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ABSTRACT

The Efficiency of present symmetric encryption algorithms
mainly depends on implementation cost and resulting
performances. Present symmetric encryption, like the
Advanced Encryption Standard (AES) rather focus on finding
a good tradeoff between cost, security and performances.
Some present symmetric encryption algorithms are targeted
for software implementations and shows significant efficiency
improvements on these platforms compared to other
algorithms. From these algorithms, consider a general context
where we have very limited processing resources (e.g. a small
processor). It yields design criteria such as: low memory
requirements, small code size, limited instruction set, i.e.
Scalable Encryption Algorithm (SEA).

For this purpose, loop architecture of the block cipher is
presented.

The total modules of SEA written in VHDL coding, the
simulation and synthesis results are verified by the Virtex-4 of
Xilinx 9.1i. This paper also carefully describes the
implementation details and corresponding area requirements
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1. INTRODUCTION

This Scalable Encryption Algorithm (SEA) has been recently
attracting increased attention. The ability to use parametric in
the Plaintext, key and processor sizes and it was initially
designed as a low-cost encryption/authentication are two main
reasons why, Scalable encryption algorithm is becoming more
popular. They are considered to be particularly suitable for
implementation on platforms with constrained storage and fast
specifications. Scalable Encryption Algorithm (SEA) follows
unusual design principle for flexibility proposes. It is
parametric in the text, key and processor size. Many
algorithms behave differently on different platforms (e.g. 8-bit
or 32-bit processors). It provides efficient combination of
encryption and decryption. SEA is mostly used in embedded
applications such as software implementations in controllers,
smart cards, or processors.

The security attacks [1][2] on scalable encryption algorithm
were easily evaluated compare to other algorithms like Tiny
Encryption Algorithm TEA [3] and Yuval’s proposal [4].

The security of the SEA being adapted in function of its key
size, SEA has the efficient combination of encryption and
decryption or the ability to derive keys. SEA is implemented
in embedded applications such as building infrastructures
present a significant opportunity and challenge for new
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cryptosystems [5] [6]. Embedded software implementation of
SEA has been done. The advantages of embedded software
implementation include ease of use, ease of upgrade,
portability, low development cost and flexibility. There main
disadvantages on the other hand, are their lower performance
and limited ability to protect private keys from compared to
hardware implementations [7][8].Software implementations
can easily be achieved on micro processor. However, they
would be too slow for critical time applications

In the rest of the paper we first describe the algorithm
specifications then we describe the architecture
implementation and results.

2. ALGORITHM DESCRIPTION

Scalable Encryption Algorithm (SEA) is a symmetric
algorithm [9] [10], which works on the concept of Block
cipher. In SEA same keys are used for both encryption and
decryption.

The complete description of the scalable encryption algorithm
is emphasizing its basic operation starting with the important
parameters and afterwards follows the round and key round
description.

2.1. Parameters and Definitions

SEAnN,b operates on various text, key, and word sizes. It is
based on a Feistel structure [11] [12] with a variable number
of rounds, and is defined with respect to the following
parameters:

n- Plaintext size, key size;

b- Processor (or word) size;

n
nb = 2— Number of words per Feistel branch;

Ny Number of block cipher rounds.
As an only constraint, it is required that n is a multiple of 6b.
For example, using an 4-bit processor, we can derive 48, 96,

144, . . . -bit block ciphers, respectively denoted as SEA48,4,
SEA96,4, SEA144,4, ...

n
Let x be a —-bit vector. Consider the following two
2

representations.  Bit representation:

aXe e Xo X4 Xn  (2.2)
ny—n -2 2%1%0



2.2 Basic Operations

Due to its simplicity constraints, SEAN,b is based on a limited
number of elementary operations (selected for their
availability in any processing device) denoted as follows:

(1) Bitwise XOR( S ) (2) Substitution box S (3) Word
rotation R and inverse word rotation R—1, (4) Bit rotation r (5)
Addition mod H

These operations are formally defined as follows:

2.2.1 Bitwise XOR(®):

In Feistel cipher structures bit-by-bit XOR (modulo-2 sum)
operation is used in every round for providing secrecy of data
The XOR operation is used in this algorithm and it is defined

n n n
in equation @ = 22/2 X 22/2 - 22/2;

x,y—>z:x€r>y<:>z(i):x(i)@y(i),ogis

2.2.2 Substitution Box S:

In cryptography, S-boxes constitute a basic component of
symmetric key algorithms. In block ciphers, they are typically
used and are difficult to understand the relationship between
the plaintext and the cipher text. Non-linear and non-
correlated S-boxes are the most secure with respect to linear
and differential cryptanalysis. In this encryption algorithm,
the encryption and decryption blocks are implemented with 4-
bit S-Box.

SEAnN,b uses the 4-bit S-Box and is shown in table I.
S5r={0,9,A,B,4,D,F,E8527136,C},

Tablel. 4-Bits Box

00 91 A2 B3

4, Ds | Fe E;

88 | B9 | 210 | Tua

112 313 614 C15

For efficiency purposes, it is applied bitwise to any set of four
words of data using the following recursive definition shown
in equation.

S:ZSB —>Z£B x> x=8(x) e
X3i = (X3i+1 N Xgi42 ) D X3,
X3i1 = <X3i+2 A X3i+3) X311
X3it2 = (X3i A X3i+3) X312

n
_ L
Xaiva = (Xgi41 v a1 ) © X430 <1 < S e
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Where A and Vv respectively represent the bitwise AND and
OR.

2.2.3 Word rotation R:

The word rotation(R) and inverse word rotation(R-1)
implementations are used in SEA. It improves the efficiency
of encryption and decryption. In the word rotation, a stream of
bits is divided into blocks of data. Occupying of bits in each
block is dependent on the processor (or word) size. The
rotations are performed between blocks. According to the
equation 2.5 left shift is performed between the blocks. In
inverse word rotation right shift is performed between the
blocks.

The word rotation R, defined on nb-word vectors.

.7b Ny . B B )
R.Z2b —>22b .x—>y_R(x)<:>yi+1_xi,0£|£nb—2

=X, —1 2.5
yO My (2.5)

2.2.4 Bit rotation r:

The bit rotation implementation is used in SEA. It improves
the efficiency and secrecy of encryption and decryption. In the
bit rotation, a stream of bits is divided into blocks of data.
Occupying of bits in each block is dependent on the processor
(or word) size. The rotations are performed between bits in a
block. The bit rotation equation2.6 The bit rotation r, defined
on nb-word vectors.

Al No . _ _
r.Z2b —>22b X Y =1(X) & Yqi = Xgi >>>1

Y3iy1 = %3iq1

n,
_ : b
Y3i+2 = X3i+2 «<<1,0<i< T_l (2.6)

Where >>> and <<< represent the cyclic right and left shifts
inside a word.

2.2.5 Addition mod /& :

Now a day’s modulo addition is widely used in encryption
algorithms. The addition mod implementation is used in
SEA. It is a mathematical function and it performs carry
skipped addition. It has some advantages over bitwise XOR,
these are

1. Improvement of the diffusion process,

2. Improvement of non-linearity,

3. Same cost/speed as the bitwise XOR in most  processors,
4. Necessity to avoid structural attacks.

The mod 2b addition is defined on in equation 2.7

C. The Round and Key Round
UL Rl _
H: .Z2b —>Z2b x,y—>z=xHy

Zl =X| (-BYI,OSISnb—l 2.7)



Based on the previous definitions, the encrypt round FE,
decrypt round FD and key round FK are pictured in Fig. 2.1

Lj Rj KLj KRj

m‘
- |
-
[+ ]
i

Lis1 Ri+1 KLis KRiu

Figure.2.1: A view of Encrypt/Decrypt round and key
round

The security of this algorithm mainly depends on number of
rounds. In key round, according to equation 2.8, the round

input is split into its left and right halves say KL; and KR;
for the input to round i. In this the KR; is first added bit-by-

bit modulo 2 addition to (constant values means 1,2,3...etc)
then the resulted data goes into substitution box(S-Box) and
performed non-linear substitutions then a bit(r) type and
word(R) type rotations performed on resulted data of S-Box,

then it xored with KL and the resultant new data is KLi+1
and KR; is directly taken as KRi+1 .The left and right halves
are then “swapped” to produce the left half KLi and right
half KR of the output of round i as KL; = KRi 41 and
KR; = KLi+1 .

In encryption round, according to equation 2.10, the round
input is split into its left and right halves say L; and R; for
the input to round i. In this the Ri is first added bit-by-bit

modulo 2 to Ki(produced key from key round) then the

resulted data goes into substitution box(S-Box) and performed
non-linear substitutions then a bit(r) type rotations performed
on resulted data of S-Box, then it x-ored with word rotation

performed L;and the resultant new data is Li+1and R;is

directly taken as Ri+1 .The left and right halves are then

“swapped” to produce the left half L;and right half R; of the

output of round i as
L =Rjjqg And Ry =L

The equation 2.11 explains decryption round which is similar
to the encryption round, the only difference is instead of
considering word rotation on Li, and an inverse word

rotation is performed on output of xor.

It is defined as the functions
.52 2

FiZonjp*Zonig = Zon

Such that Li+1 =R (2.8)
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[LisaiRial = Fp (L R Kj) < Rijy

Ly =R (2.9)
[KLjyp: KR g1 = i (KL KRy, ) = KRy

= KL;R(r(S(KR; ©C;)))

KLiq =KR; .

3. IMPLEMENTATION OF SEA
3.1 Architecture of Scalable Encryption
Algorithm (SEA)

The VLSI architecture for the implementation of the Scalable
Encryption Algorithm consists of the three main components,
key scheduling, Encryption and Decryption. The
implementation mainly consists of 8-bit processor size, ten no
of rounds, key and plaintext of 48-bits size.

3.1.1 Encryption Block
In the implementation entire design has been divided in to
various modules given below.

e  Key schedule block,

e Single round of Key schedule block,
e  Encryption block,

e  Single round of Encryption block.

3.1.1.1 Key schedule block
Key input (48-Bit)

\ Round 1 F—— K1 (48-Bit)

i

\ Round 2 }—— K2 (48-Bit)

1

1

\ Round 9 —— K9 (48-Bit)

1

\ Round 10  }——K10 (48-Bit)

Figure.3.1: Key schedules for ten rounds

Key schedule has been implemented as a module, which is
used in encryption block to provide keys for encryption of
plaintext. Key scheduling is implemented for ten rounds. The
key schedule block takes 48-bit key as input and it produce
ten subkeys of length 48-bit. Each subkey is used for each
round of encryption and used for each round of decryption in
reverse order. The simple architecture for key schedule as
shown in Fig.3.1

3.1.1.2 Single Round of Key schedule block

The single round implementation of key schedule as shown in
Fig.3.2 this block takes 48-bit as input. The input key of
single round is splits into two left and right halves, i.e. left 24-



bit half and right 24-bit. The right 24-bit of key is performed
modulo addition with constants like 1, 2, 3, 4....etc
(represented in terms of bits). The usage of number of
constant values is dependent on number of rounds. Round
constant is changed by key rounds. By using this round
constant, reduce the related key attacks [13].

Input ifB»Bit)

24-Bit
Lefti

24-Bit
24-Bit
Righti EH Consti

24-Bit

Substitution Box
24-Bit

Bit Rotation

24-Bit

XOR

24-Bit ~24-Bit )
24-Bit
[ Lefti | [ Righti |
24-Bit >< 24-Bit
‘ Right i ‘ Lefti ‘Bu'tput i(48-Bit)

Figure.3.2: Single round of key schedule

3.1.1.3 Encryption block

Encryption block has been implemented as a module.
All other modules like modulo addition, S-Box, bit rotation,
word rotation are internal modules of encryption block..
Encryption is implemented for ten rounds. The encryption
block takes 48-bit as input key and 48-bit as plaintext. The
encryption block and key schedule blocks are implemented
for ten rounds.

Plain Text (48-Bit)
K1 (48-Bit) KR
4>‘ KL1 ‘ KR1 H SEA Round 1 ‘
! KR2
K2 (48-Bit)
4>‘ KL2 ‘ KR2 H SEA Round 2 ‘
. |kswssiy : KRS :
8 —— ks [ H SEA Round 5 ‘
o
Key (48-Bit) | &
—» B
g
g
& | K6 (48-Bit) KL6
3 4>‘ KL6 ‘ KR6 }—»{ SEA Round 6 ‘
K7 (48-Bit) K7 I
4>‘ KL7 ‘ KR7 H SEA Round 7 ‘
K10 (48-Bit) : KL10 :
—— ko | KR H SEA Round 10 ‘

Cipher Text (48-Bit)
Figure.3.3: Architecture of Encryption Block

Each subkey from original key is generated in key schedule
and used in parallel for every encryption round. For the First
five rounds of encryption, the right half of first five subkeys
are used for encryption process and for next five rounds of
encryption the left half of next five subkeys are used for
encryption process is shown in Fig.3.3.

In the architecture of encryption block, key generation block
takes 48-bit as input key “2B7E151628 AE” and it produce ten
sub keys. Key left 24-bits and key right 24-bits are left and
right parts of the key. Right 24-bits of first five subkeys are
used for the first half of encryption. Light 24-bits of next five
subkeys are used for the next half of encryption. Required
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ciphertext is produced after completion of encryption process
with key and plaintext “212223242526”.

3.1.1.4 Single Round of Encryption block

Input i(48-Bit)

24-Bit
24-Bit
‘ Lefti ‘ ‘ Right i —
24-Bit l : 24°Bit_
Word Rotation Keyi B4 Righti

24-Bit
Substitution Box

24-Bit

Bit Rotation

24-Bit ) 24-Bit

24-Bit
[ Lefti | | Righti |

24-Bit >< 24-Bit

\ Right i \ Lefti \au’tput i(48-Bit)

Figure.3.4: Single round architecture of Encryption
Block
Single round architecture of encryption block is same as
single round of key schedule block. The single round
implementation structure as shown in Fig.3.4 The working
principle internal blocks of single round of encryption is same
as single round of key schedule block.

In the implementation, entire design is divided in to various
modules given below.

e Decryption block,
e Single round of Decryption block,
e Inverse word rotation.

3.1.1.4.1 Decryption block

Decryption block has been implemented as a module. All
other modules like modulo addition, S-Box, bit rotation,
inverse word rotation are internal modules of decryption
block. The Feistel structure ensures that decryption and
encryption are very similar processes but the only difference
is that the subkeys are applied in the reverse order when
decrypting.

The decryption block takes 48-bit as input key and 48-bit as
ciphertext (final round output of encryption block). Each
subkey from original key is generated in key schedule and
used in parallel for every decryption round. For the first five
rounds of decryption, left half of last five subkeys of key
schedule are used for decryption process and for next five
rounds of decryption the right half of next five subkeys are
used for decryption process is shown in Figure.3.5



Cipher Text (48-Bit)

K10 (48-Bit) KL10
t+—] K0 | KR10 |—»] DecryptionRound1 |
K9 (48-Bit) KLY
| — KL9 KR9 Decryption Round 2
K6 (48-Bit
o (8Bl KL6
] 4>‘ KL6 ‘ KR6 Decryption Round 5 ‘
Key (48-Bit) 5
G -Bit) =
y By §
% K5 (48-Bit) KRS
(0] 4>‘ KL5 ‘ KR5 Decryption Round 6 ‘
D |Ka @s-Bit
CE)
KR4
X 4>‘ KL4 ‘ KR4 H Decryption Round 7 ‘
K1 (48-Bit)
KL1 -
4>‘ KL1 ‘ KR1 }—»’ Decryption Round 10 ‘

Plain Text (48-Bit)

Figure.3.5: Architecture of Decryption block

In the architecture of decryption block, key schedule block
takes 48-bit as input key “2B7E151628 AE” and it produce ten
sub keys. Key left 24-bits and key right 24-bits are left and
right parts of the key. Right 24-bits of first five subkeys are
used for the last half of decryption process. Left 24-bits of
next five subkeys are used for the first half of decryption
process. Required plaintext is produced after completion of
decryption process with key and ciphertext “EC74983B2526”.

3.1.1.4.2 Single round of Decryption block

Input i(fS—Bil)

24-Bit 24-Bit
Right
24-Bit
Substitution Box
XOR Bit Rotation
™

24-Bit ]ﬁ‘ 24-Bit

Inverse word rotation

24-Bit 24-Bit
\ Right i \ Lefti

‘ Output i(48-Bit)

Figure.3.6: Single round architecture of Decryption

Single round architecture of decryption block is same as
single round of encryption block. The only difference is, in
single round decryption block the ciphertext is splits into two
halves say left and right block then the inverse word rotation
performed on resulted output of xor. The single round
implementation decryption block structure as shown in
Fig.3.6. The working principle internal blocks of single round
of decryption is same as single round of encryption block.

3.1.1.4.3 Inverse word rotation.
In this inverse word rotation circular right shift is performed
between blocks (words).

4. RESULTS

The netlist output is made available in various netlist formats
including VHDL. Such a description can be simulated and its
simulation is referred as Post Synthesis simulation. Timing
issues, Determination of proper clock Frequency and race and
hazard considerations can only be checked by a post synthesis
simulation run after a design is synthesized.
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The netlist output is made available in various netlist formats
including VHDL. Such a description can be simulated and its
simulation is referred as Post Synthesis simulation. Timing
issues, Determination of proper clock Frequency and race and
hazard considerations can only be checked by a post synthesis
simulation run after a design is synthesized.

The Post-Route simulation waveform for Key schedule of 48-
bit is shown in Fig.4.1. It can be seen that input key
is“2B7E151628AE” is applied to key schedule, it provides ten
subkeys of 48-bit.

The Post-Route simulation waveform for Encryption Block of
48-bit is shown in Fig.4.2. It can be seen that Plaintext is
“212223242526” is applied to encryption block. Ciphertext is
“EC7498382526” provides after ten rounds encryption
process with use of subkeys.

The Post-Route simulation waveform for Decryption of 48-bit
is shown in Fig.4.3. It can be seen that Ciphertext is
“EC7498382526” is applied to decryption block. Plaintext is
“212223242526” provides after ten rounds decryption process
with use of subkeys in reverse order to encryption.

The Post-Route simulation waveform for Encryption and
Decryption is shown in the Fig.4.4. From the Fig.4.4 the
encryption and decryption is implementing for ten rounds.
The key scheduling block is used to generate ten subkeys
which are used for encryption and decryption of ten rounds. In
the encryption process, the subkeys with the Plaintext
“212223242526” are used for the generation of the Cipher
text “EC74983B2526”, which occurs after ten rounds of
encryption.

The Ciphertext of the encryption process is given as the input
to the decryption process for the regeneration of the original
Plaintext “212223242526”. The keys used in decryption
process are in reverse order to the encryption process.

Table2. Implementation results for sea with different n
and b parameters

Plaintext | Processor | No. of No. of | Frequency
size(n) size(b) Slices Slices
(MHz)

Flip-

Flops
48 4 205 157 332
48 8 197 161 329
72 4 214 165 352
72 6 201 164 337
72 12 205 169 337
96 4 281 218 354
96 8 279 226 341
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Figure.4.1: Post-Route Simulation waveform for Key schedule
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Figure.4.2: Post-Route Simulation waveform for Encryption Block
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Figure.4.3: Post-Route Simulation waveform for Decryption Block
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Figure.4.4:The Post-Route simulation waveform for Encryption and Decryption

[MEE09104 ps]|



The implemented results for SEA with different n and b
parameters are presented in Table5.3, where the area
requirements (in slices) and the working frequency are
presented in table. The obtained working frequencies are very
close for all implementations. For set of parameters increasing
processor (b) size for a given plaintext (n) generally decreases
the area requirements in slices. The examination from the
table is, the processor size is not a limiting factor for the
working frequency, increasing the word size leads to the most
efficient implementation for area.

5. CONCLUSION

In this paper, the VLSI architecture of Scalable Encryption
Algorithm provides flexibility to implement it for various sets
of parameters like plaintext, key size and bus size, but the
plaintext and key size must be same size. The VLSI
architecture of SEA is designed using VHDL and is simulated
in Xilinx 9.1i or Modelsim6.0.This paper presented FPGA
implementations of a scalable encryption algorithm for
various sets of parameters. The presented parametric
architecture allows keeping the flexibility of the algorithm by
taking advantage of generic VHDL coding. It executes one
round per clock cycle, computes the round and the key round
in parallel and supports both encryption and decryption at a
minimal cost. Compared to other recent block ciphers, SEA
exhibits a very small area utilization that comes at the cost of
a reduced throughput. Consequently, it can be considered as
an interesting alternative for constrained environments.
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