
International Journal of Computer Applications (0975 – 8887)

Volume 44– No10, April 2012

22

A Language to build a Symptom Catalog for Autonomic

Computing System

M. M. Math
KLS, Gogte Institute of
technology, Udyambag,

Belgaum Karnataka

Anjana. N

KLS, Gogte Institute Of
Technology,Udymbag,

 Belgaum

U. P. Kulkarni
SDM College of Engg
Technogy, Dharwad

ABSTRACT
The aim of the Autonomic Computing is to increase reliability

and performance by enabling the system to be Self- managed.

Challenging issue in making the system autonomous is to

introduce the standardization for co-existences of

heterogeneous system. Every system has its own log file

format, to make multiple systems to co exists in the corporate

world there is a necessity to follow standard format called

Common Base Event (CBE) to represent the log files, the

context called Symptom and the actions that administrator

may initiate. This paper proposes a new user friendly

language to represent the Symptoms and associate the actions

and supports the co-existences of systems with heterogeneous

log format without the need for conversion to CBE format.

General Terms

Log Trace analyzer, Log Adapter, Autonomic System

Manager

Keywords
Autonomic Computing, Self managed resource, log file, Common

base event and Symptom Catalog.

1. INTRODUCTION
The advances in computing and communication technologies

and software have resulted in an explosive growth in

computing systems and applications that impact all aspects of

our life [1][2][3]. However, as the scale and complexity of

these systems and applications grow, their development,

configuration and management challenges are beginning to

break current paradigms, capabilities of existing tools and

methodologies. Also, these computing systems and

applications are unmanageable and insecure. This is beginning

to outpace our ability to manage them. This has led

researchers to consider alternative approaches based on

strategies used by biological systems to successfully deal with

similar challenges of complexity, dynamism, heterogeneity

and uncertainty.

A general problem of modern distributed computing systems

is very complex and managing of such system is becoming a

significant limiting factor in their further development. Many

companies and institutions are employing large-scale

computer networks for communication and computation. The

distributed applications running on these computer networks

are varied and deal with many different tasks, ranging from

internal control processes to presenting web content and to

customer support. Additionally, Mobile computing [4] is

pervading these networks at an increasing speed. To access

their companies‟ data the employees need to communicate

with their companies while they are not in their office using

laptops, PDAs, or mobile phones with various forms of

wireless technologies.

 This develops huge complexity in the overall computer

network and administrator finds difficulty in controlling these

systems manually. This manual control is time-consuming,

expensive, and error-prone and effort needed to control a

complex networked computer system tends to increase very

quickly towards infrastructure at the client specific application

and database layer. Most Autonomic service providers

guarantee only up to the basic plumbing layer i.e. up to power,

hardware, operating system, network basic database

parameters etc.

 A possible solution could be to enable modern, networked

computing systems to manage themselves without direct

human intervention. In an Autonomic System, the human

operator doses not control the system directly. Instead, he

defines general policies and rules that serve as an input for the

self-management process. This has led to the IBM Autonomic

Computing initiative.

2. RELATED WORK
IBM‟s initiation of Autonomic Computing and continuous

work over the years has produced „Autonomic Computing

Toolkit‟ „[5][6][7] which assists software developers in

enabling software components to become autonomic. The

toolkit also provides the base for developers of management

software to be able to manage entities that have been properly

enabled. It has tools like Log Trace Analyzer, Generic Log

Adapter, Symptom Catalog, and Correlation Engine etc,

which can together implement Autonomic solutions.

Symptom Catalog is a repository of the rules which are used

for monitoring the application. It maintains the rules and

associated steps to be taken when that rule is breached. The

present complex system needs a huge knowledge database to

operate tools which keeps system administrator away from

implementing Autonomic solutions [8]. Also there is a need

for easier way of maintaining symptom rules for an

administrator is evident.

 Autonomic System Manager (ASM) is focused on

creating an environment for the system administrator where

he can monitor and maintain applications by creating policies

for the working of the application. Any breach of policy is

undesired, the ASM takes care and alerts the administrator to

take appropriate action associated with the rule. The ASM [9]

provides the administrator with a user friendly “SYMPTOM

CATALOG” (SC) which allows him to create policies for the

application. Administrator is endowed with the ability to

create simple rules by having rule expressions as

combinations of various events and operations between them.

The simpler rules can be reused for the creation of complex

rules. This is a new feature of SC to provide complex rule

creation is what makes the ASM unique.

mailto:mmmath@rediffmail.com%0EAnjana
mailto:mmmath@rediffmail.com%0EAnjana

International Journal of Computer Applications (0975 – 8887)

Volume 44– No10, April 2012

23

 The issue of ensuring co-existence of systems with

heterogeneous log formats has been proposed by IBM where

each log file is converted into a standard called Common Base

Event (CBE). In the real time working environment

converting every log file into CBE is a time consuming

process and is therefore a bottleneck.

2.1 Common Base Events (CBE):

 CBE [10][11] is the standard format to represent the log

file of the products and is proposed by IBM in the year 2001.

The log messages generated by two products are ever the

same, and there is enormous diversity in the style and format

of messages between applications. Also, message logs are

invariably product-centric, adhering to standards and

terminology that are unique to a particular vendor (or even to

a particular application). Under these circumstances, there is

need for consistency of interpretation and for an analysis tool

to understand an application's messages. These messages have

to be in an expected form, using expected terminology. An

open standard that fits this requirement is the Common Base

Event model. This model provides a basis for problem

determination and a cornerstone of Autonomic computing

system management. Furthermore, Common Base Events are

XML structure that contains XML messages targeted for use

in a Web services environment which opens the possibilities

for autonomic management across products, even those from

different vendors.

3. PROPOSED WORK
The proposed work is an extension of an alternate approach

which was published by the authors [12][13][14][15], that

allows each vendor to write their own log file in the format

required for them, yet able to coordinate in heterogeneous

work culture and improves the performance by avoiding

writing multiple adapters for each log file of every product,

as it exists with IBM‟s approach. The followings are the new

features to the language allowing definition of complex

structure of the symptoms and associated actions to realize the

self managing capability of the Autonomic system.

1. Creation of nested policies using simple policies.

2. Improved creation of policies based on the product

specific vocabulary and avoiding need for adapters.

3. Improved housekeeping activities like modification,

deletion, searching of policies/ symptoms,

registering and unregistering of managed

applications and log variables.

3.1 System vocabulary

The architecture of the autonomic system is shown in the

Fig.1 and Fig. 2.

3.1.1 Autonomic System Manager (ASM)
The Autonomic System Manager (ASM) is the core part in the

proposed architecture. It provides the administrator with a

user friendly language editor which allows user to create

policies for the application. User is endowed with the ability

to create complex rules by having rule expressions as

combinations of various events and operations between them.

 Fig. 1 ASM Language Editor

 Fig.2. System Architecture

The simpler rules can be reused for the creation of complex

rules called nested policies. This is the new feature of the

language to create the complex rules in existing ASM.

3.1.2 Application Analyzer
Application analyzer component registers the product with

Autonomic manager and analyzes the log file format of

selected applications. The AA must get connected to the

know-how structure of the product. Know-how provides the

details of all product specific variables and their data type

used to create product log file. „LogBase‟ is a collection of all

International Journal of Computer Applications (0975 – 8887)

Volume 44– No10, April 2012

24

such product specific variables used to construct the policies

across the application. Each log variable will be identified by

its application id which helps the administrator to avoid any

naming conflicts in Logbase. The know-how is expressed in

terms of LEX and YACC specification files.

3.1.3 ASM Language Editor
The ALE is an editor that facilitates writing new policies,

editing the existing policies and deletion of policies in

specialized language.. The editor has engine to process the

language statements. It interacts with LogBase to know the

product specific log variables, ActionBase to manage the

actions, AppBase to manage applications registered and

PolicyBase to manage policies.

3.1.3.1 Policy Base(Symptom Catalog)
Policy Base is the repository of symptoms and reference to

action base for intended action. A symptom is the pattern

describing the possible situation of interest i.e problem

scenario. Each symptom describes causes and effects.

Structure and an example of policy base is as follows.

Structure of PolicyBase:

Policy ID @ Policy Description # Policy Condition $ Action

to be executed.

Illustration of Policy base:

polid=pol001@poldesc=desc # cs-method=GET && cs-uri-

stem=/hello.html$actionid= act001 .

This policy triggers action- 1 listed in the action-base

identified by „ actionid= act001‟ when the log variable „cs-

method „ is „GET‟ and the log variable „cs-url-stem‟ is „

hello.html‟

3.1.3.2 Action Base
Action base is the collection of java code to be used in

creating the policies. They are executed whenever the policy

matches with the parameters during runtime. Structure and an

example of Action base is shown below.

 Structure of ActionBase:

Action Id @ Action Description # Language of Action plug in

$ Location of action plug in.

Illustration of Action base:

actionid=act001@action_desc=Sending SMS# action_lang

=java$action_code=SendSms.java

The action code written in java language is available in the

action listing with the file name „SendSms.java‟. This action

is referred with its code i.e „actionid=1‟ in the policy with

identification „P01001‟ which is described above.

3.1.3.3 Appbase
AppBase is a collection of information about all registered

Applications that includes Application identifier, Application

name, Log file location and Know How location etc. Structure

and an example of Appbase is shown below.

 Structure of AppBase:

ApplicationId @ ApplicationDescription # Application Name

$ Knowhow location of application* Application Logfile

location.

Illustration of Action base:

app_id=app001@app_desc=Web_server#app_name=iis

$knowhow=c:/log.y*logfile=c:/logfile/ex001.log

IIS web server is the name of the registered application which

is identified by „app_id=app001‟, its Know-how location is „

c:/log.y‟ and log file location is „c:/logfile/ex001.log‟

3.1.3.4 LogBase
 LogBase is repository of all log variables from various

applications or managed resources. These log variables are s

constructed when application is registered in autonomic

manager. These registered Log Variables are used to create

policies. Log variables naming conflicts is resolved using

application identifiers. Structure and an example of Logbase

is shown below.

Structure of LogBase:

LogVariable Id @ Application Identification # Caption of Log

variable $ Log variable description

Illustration of Logbase:

logvar_id=lvr001@app_id=app001#logvar=time$logvar_desc

=time_of_logfile_creation

The app_id= app001 is a registered application that contains a

log variable with the name „time‟ and identification „ lvr001‟,

and describes the time of log file creation.

3.1.4 Know-How
Know-how is a mechanism to interpret the structure of log

file of the product. It provides the detailed information about

the registered log variables which are used to create the

policies. Know- how of each product is specified by each

product vendor using the generic notations called/regular

expressions/Language grammars‟ used by compilers. During

the runtime the location of the know-how of registered

application is determined and the log variables are extracted

and stored in the LogBase. As an illustration IIS log file is

used and its Know-how is a LEX and YACC specification for

the IIS web server.

3.1.5 Action plugin
The Action Plugin file contains the proposed action classes in

target language like Java and provides actions to resolve the

problem of an Application.

3.1.6 ASM Info Engine (AIE)
AIE is responsible for collecting information for further

processing. It registers the application and its log file by

sending request to ASM Build Engine (ABE). Once the

Application is registered App Info Table (AIT) of editor will

be loaded with application information and application data

will be stored in AppBase. AIE component gets connected to

know how file of the application. It extracts all log variables

and structure from knowhow and interacts with ABE

component for registering log variables along with their

application identifiers. The collected log variables are

deposited into LogBase by ABE. The Editor‟s Log Variable

Table(LVT) will be loaded with log variables. ActionPlugin

International Journal of Computer Applications (0975 – 8887)

Volume 44– No10, April 2012

25

List (APL) contains all available actions to be chosen for

policy writing.

3.1.7 ASM Build Engine(ABE)
ABE is responsible for validating and processing all the

language statements sent from AIE. It invokes inbuilt

language engine to execute the statements. ABE further

converts the language statements into structured data and

stores them into respective repositories.

3.2 Language Specification
The description of the language specifications to represent

symptoms includes whitespaces, keywords, operators,

identifiers, and statements are shown in the Table-1

Table 1. Keywords and operators

Category Keyword/Operators Purpose

Operators

Relational operators-

<, >, <=. >=, = and

<>

Logical operators-

AND, OR

Used to create

formulate policy

conditions and group

the conditions

Policy

/Nested

policy

Creation

CREAT, NEW,

POLICY,POLID,

POLDESC

,LOGVAR

,LOGVAL ,NESTED

Create new policy

/nested policy , convert

to structured format and

add it to polbase

Modify/del

ete Policy

DELETE,MODIFY

,SET_VAL,

END_VAL

,OLDVAL,

NEWVAL,

REM_VAL,ADD_V

AL ,SET_ACT

,REM_ACT ,OPR

,ADD_ACT

Delete policy /modify

stored policy from

polbase and apply

policy condition

connector

Action

Creation

ACTION,

ACTIONID

ACTION_DESC

,ACTION_LANG

,ACTION_CODE

Create new Aaction

plugin , convert to

structured format and

add it to actionbase

Register

application

REGISTER

,APPLICATION

,APP_ID ,

APP_DESC,

APP_NAME,

KNOWHOW

Collect necessary

information for

managed application

and store it in appbase.

,LOGFILE

Register

Log

variable

LOGVARIABLE,

LOGVAR_ID,

LOGVAR ,

LOGVAR_DESC

Register log variable of

particular application

and store it in logbase

Unregister

application/

log variable

UNREGISTER

Unregister application/

log variable from

appbase and logbase

respectively

Control

Structure

IF, THEN

Used to formulate

policy condition

3.3 Working of the proposed system
The proposed system is developed in Java and tested using

IIS web server. The complete working of the system is shown

in the sequence diagram of Fig. 3.

1. Administrator sends request for Application

Register to AIE along with Application Information

and KnowHow

2. AIE sends Application registration request to

AppBase

3. AIE also sends Log Variables registration request

to LogBase

4. Application will be registerd with AppBase

5. All log variables of registered application are

registered with LogBase

6. Admin sends request to AEC to register new policy

for the system

7. AEC validates the policy statement and forwards

the policy to ABE for further processing

8. ABE sends request to AppBase to verify whether

the Application/s mentioned in the

9. policy is/are already registered

10. AppBase verifies the Application of the policy

11. ABE sends request to LogBase to verify whether

the all the log variables mentioned in the policy

are already registered

12. LogBase processes ABE request for log variables

13. ABE then sends policy registration request to

PolicyBase

14. ABE sends policy registration information to

Admin.

15. ABE processes the statement and sends registration

request to ActnBase

16. ActionBase registers the action and sends

confirmation to ABE

17. Admin sends request to AEC for registration

International Journal of Computer Applications (0975 – 8887)

Volume 44– No10, April 2012

26

 of new action

18. AEC validation the action statement and forwards it

to ABE for further processing.

19. ABE sends Action registration information to

Admin.

3.3.1 Test Cases

Case -1 Creation of Simple Policy :

 CREATE NEW POLICY POLID=policy_id_string

POLDESC=string

{

 IF LOGVAR=string LOGVAL=string

 THEN ACTIONID= action_id_string

 }

Purpose: Creates new simple policy to be added to policy base

where all autonomic system policies are stored.

Description: The Creation of Simple policy language

statement consists of two parts namely „policy condition‟ and

„policy action‟. The „IF LOGVAR=string LOGVAL=string‟

is policy condition where LOGVAR is a name of one of the

log variable of LogBase and LOGVAL is a possible value of

given log variable. The „ACTIONID= action_id_string‟ is

policy action which describes the action to be taken in case of

policy match. The value for ACTIONID must be chosen

from existing actions of the system.

 Example:

CREATE NEW POLICY POLID=pol006 POLDEC= desc

 {

 IF LOGVAR=sc-status LOGVAL=402

 THEN ACTIONID= act001

 }

The above statement creates new simple policy for Microsoft

Internet Information Services 5.1 application and describes, if

log entry having „sc-status =402‟ is found then action

„act001‟ must be executed. The action „act001‟ refers to a java

program. The sample log entries of IIS web server that can

match the statements are as follows.

#Software: Microsoft Internet Information Services 5.1

#Version: 1.0

#Date: 2010-07-07 10:49:14

10:49:14 127.0.0.1 GET /iisstart.asp 402 19453

The Fig. 4 shows the language editor. The left side of the

editor window contains Log Variables Table of IIS web

server. The right side of the editor window contains Action

table that lists all the actions added to the system. On

successful execution of policy creation statement new policy

will be added to polybase (policy repository).The Fig. 5

shows addition of new policy namely

„polid=pol006@poldesc=desc#sc-tatus=404$actionid=act001‟

to the polyBase after the execution of above statement.

Case -2 Creation of Nested policies:

CREATE NESTED POLICY POLID= policy_id_string
POL_DESC=string
 {
 IF POLID = policy_id_string AND POLID= policy_id_string
[AND/OR POLID= policy_id_string]

 THEN ACTIONID= action_id_string
 [AND ACTIONID= policy_id_string.
 ACTIONID]
 }
Purpose: Creates new independent policy from the existing

policies.

Description: The Creation of Nested policy language

statement consists of two parts namely policy condition and

policy action. The „IF POLID = policy_id_string AND

POLID= policy_id_string [AND/OR POLID=

policy_id_string]‟ is policy condition where POLID value

must be „id‟ of one of the existing policies. Any number of

policies can be used along with operators AND/OR to derive

the new policy. The policy condition of new policy will be

derived as combination of all the policy condition of given

policies. Newly created policy is not dependent on the policies

on which it is created. So policy deletion does not involve any

cascading effect.

 The „THEN ACTIONID= action_id_string [AND

ACTIONID=policy_id_string. ACTIONID] ‟ is a policy

action which describes the action to be taken in case of policy

match. The value for ACTIONID must be chosen from

existing actions of the system. ACTIONID can also be

derived as action of one of the existing policies which is given

as ACTIONID=policy_id_string. ACTIONID i.e. id of

existing policy followed by dot operator and key word

ACTIONID.

Example :

 CREATE NEW NESTED POLICY POLID=pol006

POLDESC=Nested_policy

 { IF POLID=pol001 OR POLID=pol002

 THEN ACTIONID= pol001.ACTIONID

 }

The above language statement creates new policy using

existing policies pol001 and pol002 as shown in Fig. 6 and

Fig. 7 below. The policy condition of new policy will be

policy condition of pol001 or policy condition of pol002.The

action id of new policy is the same as the action id of policy

pol001 as mentioned in „THEN ACTIONID=

pol001.ACTIONID‟.

The policies pol001 and pol002 are as follows :

polid=pol001@poldesc=desc#cs-uri-

stem=/headings.htm$actionid=act004

polid=pol002@poldesc=desc#cs-uri-

stem=/hello1.htm$actionid=act002

mailto:polid=pol001@poldesc=desc#cs-uri-stem=/headings.htm$actionid=act004
mailto:polid=pol001@poldesc=desc#cs-uri-stem=/headings.htm$actionid=act004
mailto:polid=pol002@poldesc=desc#cs-uri-stem=/hello1.htm$actionid=act002
mailto:polid=pol002@poldesc=desc#cs-uri-stem=/hello1.htm$actionid=act002

International Journal of Computer Applications (0975 – 8887)

Volume 44– No10, April 2012

27

 Fig. 3: Sequence Diagram

 AIE AEC ABE AppBas

e

PolicyBa

se

LogBase ActnBas

e

 Admin

1

2

7

6

5

4

3

8

9

10

11

12

13

14

15

17

18

19

16

International Journal of Computer Applications (0975 – 8887)

Volume 44– No10, April 2012

28

Fig. 4: Creation of simple policy

Fig 5: Polybase after creation of simple policy

International Journal of Computer Applications (0975 – 8887)

Volume 44– No10, April 2012

29

Fig.6. Creation of Nested policy

Fig. 7. PolyBase after creation of Nested policy

International Journal of Computer Applications (0975 – 8887)

Volume 44– No10, April 2012

30

4. CONCLUSION
This proposed work presents a new user friendly language

editor to build symptom catalog to implement Self healing

mechanism with know-how in an Autonomic System. It

provides a well defined language for building databases of

Autonomic system such as Appbase, LogBase, PolicyBase

and ActionBase .ASM language editor empowers

administrator with the ability to create and maintain complex

policies for any application in a convenient way. ASM

language editor also presents a more user friendly way of

implementing actions by letting administrators know about

the errors occurring in the application. Also, the manual

action execution feature (for any error occurring) presents a

method by which administrator can be ensured of full control

of the working of any application. ASM language editor helps

to convert unstructured application data into structured

information. This structured data is systematically stored into

Autonomic system repositories. The systematically written

policies and collected data make it easy to automate the

application and find solution for recurring system problems.

The system can be enhanced to handle administrators reply

for taking action. The language can be modified to support

creation of cross application policies using centralized

Appbase and Logbase .

5. REFERENCES
[1] Jeffrey O. Kephart, David M. Chess., “ The vision of

 Autonomic Computing “, IEEE Computer Society,

January 2003, IBM Thomas J. Watson Research

Centre.

[2] Paul Horn (senior vice president), “ Autonomic

Computing IBM‟s perspective on the state of

Information Technology”, IBM Research.

[3] Hassan, S.; Al-Jumeily, D.; Hussain, A.J. "Autonomic

Computing Paradigm to Support System's development,"

Developments in eSystems Engineering (DESE), 2009

IEEE Second International Conference, vol., no., pp.273-

278, 14-16 Dec. 2009

[4] Henxing Zhao; Congying Gao; Fu Duan; , "A survey on

Autonomic computing research," Computational

Intelligence 2009 and Industrial Applications, 2009.

IEEE PACIIA 2009. Asia-Pacific Conference on,

vol.2, no. pp.288-291, 28-29 Nov.

[5] IBM “ An Architectural Blueprint for autonomic

 Computing “, whitepaper, June 2005.

[6] A. G. Ganek, T. A. Corbi, “ The dawning of the

 Autonomic Computing Era “, IBM System Journal

 Vol. 42, No. 1, 2003.

[7] M.G.Hinchey and R. Sterritt, “Self Managing Software in

Computer”, IEEE Computer Society, Vol.39, Pages 107-

109, Feb. 2006.

[8] S. Hariri and Et al., “The autonomy Computing Paradigm

in Cluster Computing”, The journal of Networks,

Software tools and applications, Springer Science

Business Media, B.V.(Kluwer, academic publishers),

Vol. 09, Pages 5-17, Jan. 2006.

[9] E. Patouni, N. Alonistioti, “A Framework for the

development of self managing and self configuring

components in autonomic environments”, International

Symposium on a world of wireless, Mobile and

Multimedia Networks, Pages 480-484, June 2006.

[10] “ A Practical Guide to the IBM Autonomic Computing

 Toolkit”, www.ibm.com/redbooks/sg24-6635.pdf.

[11] DePalma, N.; Popov, K.; Parlavantzas, N.; Brand, P.;

 Vlassov, V. "Tools for Architecture Based Autonomic

 Systems," Autonomic and Autonomous Systems,

 2009. ICAS '09. IEEE Fifth International Conference

 on , vol., no., pp.313-320, 20-25 April 2009.

[12] Liu Wen-jie; Li Zhan-huai; , "Application of Policies

in Autonomic Computing System based partitionable

Server", IEEE workshop on Parallel Processing, CPPW

2007.

[13] L.M. Durham, M. Mlienkovic, P. Cayton, “A Platform

Support for Autonomic Computing”, IEEE International

Conference on Autonomic Computing, (ICAC-06), June

2006.

[14] Dr. U.P.Kulkarni, J.V.Vadavi, M.M.Math, Dr.

A.R.Yardi, “A Symptom Editor: A self Healing

Autonomic System” International Journal of

Computer Science and Network Security VOL. 8

No. 9, September 2008.

[15] M.M.Math, Dr. Seetha. M, Dr. U. P..Kulkarni., Dr.

A.R.Yardi ulkarni,A.R.Yardi-“ Generic Log Adapters-

A Step towards building a Parser Based Self

Healable Autonomic System “, International Journal

of Recent Trends in Engineering,Vol 2, No. 3, November

2009.

http://www.ibm.com/redbooks/sg24-6635.pdf

