
International Journal of Computer Applications (0975 – 8887)

Volume 44– No11, April 2012

17

Analytical Parallel Approach to Evaluate Cluster based

Strassen’s Matrix Multiplication

Nidhi Pasricha

M.Tech(CSE)
LLRIET, Moga.

Asst. Prof, LLRIET, Moga

Ankit Arora
 M.Tech (IT)

 Guru Nanak Dev University Asr.
 Asst. Prof, LLRIET, Moga.

Rajbir Singh Cheema
M.Tech(CSE)

Guru Nanak Dev Eng. College Ldh.
Associate Prof, LLRIET, Moga.

ABSTRACT
Today current era of scientific computing and computational

theory involves high exhaustive data computation, shifted the

trend of data processing from conventional processing

towards parallel processing by incorporating multiple

processing hardware. Parallel hardware design can employ

array processors, pipelined system which can be further

extended to scalar and super scalar pipelined systems. Other

hardware designs proposed, is based upon multiprocessors or

they may be designed as distributed parallel cluster systems.

In this paper, multi-computers are the basic hardware for

cluster design over the local area network covering analysis of

matrix multiplication with strassen’s algorithm. The estimated

results are then compared with traditional matrix

multiplication algorithm. Strassen’s multiplication approach

reduces one multiplication out of eight by computing

arithmetic additions/subtractions for each 2×2 matrix. High

performance can be achieved as the idea is extended over to

multi-computer cluster for large sized matrices. This work

covers analysis of Strassen’s ability of divide and conquers[5]

to run in parallel by decomposing matrix size over cluster

machines covering data parallel aspects with SIMD based

computational model [4], where each cluster machine

performs its own recursive divide and conquer approach as

defined by strassen’s methodology[9][10] to obtain

partitioned matrix multiplication. Finally, the detailed

distributed experiment along with connectivity interface and

implementation will be discussed.

General Terms

Distributed Clustering, Strassen’s algorithm, Divide and

Conquer, Workload Partitioning and Distribution.

Keywords

Client-Server, TCP/IP Sockets, Matrix Multiplication, Data

Parallel aspects, Space Sharing Policies.

1. INTRODUCTION
Today, there is a great trend of multi-processor architecture

but most of the experimentation studies incorporate massive

cluster computing as they provides flexibility over logical

design of distributed machine. Distributed parallel Cluster

consisting of set of independent clients modeled as Local

Area Network cooperatively working together as a single

integrated computational resource. The Idea behind this to

provide higher accessibility, considering a industry scenario

where large quantity of personal computers are discarded not

because of hardware failure but because of their less

performance as compare to modern scientific ability. Such

machines can be organized as clustered groupware to achieve

parallel effects. Reliability is the another major factor behind

the design of cluster framework as load balancing issues can

be resolved if one having extra load then other may share its

load, such machines generally follows the rules of SMA

(shared memory access). Scalability is the another major

demand which generally not fulfilled by real multi-processor

systems, theses machine designed to adapt fixed no. of

processor chips, even such machines if modified requires

extensive amount of hardwired circuitry to be changed. As

compared to network clustering the nodes can be increased or

decreased as per the requirements of the applications.

Distributed processing provides a way of getting topological

benefits by incorporating any of the cluster design,

heterogeneity can be adapted if applications having different

parallelism loads. So applications having no. of parallel

threads each of which having less complex computational

logic will be scheduled to low speed clusters, where as

applications having large no. of parallel threads having

complex computational and data intensive work will be

scheduled to high speed cluster nodes. Scheduling

transparencies can be achieved, only the controller knows

which node having which sub-task and computation logic if

the cluster is designed to compute multiple algorithmic logics

for different class of problems [12]. In this experiment cluster

behaves like client-server architectural model where server

distribute the job to their clients via TCP/IP sockets [13][14].

Each client follows Strassen’s algorithm [9][10] which is

based on divide & conquer paradigm. The paradigm follows

the space sharing policy [3], where no. of processors are

allocated to different parts of single active job. Job is

partitioned among various sub-tasks and each task is assigned

to individual cluster node, after then cluster computes its

designated computation and sends result back to the controller

where the final consolidated result will be obtained as shown

in the fig 1 where 5 steps methodology will be discussed. In

the further article the research towards Stassen’s algorithm

[9][10]which divides the square matrices using n/2 fractions

and divides till size n>2 and starts performing 7 multiplication

and 18 additions for each pair of 2×2 matrix. Thus helps in

reducing complexity time from traditional multiplication

O(n3) to O(n2.81) when run recursively over uni-processor

architecture, as it reduces 8 multiplications to 7 and total of 18

arithmetic additions and subtraction. The detailed working of

algorithm will be discussed in further algorithmic approach

section. Time bounds above discussed is based upon

sequential execution of both traditional approach and

strassen’s divide and conquer approach [5]. This work is

extended to compute strassen’s time complexity analysis over

clustered operations parallely.

International Journal of Computer Applications (0975 – 8887)

Volume 44– No11, April 2012

18

Fig 1: Space sharing policy

1. Parallel Application having capacity to run in

parallel fashion.

2. Partition manager segmented the application logic

to obtain concurrent modules/sub-tasks.

3. Thread Interconnection network required to share

information about sub-task completion as well as

thread synchronization.

4. Dispatching Thread Allocates a particular sub-task

to a particular available/ free processor.

5. Merging module required to combine all of the sub-

task solutions.

2. LITERATURE REVIEW
Previous research discusses the use of cluster based parallel

computing framework (CBPCF) [3] for high-performance

computing as a cost effective and attractive alternative for

multiprocessors to analyze the matrix multiplication with

traditional n3 algorithm over a client-server architecture,

where server distribute the job to their clients and each clients

execute the job sequentially. This approach provides greater

utilization of parallelism, as job executed on cluster nodes.

Other research literature covering cluster operations

implements image compression using run-length encoding

techniques [1]. The performance of matrix multiplication can

also be further optimized. This research paper involves

improving further performance of matrix multiplication by

strassen’s algorithm [9][10]in cluster base system.

3. ALGORITHMIC APPROACH

Fig 2: Showing algorithmic approach

Concurrent Modules / sub

logic

Final solution

Computation

Parallel application

Processor Interconnection N/W

User interface

Execution logic

Partition manager

Thread interconnection n/w

Task-1
1

Merging module

Multiple Dispatching threads

PU PU PU PU PU

2

4

5

=

5

1

3

Task-2 Task-n

…….

.

(n/2)

No of 2*2 matrices

.

.

.

.

No of 2*2 matrices

No. of 2*2 matrices

User/Task

1024
64*64 (n)

32*32

256 32*32

2*2

(n=2)

1

16*16 16*16

International Journal of Computer Applications (0975 – 8887)

Volume 44– No11, April 2012

18

Strassen’s algorithm [9][10] is faster and involves less

multiplications than traditional matrix multiplication

algorithm. As described in earlier section, algorithm divides

the square matrices using n/2 fractions and divides till size

n>2. At reaching n=2, the partitioning stops and starts

performing 7 multiplication and 18 additions for each pair of

2×2 matrix. Each cluster node receives a portion of the matrix

then it firstly divides the matrix into 2’s fractions and divides

till it reaches into 2×2 matrices. So 64×64 matrices is divided

into 32×32 matrices and each of them then divides into 16×16

and so on as shown in fig-2. Upon reaching 2×2 it follows

equations described by the strasen’s algorithm as-.

 𝑃 = (𝐴11 + 𝐴22)∗(𝐵11+𝐵22)

 𝑄 = (𝐴21 + 𝐴22)∗ 𝐵11

 𝑅 = 𝐴11 ∗ (𝐵12− 𝐵22)

 𝑆 = 𝐴22 ∗ (𝐵21− 𝐵11)

 𝑇 = (𝐴11 + 𝐴12)∗𝐵22

 𝑈 = (𝐴21 − 𝐴11)∗(𝐵11+𝐵12)

 𝑉 = (𝐴12 − 𝐴22)∗(𝐵21+𝐵22)

 𝐶11 = 𝑃 + 𝑆 − 𝑇 + 𝑉

 𝐶12 = 𝑅 + 𝑇

 𝐶21 = 𝑄 + 𝑆

 𝐶22 = 𝑃 + 𝑅 − 𝑄 + 𝑈

4. MODELING PARADIGM
Modeling paradigm consists of two execution layers one is

Hardware and another one is Software layer. Hardware

execution layer contain processor and memory unit for

processing and storage purpose. Software layer contain logical

programmed module consisting master core program

controlling logical program execution via partitioning and

merging modules. Partition and distribution logic generates

the sub-tasks and distributes over to the cluster nodes.

Merging modules waits and consolidates final cluster

outcomes after finishing cluster computation (see Figure 3).

Further the Hardware configuration for the cluster framework

is, Intel Pentium Dual-Core CPU with 3.2 GHz processor and

1 GB Ram, Network Ethernet switch configured with star

topology and distributed software implementation with

Microsoft Visual Basic 6.0 [7], Socket communication

connections are implemented via Microsoft Winsock Control

(Mswinsck.ocx). Following is the general code of Winsock

listener [8].

Winsock1.Protocol = sckTCPProtocol

Winsock1.LocalPort = 1101

Winsock1.Listen

Winsock1.Accept

 Winsock1.SendData Message

 Fig 3: Modeling paradigm

H/W Execution Layer S/w Execution Layer

Proc. Unit & Memory Master core program

Shared Access Interface

Partition & distribution

logic

Merging Module

Network Interface unit

Proc. Unit

Shared memory

Module logic

Proc. Unit

Shared memory

Module logic

Proc. Unit

Shared memory

Module logic

Proc. Unit

Shared memory

Module logic

Communication Network

 Job list

2

1

3

5

4

International Journal of Computer Applications (0975 – 8887)

Volume 44– No11, April 2012

19

5. CLUSTER DESIGN

Logical Distributed parallel design consisting master

controller as a basic core part performs workload partitioning

[6] and is also responsible for final result consolidation from

individual cluster nodes. The master module also covers the

job generation module, measurements of timing variations

describing total time, partitioning and workload transmission

time, merging and allocation time. This module during

initialization establishes the interconnection via Microsoft

Winsock control[8] to each of the intended cluster clients,

then it partitions the workload, perform distribution via shared

Partitioning and workload transmission time(𝑃𝑤) shows the

time elapsed at master to partition the job and the time to

transmit the work load over the network.

Allocation time(𝑎) is the time which is elapsed in during

transmission of control signal from master to cluster nodes

about ensuring the job workload has been transferred to their

shared memory and now ready to compute.

.

Fig 4: Cluster Design

Memory interconnection [11] and finally merging thread

computes the final consolidation results. Message Passing

communication is performed to send signals to the cluster

nodes ensuring that their sub-task are now ready for

computation. Job generation module handles the creation of

matrices with desired sizes, the matrices are stored under text

files which are partitioned and distributed over cluster nodes

via TCP/IP file sharing service. Further the analysis results

covers the comparisons considering total time consumed from

job submission to till its final result covering each and every

aspect of timing consumed regarding workload partitioning

[6] and merging. Client side module is basically a task

receiver performing desired computation and finally sends

results back to master controller via share memory interface.

Each cluster node uses message passing communication to

send control message to the master regarding their sub-task

completion

6. PERFORMANCE MEASUREMENTS

Various Timing parameters that help to measure the

performance of cluster framework are: Total time (𝑡),

Partitioning and Input Work load Transmission time(𝑝𝑤),

Merging time(𝑚), Allocation time 𝑎 , Computation &

Output File Transmission time(𝑐). Total Time (t) is time

consumed from job submissions to till its final completion.

Allocation Time is the time elapsed while transmitting

message to ensure each cluster node that their sub-tasks are

ready for computation.

𝑡 = 𝑝𝑤 + 𝑚 + 𝑎 + 𝑐

Computation & Output File transmission time(𝑐) is the time

taken by cluster clients to execute the job as well as finally

send output file over the network, it is the combined time of

all allocated cluster nodes. Pw is the time used to generate sub

tasks and their transmission over the network.

𝑐 = 𝑡 − (𝑝𝑤 + 𝑎 + 𝑚)

Merging time 𝑚 is the time taken by master to merge the

workload results from the cluster clients to final outcome.

6.1 Performance Measurements

Fig 5: Cluster Timing with size-2

Table 1: Matrix Multiplication Timing Variations

0

50

100

150

200

250
No of processor-2

2

Matrix size

Ti
m

es
 in

 s
e

c

International Journal of Computer Applications (0975 – 8887)

Volume 44– No11, April 2012

20

Fig 6: Cluster Timing with size -3

 Fig 7: Cluster Timing with size -4

 Fig 8: Cluster Timing with size -6

Fig 9: Cluster Timing with size -8

0

50

100

150

200

600*600 900*900 1200*1200

No of processor-3

Matrix size

T
im

e
in

 s
ec

0

50

100

150
No of processor-4

4

Matrix size

Ti
m

es
 in

 s
e

c

0

20

40

60

80

100

600*600 1200*1200

No of processors-6

6

Matrix size

T
im

es
 i

n
 s

ec

0

10

20

30

40

50
No of processor-8

8

Matrix size

T
im

e
in

 s
ec

Time in Sec

No. of

cluster

Nodes

Size of

matrix

(n*n)

Total

Time

Partitioning &

Input workload

Transmission

Time

Merging

Time

Alloc.

Time

Comp. &

Output File

Transmission.

Time

2 32*32 0.042 0.020 0.0007 0.0004 0.020

2 64*64 0.085 0.022 0.0013 0.0004 0.061

2 128*128 0.338 0.027 0.003 0.0004 0.0029

2 256*256 2.447 0.073 0.013 0.0004 2.359

2 400*400 8.878 0.15 0.037 0.0005 8.687

2 512*512 18.42 0.237 0.063 0.0004 18.124

2 600*600 29.66 0.417 0.090 0.0004 29.246

2 800*800 68.42 0.573 0.573 0.0004 67.634

2 1024*1024 183.45 1.110 0.600 0.0004 18173

2 1200*1200 232.20 1.239 0.677 0.0004 230.283

3 600*600 20.16 0.319 0.090 0..0004 19.657

3 900*900 25.96 2.180 0.287 0.0006 123.497

3 1200*1200 156.20 1.613 0.600 0.0004 153.956

4 32*32 0.059 0.039 0.0008 0.0004 0.018

4 64*64 0.090 0.044 0.0015 0.0004 0.044

4 128*128 0.232 0.049 0.003 0.0004 0.0017

4 256*256 1.369 0.123 0.139 0.0004 1.232

4 400*400 4.806 0.154 0.036 0.0005 4.517

4 512*512 9.818 0.237 0.063 0.0004 9.360

4 800*800 35.90 0.573 0.219 0.0004 28.542

4 1024*1024 74.11 1.452 0.389 0.0004 72.268

4 1200*1200 119.1 1.972 0.677 0.0004 116.531

6 600*600 10.90 0.708 0.090 0.0006 10.104

6 1200*1200 81.65 2.704 0.605 0.0005 78.345

8 32*32 0.099 0.077 0.0009 0.0005 0.020

8 64*64 0.78 0.087 0.0015 0.0005 0.691

8 256*256 1.57 0.223 0.014 0.0005 1.132

8 400*400 3.31 0.444 0.039 0.0005 2.833

8 512*512 5.930 0.683 0.061 0.0005 5.805

8 800*800 20.07 1.560 0.229 0.0005 18.287

8 1024*1024 40.47 2.502 0.389 0.0006 37.580

9 900*900 66.681 0.906 0.287 0.0004 65.486

International Journal of Computer Applications (0975 – 8887)

Volume 44– No11, April 2012

21

Fig 10: Cluster Timing with size -9

7. COMPARATIVE ANALYSIS
Result based upon the strassen’s execution algorithm over

cluster environment proved to be very effective than the

previous implemented traditional matrix multiplication

algorithm covered in research article “A Cluster Based

Parallel Computing Framework for Performance Evaluation

of Parallel Applications” published International Journal

Computer Theory and Engineering, Vol.2, No.2 April, 2010.

[2] As the analysis shows Total completion time for the

computation of 128*128 Matrix with 2 processor is 0.338 sec

where as with traditional algorithm the Total time is 0.646

sec. Similarly other matrices with their timing comparison

results are shown in the following table

Table 2: Matrix Comparison Result

8. CONCLUSION & FUTURE WORK

Cluster framework used in this research is configured via

10/100mbps Ethernet card with cat-5 twisted pair cabling. The

Analysis predicted during running cluster execution describes

that as the cluster nodes increases the timing consumed during

workload transmission and final outcomes transmission from

cluster nodes is growing exponentially. This is because some

times the cluster clients simultaneously accesses master’s

shared memory, also during workload transmission from

master to cluster clients takes more time because the

architecture has single medium attached with master to

Ethernet switch, so that medium will be overloaded and gives

response delay. Further this extra time is incorporated inside

the total time estimated above. The architecture can be

improved if the master computer having multiple Ethernet

card describing n-computing structure. Now the workload can

be transmitted via parallel lines. In this case the nodes can be

organized as a cluster group with one particular Ethernet card

linked over the master, this will lead to the sub-cluster

generation. Also the performance will be increased. Future

work will covers the implementation analysis over this

cluster architecture.

9. REFERENCES
[1] Ankit Arora, Amit Chhabra 2011 Cluster based

Performance Evaluation of Run-length Image

Compression Volume 33–No.5, international Journal of

Computer Applications, Foundation of Computer

Science New York.

[2] Amit chhabra, Gurwinder Singh 2010 Cluster Based

Parallel Computing framework for Performance

evaluation of Parallel Applications, Vol.2 April – 2,

International Journal of Computer Theory and

Engineering.

[3] Amit chhabra, Gurwinder Singh 2009 Simulated

Performance Analysis of Multiprocessor Dynamic Space

Sharing Scheduling Policy, Vol.9 Feb – 2, International

Journal of Computer Theory and Engineering

[4] Michael Sung, 2000 SIMD Parallel Processing, 6.911:

Architectures Anonymous

[5] Jonathan C. Hardwick 1997 "Practical Parallel Divide-

and- Conquer Algorithms", CMU-CS-97-197

[6] Phyllis E.Crandall, Michael. j. Quinn 1993 Data

Partitioning for Networked Parallel Processing, In

Proceedings Data of Fifth Symposium on Parallel and

Distributed Processing, Irving, TX.

[7] Visual Basic 6 Client/Server Programming Gold Book

1998, The Coriolis Group, ISBN: 1576102823.

[8] Bob Quinn Dec, 1995. Windows Socket Network

Processing second edition Addison Wesley Professional,

ISBN-10:0-201-633728.

[9] Ellis Horowitz, Sahni, 1978 Fundamentals of computer

Algorithm Second edition, Computer science press.

[10] Thomas .H Coremen, Introduction to Algorithms, Second

Edition Massachusetts institute of technology ISBN 0-

262-03293-7.

[11] Omer Khan, MiesZko Lis, A Scalable Shared Memory

Multicore Architecture. Massachusetts institute of

technology Cambridge, MA, USA, june-2010, MIT-

CSAIL-TR-2010-030.

[12] Steve J. Chapin, Syracuse University, Distributed and

Multiprocessor Scheduling Volume 28 Issue 1, March

1996 ACM Digital Library New York, NY, USA.

[13] Kameswari Chebrolu, Socket Programming, Dept. of

Electrical Engineering, IIT Kanpur.

[14] Rajinder Yadav, Client/Server Programming with

TCP/IP Sockets, Sept 9, 2007.

0

50

100

900*900

No of processors-9

9

T
im

es
 i

n
 s

ec

Matrix size

Matrix

size

Strassen’s divide &

conquer algorithm

Traditional matrix

multiplication

algorithm

 2 4 2 4

128*128 0.338s 0.232s 0.646s 0.584s

256*256 2.447s 1.369s 4.940s 2.494s

512*512 18.42s 9.818s 35.705s 19.420s

