 x x Req3

x Req4

 x x Req5

 x x x Req6

 x x Req7

3. NEW MODULAR DEVELOPMENT

PRINCIPLES
Based on table 1, theses problems are related to Modularity

and in detail related to interoperability, portability, testability,

extendibility and modifiability. In this section, to solving

these problems, we used Object Oriented principles and

heuristics in [1].

Based on [1], we can consider a module as an object then we

can apply object oriented principles to obtain new modular

development principles. List of used Object Oriented

Heuristics from [1] are: Heuristic 2.1, 2.2, 2.4, 2.5, 2.6, 2.9,

2.10, 3.1, 3.2, 3.7, 3.8, 4.1, 4.2, 4.3, 4.4 and 5.3. By analyzing

concepts of above-mentioned principles and heuristics and

their relation with modularity concepts, we can provide new

principles for developing modular systems which is shown in

table 2.

Table 2. Mapping Object Oriented heuristics to Modular

principles.

Heuristics Code Provided Principle

H2.1, H5.3 M1 Each module should hold and manage

its own data by itself and Modules

can’t access each other data.

H2.9, H2.10 M2 Each module should perform all its

functionalities by itself and Modules

can’t access each other functionalities.

H2.2, H2.3,

H2.4, H2.5,

H2.6, H4.1,

H4.2, H4.3

M3 Minimize module relationships and

interface. Independent modules are

excellent.

H3.1, H3.2,

H3.7, H3.8

M4 Beware of creation of God module

[1]. (Minimize the Core).

4. EVALUATING PROVIDED

PRINCIPLES
For evaluating and testing the provided principles which are

shown in table 2, we proposed an architecture which was

named MEDA. MEDA which is shown in figure 1 has been

provided based on modular principles in table 2. In this

architecture to reach maximum quantity of modularity and

based on M2, each module has to perform all its functionality

by itself and Core just run final instructions that have been

sent by each module.

To reach maximum quantity of extendibility and

modifiability, we need a dynamic structure and dynamic

channel to communicate between modules. So, eXtensible

Markup Language (XML) technologies [12] have been used

to have dynamic structure and communication protocol

between modules. To have dynamic channel, a combination of

Event Driven Architecture [11] and a simple type of Bus

Architecture [13] has been used. Event-Bus module in Core

does these functionalities.

To support M1 and M4 from table 1, CAL (Content Access

Layer) as a content layer has been placed in MEDA. CAL

must execute instructions related to content access. Instruction

is sent from modules to Event-Bus and then from Event-Bus

to CAL. Contents can be Data, File or Web Services. In CAL,

we need modular content access that modules can’t access

content of each other. For example in modular file access we

must use operation system APIs that modules can’t access

files of each other. In modular data access we need assign a

specific database username and password to each module that

can’t access table of each other.

Module Installer Layer must install and hold each modules

and their profile. RTL (Run Time Layer) must do all runtime

actions except content access instruction. Exception Manager

must control and manage all exceptions that are sent from

modules. AA Manager do authentication of whole system and

based on M2, M4 authorization of system delivered to each

module. Module Presentation must control presentation

actions. Theme changing and language changing are done by

Module Presentation. For example when a user changes the

theme of CMS, theme changing as an event is sent to all

modules by Module Presentation. Systems Decoration must

manage template of CMS and locate modules presentation

part in considered place.

International Journal of Computer Applications (0975 – 8887)

Volume 44– No13, April 2012

28

 pkg Ov erall Architecture

Core Layer

Modules Layer

a Module

Content Access LayerModule Installer Layer

File Access Module Data Access Module Serv ice Access ModuleModules Registery Module Module Installer Module

RunTime Layer

Exception ManagerAA ManagerModules PresentationSystem Decoration

Ev ent Bus

Module Ev ent Processor

+ SetEvent(strXML) : String

Ev entBus Ev ent Processor

+ RaiseEvent(strXML) : String

«flow»

«flow»

«flow»

«flow»

Figure 1: MEDA, provided architecture for evaluating new principles.

5. OVERALL SEQUENCE OF EVENT

RAISING IN MEDA
In MEDA, each module and Core as a module, have to

implement a class by the name of Event-Processor and use

Event-Bus as a channel for interacting messages between

Core and modules. In this architecture we put messages in the

form of Events. All of modules and even the Core use

RaiseEvent method from Event-Bus for sending events

and Event-Bus uses SetEvent method from Event-Processor

(implemented in each module) for sending delivered events to

target modules.

Interaction between Core and modules are prepared by two

types of XML files by the name of Document Type Definition

1 (DTD1) and DTD2. For example after a user logged in to

system, Core will send a request (in the form of an event) to

get User Access List from all the modules to represent User

Control Panel. This action will perform by the use of an event

like: +getAccessList(String Username):String;

DTD1 is a template for sent events. DTD1 usually contains

event-type, event-name, input parameters names and values,

return type and value, event-sender, event-receiver(s), etc. But

while developing each module of MEDA, we must define

standard DTD for module event list.

Each module for sending an event must put it in the form of

DTD1 and invoke RaiseEvent method from Event-Bus.

Then Event-Bus analyze delivered event and in order to

sending event to target modules, use the SetEvent method

from Event-Processor class of each module. After that, all

recipient modules can response to this event by returning

value of SetEvent in the form of DTD2. DTD2 contains

returned values of each module. Finally, Event-Bus put all of

received DTD2s from each module in the <return> tag of

DTD1 and passes the final DTD1 as return value of

RaiseEvent.

6. STEPS FOR DEVELOPING

MODULES
In this section, steps of developing modules based on

provided principles are presented as following:

Step 1: Considering that the modular principles presented in

table 2 is very general, we must derive detailed modular

principles for desired module based on modular principles in

table 2.

Step 2: To examine previous methods and approaches in

modular systems for the module.

Step 3: To analyze and design of the module based on

modular principles and decentralized approach. Use Case

Model is necessary, because event list in following steps

obtained from Use Case list.

Step 4: Considering M3, we must provide optimized event list

of the module based on Use Case list. Event list must cover all

use cases of module.

International Journal of Computer Applications (0975 – 8887)

Volume 44– No13, April 2012

29

Step 5: To standardize DTD and XML Schema for events of

the module.

7. CASE STUDY 1: MODULAR

AUTHENTICATION AND

AUTHORIZATION
In this section steps of developing modular authentication and

authorization (AA) has been provided. In step 1, detailed

module principles for AA has provided in table 3.

Table 3. Derived principles for developing AA.

Base

Principle

Obtained Principle

M4, M2 Each module has to perform its

authorization by itself.

M4, M1 Each module has to hold and manage its

authorization data.

M3 Standardize an AA interface between

Core and Modules.

In step 2, we must collect and examine previous methods for

AA. Previous studies of AA used a centralize approach, hence

all AA data and its implementation is performed by Core [15].

However some studies distributed AA data into modules,

Core is controlling and deciding about AA [16]. This

centralized thinking has some inadequacy which will be

discussed in the reminder.

For authenticating, some systems use a standard account

management such as LDAP, SSO, NTLM, OpenID, OpenSSO

and Site Minder etc [17], [18], [15], [16].

To perform authorization, a variety of resources of a system

can be accessed by user in different levels. These resource

types can be Application, Portlet, Locations and Files

(Content-Model-Resources), Communications, Pages (or

Forms), Use Cases (or Actions), Tables (or Database Entities),

Objects (or Business Entities).

For authorizing, various approaches are provided. Role-Based

Access Control (RBAC) is the common method for

controlling user access to system resources and actions [19].

Some of the approached, for special uses, separated

authentication from authorization [20]. These methods used

federated user administration, therefore authentication

performs in user’s home system and authorization performs in

service provider system [21]. To support extensibility and

modifiability, AA methods used some new tools like Aspect

Oriented Programming Languages [22]. Open Service

Gateway initiative (OSGi) framework uses java standard

called Java Authentication and Authorization Service which is

a centralized approach [23].

Cristian and Gabriela showed that by distributing the security

functions, a more flexible architecture can be designed that

would lower the costs associated with implementation,

administration and maintenance [24].

In step 3, we must perform analysis and design step for AA

based on derived principles in table 3. Distilled use case

model is shown in figure 2.

In step 4, we must provide optimized event list of AA based

on its Use Case list. Optimized event list for AA is shown in

table 4.

In step 5, we must standardize DTD and XML Schema for

events of the module. Regard as this step outputs is large, an

instance of DTD1 and DTD2 is shown in figure 3.

Static Aspect Dynamic Aspect

 class AA Sta t ic Aspects

Syste mUse rs

- Password: String

- Username: String

- UsersOverallStatus: int

Syste mRole s

- Name: String

- RoleID: int

*
has Overall Role

1..*

 uc Authentication Functionality

SuperAdmin

Add new

CoreAdmin

Change

CoreAdmin

Status

Add New

ModuleAdmin

Change

ModuleAdmin

Status
Add new User

Change User

Ov erall Status
Sign Up

Login

Logout

Change

Password

Base User

User

Core

 (Authentication

Layer)

 cla ss AA Sta t ic Aspects

We know each

Module have to save

Usernames

and other things is

Black Box

 uc Authorization Functionality

Black Box

ModuleAdmin

Set new User

Set User

Permissions

Change User

Status

Change User

Permissions

Modules

(Authorization

Layer)

Figure 2: Distilled AA analysis and design.

International Journal of Computer Applications (0975 – 8887)

Volume 44– No13, April 2012

30

Table 4. Optimized event list for AA.

Use cases Events Description

New User,

Sign Up
NewUser(String Username):void;

As soon as a new user registers in system, Core should

inform all the modules, so the modules can grant

default permissions to he/she.

New

ModuleAdmin
NewModuleAdmin(String Username):void;

As soon as a new ModuleAdmin registers in system,

Core should inform the target module.

Change User

Overall Status

ChangeUserStatus(String Username,

UserStatus status):void;

When Core changes overall status of a user, should

inform all the modules.

Login getAccessList(String Username):String; For creating Control Panel for a user.

Other Use

Cases

For other cases modules act independently.

Figure 3: (a) An instance of DTD1; (b) An instance of DTD2.

8. CASE STUDY 2: MODULAR DATA

ACCESS ARCHITECTURE
In this section distilled steps of developing modular Data

Access (DA) has been provided. In step 1, detailed module

Software development principles for Data Access (DA) has

provided in table 5.

Table 5. Derived principles for developing DA.

Code Principle

Code

Principle

P1 M4, M1
Each module has to manage its Data

accessibility within itself.

P2 M4, M2
Each module has to perform its Data

Management by itself.

P3 M3

Standardize a DA interface between

Core and Modules and between

modules.

In step 2, we must collect and examine previous methods for

DA with decentralized approach.

DA methods in software architectures called Data Access

Patterns (DAP). DAPs are architectures or patterns that

manage the data access layer functionalities in Information

Systems. Nowadays more than 50 DAPs have been developed

[25]. Based on developed patterns from [25], [26] and etc, we

categorized all existing DAPs in six groups which are shown

in table 6.

There are not any modular data access patterns in provided

patterns and they can’t be used in our architecture.

Table 6. Provided category for exist DAPs.

Code Description

DAP0 These methods don’t use any data access layer and

any parts of code directly connect to database. Due

to high performance, these methods mostly are

used in real time systems.
DAP1 These methods use one or more classes in data

access layer to encapsulate database access details.
DAP2 These methods use DAP0. Also one entity class is

created for each table in database and all CRUD

(Create, Retrieve, Update and Delete) methods on

this table are handled by its entity class.
DAP3 These methods are similar to DAP2 and entity

classes are created for each table, but based on

object oriented heuristics, all CRUD methods

implemented in one class and other entity classes

inherit from it.
DAP3M These methods like DAP3, but metadata of all

tables are stored in database as well. All entity

classes inherit from Base Class. It create SQL

command dynamically and manage them using

stored metadata.
DAP4 In these methods unlike DAP3 and DAP2, entity

classes for each table are not created. To gain

excellent extendibility and modifiability (like

DAP3M), metadata of all tables is stored in

database and one or more classes perform all

CRUD methods for all tables.

Persistence Frameworks (PF) are similar to DAPs and they

can be used as a communication layer between applications

and database. In [27] and [28] some of PFs are listed. In [29]

other types of PFs and evaluation of them was provided as

well. For example Hibernate is a PF for Java. PFs and DAPs

<Event EventType=”AAMNG”
EventName=”getAccessList” EventID=”123”
SenderName=”Core” SenderID=”379”
ReceiverNames=”Core | a Module | *” ReceiverIDs=”12 ,
32 | *” RaiseDateTime=” ” Description=” ”>

 <InputFields>
<Field Name=”UserName” Value=”Jane”/>

 </InputFields>
 <Return Type=”String”>
 <!--return info must be in here in DTD2 format
-->
 </Return>
</Event>

<ReturnObjects ModuleName=”News” ModuleID=”123”
ReturnDateTime=”” Name=”News Access List”
Description=””>
<Object>
 <Field Name=”ID” Value=”1”/>
 <Field Name=”Title” Value=”Add New News”/>
 <Field Name=”URL”
Value=”www.test.com/UI/News?1”/>
</Object>
<Object>
 <Field Name=”ID” Value=”2”/>
 <Field Name=”Title” Value=”Change News”/>
 <Field Name=”URL”
Value=”www.test.com/UI/News?2”/>
</Object>
</ReturnObjects>

International Journal of Computer Applications (0975 – 8887)

Volume 44– No13, April 2012

31

use similar approaches to communicate with database. All

provided PFs are not modular as well.

Other Web Frameworks and Portals like SAP [17], Liferay

[15], Zend [16], Alfresco [18] and Drupal [8] use a provided

PFs or DAPs and none of them are modular. In [6], [7] and [9]

new DAPs have been developed, but none of them are

modular as well.

Another approach is Modular Database. In [10] modular

databases have been suggested as a challenge and many

aspects of it have been investigated. Afterwards, in [31] and

[30] new architectures for modular database have been

provided, but don’t support all aspect of modularity and

extendibility like event-driven. In next sections we will show

that modular database can’t be a modular data access layer

and it is not a panacea for our problem.

In step 3, we must perform analysis and design step for

modular DA based on derived principles in table 5. Distilled

use case model is shown in figure 4.

In step 4, we must provide optimized event list of modular

DA based on its Use Case list. Optimized event list for DA is

shown in table 7.

Adding a new event will not affect DA in any way. For

example, in order to gather Content Search, we can add an

event such as: +getContentSearch(String ContentInfo):String;

(from Core.DA to All Modules) into event list and then all

modules can response to this event and Core after get all

results from modules, complete final result and return it.

In step 5, we must standardize DTD and XML Schema for

events of the module. Regard as this step outputs is large, an

instance of DTD1 and DTD2 is shown in figure 5.

Static Aspect Dynamic Aspect

 class DAMA Data Model

Modules

- ModuleID: int

- ModuleName: String

- PrivatePassword: String

- PrivateUsername: String

Tables

- AccessLevel: AccessType

- sendCevent: Boolean

- sendDevent: Boolean

- sendRevent: boolean

- sentUevent: Boolean

- TableID: int

- TableName: String

Fields

- AccessLevel: AccessType

- FieldID: int

- FieldName: String

1

1..*

1

1..*

 uc DAMA Analysis and Design

a Module

Create

Update

Delete

Retriev e

Chaeck and

Request from

DAMA

Check

Accessibility

Execute SQL

Command

Raise CRUD

Ev ent

get Public

MetaData
Select from

Module

«extend»

«include»

«include»

«include»

«include»

«include»

«include»

«extend»

Core
Layer

Modules
Layer

Figure 4. DA distilled analysis and design.

Table 7. Optimized Event List For DA.

Use cases Events from to Description

Create,

Update,

Delete

ExecuteSQL (String

strSQL):String;

A

Module
DA

When a module wants to perform a SQL command from its tables by

DA, should use this event. As the type of Create, Update and Delete

are different from Retrieve; they were categorized in different event.

Retrieve
ExecuteRetrieveSQL(

String strSQL):String;

A

Module
DA

When a module wants to Retrieve from its tables by DA, should use

this event.

Select from

a Module

RetrieveRequest(String

strSQL):String;

A

Module

Another

Module

When a module wants to select from another modules tables, should

use this event. This event performs after Get Public MetaDate event.

Get Public

MetaData

getPublicMetaData():

String;

A

Module

Another

Module

Any modules must to response to this event that is sent from other

modules and return its public access tables.

Raise CRUD

Event

CRUDEvent(String

CRUDInfo):void;

A

Module

All

Modules

Each module can raise a CRUD notice event after CRUD performs.

With this event, modules can inform other modules.

Other Use

Cases

For other cases, modules act independently or don’t need to any event.

International Journal of Computer Applications (0975 – 8887)

Volume 44– No13, April 2012

32

Figure 5. (a) An instance of DTD1. (b) An instance of DTD2.

9. EVALUATION
In section 2, we categorized a requirement list as problems of

centralized approaches. Decentralized principles capture all of

these requirements which are shown in table 1. In fact,

decentralized principles improve all quality attributes which

are mentioned in table 8.

Table 8. Requirement list is captured by MEDA.

Description Captured

Requirements

Modules are independent in selecting

their own patterns. They just have to

consider Core’s standard interface.

Req1, Req2,

Req3

Since modules are not dependent to Core,

unit test of each module can perform

easily far from the Core.

Req4

Modules are free to choose their patterns

and we don’t need to collect all patterns

in Core.

Req5

As establishing a new standard interface

for Core and modules communication,

integrity and portability of modules was

increased and modularity of each module

was increased to higher degree.

Req6, Req7

10. CONCLUSION
In this paper, new decentralized principles for modular

systems have been provided. These principles distribute Core

functionalities between modules based on robust object

oriented thinking. So, dependencies between modules

decrease saliently and existing systems turn to more modular

systems. Therefore module development will take extra effort

than before. Although it could be a disadvantage in

comparison with centralized systems, this extra effort is worth

benefiting of being decentralized.

These principles can be use in Service Oriented Platforms and

any large-scale modular software. In addition, we can use

these principles to any aspect of software. For example

modular authentication and authorization and modular data

access have provided as case studied. Modular exception

handling, modular service access, modular file access and etc,

can be investigate as future works of this paper.

11. REFERENCES
[1] A. J. Riel, Object-Oriented Design Heuristics, Addison

Wesley, 1996.

[2] The Content Management Comparision Tool, available

at http://www.cmsmatrix.org

[3] Recommended Practice for Architectural Description of

Software Intensive Systems. Technical Report IEEE

P1471-2000, IEEE Standards Department, The

Architecture Working Group of the Software

Engineering Committee, 2000.

[4] B. Boiko, Content Management Bible, 2nd Edition,

Wiley Publishing, Inc., Indianapolis, Indiana, 2005.

[5] Drupal, Open Source CMS, available at

http://Drupal.org/Project/Modules

[6] A. Neto, H. Fernandes, D. Alves, D.F. Valc´arcel, B.B.

Carvalho, J. Ferreira, et al, A standard data access layer

for fusion devices R&D programs, Fusion Engineering

and Design 82 (2007) 1315–1320.

[7] S. Fiore, A. Negro, G. Aloisio, The data access layer in

the GRelC system architecture, Future Generation

Computer Systems 27 (2011) 334–340.

[8] M. Butcher, G. Dunlap, M. Farina, L. Garfield, K.

Rickard, J. Albin Wilkins, Drupal 7 Module

Development, Packt Publishing, 2010.

[9] G. Manduchi, A. Luchetta, C. Taliercio, T. Fredian, J.

Stillerman, Real-time data access layer for MDSplus,

Fusion Engineering and Design 83 (2008) 312–316.

[10] W. Mahnke, H. Steiert, Modularity in ORDBMSs – A

new Challenge, Tagungsband 13. Workshop, Grundlagen

von Datenbanken, GI-FG 2.5.1, Magdeburg, Juni 2001.

[11] O. Etzion, P. Niblett, Event Processing in Action,

Manning Publications, USA, 2011.

[12] R. Bourret, A. B. Coates, B. Harvey, G. K. Holman, M.

Kay and et al, Advanced XML Applications from the

Experts at The XML Guild, Thomson Learning Inc,

2007.

[13] D. Chappell, Enterprise Service Bus, O'Reilly Media,

Inc, 2004.

[14] B. Meyer, Object Oriented Software Construction,

Second Edition, Prentice Hall, 1997.

<Event EventType=”DAMA-Select”
EventName=”SelectNews” EventID=”123” SenderName=”A
Module” SenderID=”379” ReceiverNames=” B Module”
ReceiverIDs=”12” RaiseDateTime=” ” Description=” ”>

<InputFields>
 <Field Name=”SQLCommand”
Value=”Select * from News where
NewsNO<14”/>
</InputFields>
<Return Type=”String”>

<!-- return info must be in here in
DTD2 format -->
</Return>

</Event>

<ReturnObjects ModuleName=”B Module” ModuleID=”123”
ReturnDateTime=”” Name=”NewsRow” Description=””>
<Object>
 <Field Name=”NewsNO” Value=”10”/>
 <Field Name=”NewsTitle” Value=”news title1”/>
 <Field Name=”NewsBody” Value=”news body1”/>
</Object>
<Object>
 <Field Name=”NewsID” Value=”11”/>
 <Field Name=”NewsTitle” Value=”news title2”/>
 <Field Name=”NewsBody” Value=”news body2”/>
</Object>
</ReturnObjects>

http://www.cmsmatrix.org/
http://drupal.org/Project/Modules

International Journal of Computer Applications (0975 – 8887)

Volume 44– No13, April 2012

33

[15] J. X. Yuan, Liferay Portal 6 Enterprise Intranets,

PACKT Publishing, 2010.

[16] K. Pope, Zend Framework 1.8 Web Application

Development, PACKT Publishing, 2009.

[17] R. Jay, SAP NetWeaver Portal Technology – The

Complete Reference, McGraw Hill, 2008.

[18] M. Shariff, V. Choudhary, A. Bhandari, P. Majmudar,

Alfresco 3 Enterprise Content Management

Implementation, PACKT Publishing, 2009.

[19] R. S. Sanhu, Role hierarchies and constraints for lattice-

based access controls, In Proceedings of the Fourth

European Symposium on Research in Computer Security

(ESORICS96,Rome, Italy, Sept. 25-27), E. Bertino, Ed.

Springer-Verlag, New York, NY, 1996.

[20] R. Castro-Rojo, D.R. López, The PAPI System: Point of

Access to Providers of Information, Terena, 2001.

[21] M. Steinemann, T. Spreng, A. Bachmayer, T. Braun, C.

Graf, M. Guggisberg, Authentication and Authorization

Infrastructure: Portal Architecture and Prototype

Implementation, IAM-03-012, 2003.

[22] G. Ahn, H. Hu, J. Jin. Security-Enhanced OSGi Service

Environments, IEEE Transactions on Systems, Man and

Cybernetics—Part C: Applications and Reviews, Vol.

39, No. 5, September 2009.

[23] R. S. Hall, K. Pauls, S. McCulloch, D. Savage, OSGi in

Action, Manning Publications, 2011.

[24] C. Opincaru, G. Gheorghe, Service Oriented Security

Architecture, 2008.

[25] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, R.

Stafford. Patterns of Enterprise Application Architecture,

Addison Wesley, 2002.

[26] C. Nock. Data Access Patterns: Database Interactions in

Object-Oriented Applications, Addison Wesley, 2003.

[27] Java Persistence Layer Source Codes, available online at:

http://Java-source.net/persistence.

[28] C# Persistence Layer Source Codes, available online at:

http://Csharp-source.net/persistence.

[29] R.Barcia, G.Hambrick, K.Brown, R.Peterson,

K.S.Bhogal, Persistence in the Enterprise: A Guide to

Persistence Technologies, IBM Press, 2008.

[30] F. Irmert, M. Daum, K. Meyer-Wegener, A New

Approach to Modular Database Systems, SETMDM '08

Proceedings of the 2008 EDBT workshop on Software

engineering for tailor-made data management ACM

New York, NY, USA ©2008.

[31] M. Mammarella, S. Hovsepian, E. Kohler, Modular Data

Storage with Anvil, SOSP’09, October 11–14, 2009, Big

Sky, Montana, USA.

http://java-source.net/persistence
http://csharp-source.net/persistence

