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ABSTRACT 

The Efficiency of present symmetric encryption algorithms 

mainly depends on implementation cost and resulting 

performances. Present symmetric encryption, like the 

Advanced Encryption Standard (AES) rather focus on finding 

a good tradeoff between cost, security and performances. 

Some present symmetric encryption algorithms are targeted 

for software implementations and shows significant efficiency 

improvements on these platforms compared to other 

algorithms. From these algorithms, consider a general context 

where we have very limited processing resources (e.g. a small 

processor). It yields design criteria such as: low memory 

requirements, small code size, limited instruction set, i.e. 

Scalable Encryption Algorithm (SEA). 

For this purpose, loop architecture of the block cipher is 

presented.  

The total modules of SEA written in VHDL coding, the 

simulation and synthesis results are verified by the Virtex-4 of 

Xilinx 9.1i. This paper also carefully describes the 

implementation details and corresponding area requirements 

General Terms 

Security, Algorithms 

Keywords 
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1. INTRODUCTION 
This Scalable Encryption Algorithm (SEA) has been recently 

attracting increased attention. The ability to use parametric in 

the Plaintext, key and processor sizes and it was initially 

designed as a low-cost encryption/authentication are two main 

reasons why, Scalable encryption algorithm is becoming more 

popular. They are considered to be particularly suitable for 

implementation on platforms with constrained storage and fast 

specifications. Scalable Encryption Algorithm (SEA) follows 

unusual design principle for flexibility proposes. It is 

parametric in the text, key and processor size. Many 

algorithms behave differently on different platforms (e.g. 8-bit 

or 32-bit processors). It provides efficient combination of 

encryption and decryption. SEA is mostly used in embedded 

applications such as software implementations in controllers, 

smart cards, or processors. 

 The security attacks [1][2] on scalable encryption algorithm 

were easily evaluated compare to other algorithms like Tiny 

Encryption Algorithm TEA [3] and Yuval’s proposal [4].  

The security of the SEA being adapted in function of its key 

size, SEA has the efficient combination of encryption and 

decryption or the ability to derive keys. SEA is implemented 

in embedded applications such as building infrastructures 

present a significant opportunity and challenge for new 

cryptosystems [5] [6]. Embedded software implementation of 

SEA has been done. The advantages of embedded software 

implementation include ease of use, ease of upgrade, 

portability, low development cost and flexibility. There main 

disadvantages on the other hand, are their lower performance 

and limited ability to protect private keys from compared to 

hardware implementations [7][8].Software implementations 

can easily be achieved on micro processor. However, they 

would be too slow for critical time applications  

In the rest of the paper we first describe the algorithm 

specifications then we describe the architecture 

implementation and results. 

2. ALGORITHM DESCRIPTION 
Scalable Encryption Algorithm (SEA) is a symmetric 

algorithm [9] [10], which works on the concept of Block 

cipher. In SEA same keys are used for both encryption and 

decryption.  

The complete description of the scalable encryption algorithm 

is emphasizing its basic operation starting with the important 

parameters and afterwards follows the round and key round 

description.  

2.1. Parameters and Definitions 

SEAn,b operates on various text, key, and word sizes. It is 

based on a Feistel structure [11] [12] with a variable number 

of rounds, and is defined with respect to the following 

parameters: 

 n- Plaintext size, key size; 

 b- Processor (or word) size; 

   
2

n
n
b b
 Number of words per Feistel branch; 

  nr   Number of block cipher rounds. 

As an only constraint, it is required that n is a multiple of 6b. 

For example, using an 4-bit processor, we can derive 48, 96, 

144, . . . -bit block ciphers, respectively denoted as SEA48,4, 

SEA96,4, SEA144,4, ... 

 Let x be a 
2

n
-bit vector. Consider the following two 

representations. Bit representation: 

     1 ..... 2 1 0
2

n
x x x x x
b

  
  
  

    (2.1) 

Word representation: .....
1 2 2 1 0

x x x x x xw n n
b b


 

    (2.2) 
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2.2 Basic Operations 

Due to its simplicity constraints, SEAn,b is based on a limited 

number of elementary operations (selected for their 

availability in any processing device) denoted as follows:  

(1) Bitwise XOR( ) (2) Substitution box S (3) Word 

rotation R and inverse word rotation R−1, (4) Bit rotation r (5) 

Addition mod ⊞   

These operations are formally defined as follows: 

2.2.1 Bitwise XOR( ): 

In Feistel cipher structures bit-by-bit XOR (modulo-2 sum) 

operation is used in every round for providing secrecy of data 

The XOR operation is used in this algorithm and it is defined 

in equation 2 2 2
2 2 2

n n n
Z Z Z    ; 

     , , 0 1
2

n
x y z x y z i x i y i i        

                (2.3)           

2.2.2 Substitution Box S: 

In cryptography, S-boxes constitute a basic component of 

symmetric key algorithms. In block ciphers, they are typically 

used and are difficult to understand the relationship between 

the plaintext and the cipher text. Non-linear and non-

correlated S-boxes are the most secure with respect to linear 

and differential cryptanalysis. In this encryption algorithm, 

the encryption and decryption blocks are implemented with 4-

bit S-Box.  

    SEAn,b uses the 4-bit S-Box  and is shown in table I. 

 = {0, 9, A, B, 4, D, F, E, 8, 5, 2, 7, 1, 3, 6, C}, 

Table1.  4-Bits Box 

 

 

 

 

 

For efficiency purposes, it is applied bitwise to any set of four 

words of data using the following recursive definition shown 

in equation. 

 : :
2 2

n n
b bS Z Z x x S x
b b
     

 3 3 1 3 2 3 ,
x x x x

i i i i
  

 
 

 3 1 3 2 3 3 3 1
x x x x

i i i i
  

   
 

 3 2 3 3 3 3 2
x x x x

i i i i
  

  
 

  , 0 1,
3 3 3 1 3 3 3 3

n
bx x x x i

i i i i
     

  
     (2.4) 

Where ∧ and ∨ respectively represent the bitwise AND and 

OR. 

2.2.3 Word rotation R:  

The word rotation(R) and inverse word rotation(R-1) 

implementations are used in SEA. It improves the efficiency 

of encryption and decryption. In the word rotation, a stream of 

bits is divided into blocks of data. Occupying of bits in each 

block is dependent on the processor (or word) size. The 

rotations are performed between blocks. According to the 

equation 2.5 left shift is performed between the blocks. In 

inverse word rotation right shift is performed between the 

blocks.   

The word rotation R, defined on nb-word vectors. 

 : : , 0 2
12 2

n nb bR Z Z x y R x y x i n
i ib b b

       


 

1
0

y xn
b

                                            (2.5) 

2.2.4 Bit rotation r:  

The bit rotation implementation is used in SEA. It improves 

the efficiency and secrecy of encryption and decryption. In the 

bit rotation, a stream of bits is divided into blocks of data. 

Occupying of bits in each block is dependent on the processor 

(or word) size. The rotations are performed between bits in a 

block. The bit rotation equation2.6 The bit rotation r, defined 

on nb-word vectors. 

 : :
3 32 2

n nb br Z Z x y r x y x
i ib b

     >>>1 

3 1 3 1
y x

i i


 
 

3 2 3 2
y x

i i


  <<<1, 0 1
3

n
bi     (2.6) 

 

Where >>> and <<< represent the cyclic right and left shifts 

inside a word. 

2.2.5 Addition mod ⊞  :    

 Now a day’s modulo addition is widely used in encryption 

algorithms. The addition mod      implementation is used in 

SEA. It is a mathematical function and it performs carry 

skipped addition. It has some advantages over bitwise XOR, 

these are 

1. Improvement of the diffusion process, 

2. Improvement of non-linearity, 

3. Same cost/speed as the bitwise XOR in most     processors, 

4. Necessity to avoid structural attacks.    

The mod 2b addition is defined on in equation 2.7 

C.  The Round and Key Round 

⊞: : : ,
2 2

n n
b bZ Z x y z
b b
  = x ⊞ y 

, 0 1Z X Y i ni i i b
                 (2.7) 

00 91 A2 B3 

44 D5 F6 E7 

88 59 210 711 

112 313 614 C15 
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Based on the previous definitions, the encrypt round FE, 

decrypt round FD and key round FK are pictured in Fig. 2.1 

 

R-1  

R  

r  S  

Ki  

R  r  S  

   Ci  

Li  Ri  KLi  KRi  

Li+1 Ri+1 

  

KRi+1KLi+1

 Figure.2.1: A view of Encrypt/Decrypt round and key 

round 

The security of this algorithm mainly depends on number of 

rounds. In key round, according to equation 2.8, the round 

input is split into its left and right halves say KLi  and KRi  

for the input to round i. In this the KRi is first added bit-by-

bit  modulo 2 addition to  (constant values means 1,2,3…etc) 

then the resulted data goes into substitution box(S-Box) and 

performed non-linear substitutions then a bit(r) type and 

word(R) type rotations performed on resulted data of S-Box, 

then it xored with KLi and the resultant new data is
1

KL
i

 

and KRi is directly taken as
1

KR
i

.The left and right halves 

are then “swapped” to produce the left half KLi  and right 

half  KRi of the output of round i as 
1

KL KRi i



 and 

1
KR KLi i




 . 

In encryption round, according to equation 2.10, the round 

input is split into its left and right halves say Li  and Ri  for 

the input to round i. In this the Ri is first added bit-by-bit  

modulo 2 to Ki (produced key from key round) then the 

resulted data goes into substitution box(S-Box) and performed 

non-linear substitutions then a bit(r) type rotations performed 

on resulted data of S-Box, then it x-ored with word rotation 

performed Li and the resultant new data is 
1

L
i

and Ri is 

directly taken as 1iR  .The left and right halves are then 

“swapped” to produce the left half Li and right half Ri of the 

output of round  i  as 

 
1

L Ri i



 And  

1
R Li i




 

The equation 2.11 explains decryption round which is similar 

to the encryption round, the only difference is instead of 

considering word rotation on Li , and an inverse word 

rotation is performed on output of xor. 

It is defined as the functions 

2 2
:

2 /2 2 /2 2 /2
F Z Z Zn n n   

Such that 
1

L Rii



               (2.8) 

[ ; ] ( , , )
1 1 1

( ( ( )))
1

L R F L R K R
i i D i i i i

R L r S R K
i i i

 
  

 


 

1
L Rii




                (2.9) 

[ , ] ( , , )
1 1 1

( ( ( )))

KL KR F KL KR C KRi i iKi i i

KL R r S KR Ci i i

 
  

 
 

1
KL KRii




              (2.10) 

3. IMPLEMENTATION OF SEA 

3.1 Architecture of Scalable Encryption 

Algorithm (SEA) 

The VLSI architecture for the implementation of the Scalable 

Encryption Algorithm consists of the three main components, 

key scheduling, Encryption and Decryption. The 

implementation mainly consists of 8-bit processor size, ten no 

of rounds, key and plaintext of   48-bits size.   

3.1.1 Encryption Block  
In the implementation entire design has been divided in to 

various modules given below. 

 Key schedule block, 

 Single round of Key schedule block, 

 Encryption block,  

 Single round of Encryption block. 

 

3.1.1.1 Key schedule block 

Key input (48-Bit)

Round 1

. . .

 Round 10

 Round 9

 Round 2

K1 (48-Bit)

K2 (48-Bit)

K9 (48-Bit)

K10 (48-Bit)

 

Figure.3.1: Key schedules for ten rounds 

Key schedule has been implemented as a module, which is 

used in encryption block to provide keys for encryption of 

plaintext. Key scheduling is implemented for ten rounds. The 

key schedule block takes 48-bit key as input and it produce 

ten subkeys of length 48-bit. Each subkey is used for each 

round of encryption and used for each round of decryption in 

reverse order. The simple architecture for key schedule as 

shown in Fig.3.1 

3.1.1.2 Single Round of Key schedule block  

The single round implementation of key schedule as shown in 

Fig.3.2 this block takes 48-bit as input. The input key of 

single round is splits into two left and right halves, i.e. left 24-
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bit half and right 24-bit. The right 24-bit of key is performed 

modulo addition with constants like 1, 2, 3, 4….etc 

(represented in terms of bits). The usage of number of 

constant values is dependent on number of rounds. Round 

constant is changed by key rounds. By using this round 

constant, reduce the related key attacks [13]. 

24-Bit

Output i(48-Bit)

24-Bit

Right i

Right i             Const i

Substitution Box

Bit Rotation

Left i

Word Rotation

Left i Right i

Left iRight i

24-Bit
24-Bit

24-Bit

24-Bit

24-Bit

Input i(48-Bit)

XOR

24-Bit

24-Bit

24-Bit

24-Bit

 

Figure.3.2: Single round of key schedule 

3.1.1.3 Encryption block  

         Encryption block has been implemented as a module. 

All other modules like modulo addition, S-Box, bit rotation, 

word rotation are internal modules of encryption block.. 

Encryption is implemented for ten rounds. The encryption 

block takes 48-bit as input key and 48-bit as plaintext. The 

encryption block and key schedule blocks are implemented 

for ten rounds. 

Plain Text (48-Bit)

Cipher Text (48-Bit)

Key  (48-Bit)

K
e
y

 G
e
n

e
ra

ti
o

n
 B

lo
c
k

  KL1 SEA Round 1

. . .

KR1K1 (48-Bit)

KR1

KL2 KR2

KL10 KR10

KL6 KR6

KL7 KR7

KL5 KR5

SEA Round 10

SEA Round 7

SEA Round 6

SEA Round 5

SEA Round 2

. . .

. . .
. . .

KR2

KR5

KL6

KL7

KL10

K2 (48-Bit)

K5 (48-Bit)

K6 (48-Bit)

K7 (48-Bit)

K10 (48-Bit)

 Figure.3.3: Architecture of Encryption Block 

Each subkey from original key is generated in key schedule 

and used in parallel for every encryption round. For the First 

five rounds of encryption, the right half of first five subkeys 

are used for encryption process and for next five rounds of 

encryption the left half of next five subkeys are used for 

encryption process is shown in Fig.3.3. 

In the architecture of encryption block, key generation block 

takes 48-bit as input key “2B7E151628AE” and it produce ten 

sub keys. Key left 24-bits and key right 24-bits are left and 

right parts of the key. Right 24-bits of first five subkeys are 

used for the first half of encryption. Light 24-bits of next five 

subkeys are used for the next half of encryption. Required 

ciphertext is produced after completion of encryption process 

with key and plaintext “212223242526”. 

3.1.1.4 Single Round of Encryption block  

Output i(48-Bit)

24-Bit

Right i

Key i                 Right i

Substitution Box

Bit Rotation

Left i

Left i Right i

Left iRight i

24-Bit

24-Bit

24-Bit

24-Bit
24-Bit

Input i(48-Bit)

XOR

Word Rotation

24-Bit

24-Bit

24-Bit

24-Bit

24-Bit

 

Figure.3.4: Single round architecture of Encryption 

Block 

Single round architecture of encryption block is same as 

single round of key schedule block. The single round 

implementation structure as shown in Fig.3.4 The working 

principle internal blocks of single round of encryption is same 

as single round of key schedule block. 

In the implementation, entire design is divided in to various 

modules given below. 

 Decryption block,  

 Single round of Decryption block, 

 Inverse word rotation. 

3.1.1.4.1 Decryption block 

Decryption block has been implemented as a module. All 

other modules like modulo addition, S-Box, bit rotation, 

inverse word rotation are internal modules of decryption 

block. The Feistel structure ensures that decryption and 

encryption are very similar processes but the only difference 

is that the subkeys are applied in the reverse order when 

decrypting. 

The decryption block takes 48-bit as input key and 48-bit as 

ciphertext (final round output of encryption block). Each 

subkey from original key is generated in key schedule and 

used in parallel for every decryption round. For the first five 

rounds of decryption, left half of last five subkeys of key 

schedule are used for decryption process and for next five 

rounds of decryption the right half of next five subkeys are 

used for decryption process is shown in Figure.3.5 
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Key  (48-Bit)

Plain Text (48-Bit)

Cipher Text (48-Bit)

K
ey

 G
en

er
at

io
n

 B
lo

ck

  KL10 Decryption Round 1

. . .

KL10K10 (48-Bit)

KR10

KL9 KR9

KL1 KR1

KL5 KR5

KL4 KR4

KL6 KR6

Decryption Round 10

Decryption Round 7

Decryption Round 6

Decryption Round 5

Decryption Round 2

. . .

. . .
. . .

KL9

KL6

KR5

KR4

KL1

K9 (48-Bit)

K6 (48-Bit)

K5 (48-Bit)

K4 (48-Bit)

K1 (48-Bit)

 Figure.3.5: Architecture of Decryption block 

In the architecture of decryption block, key schedule block 

takes 48-bit as input key “2B7E151628AE” and it produce ten 

sub keys. Key left 24-bits and key right 24-bits are left and 

right parts of the key.   Right 24-bits of first five subkeys are 

used for the last half of decryption process. Left 24-bits of 

next five subkeys are used for the first half of decryption 

process. Required plaintext is produced after completion of 

decryption process with key and ciphertext “EC74983B2526”. 

3.1.1.4.2 Single round of Decryption block  

Output i(48-Bit)

24-Bit

Right i

Key i                 Right 

Substitution Box

Bit Rotation

Left i

Inverse word rotation

Left i Right i

Left iRight i

24-Bit24-Bit

24-Bit

24-Bit24-Bit

24-Bit 24-Bit

Input i(48-Bit)

XOR

Word Rotation

24-Bit

 Figure.3.6: Single round architecture of Decryption 

Single round architecture of decryption block is same as 

single round of encryption block. The only difference is, in 

single round decryption block the ciphertext is splits into two 

halves say left and right block then the inverse word rotation 

performed on resulted output of xor. The single round 

implementation decryption block structure as shown in 

Fig.3.6. The working principle internal blocks of single round 

of decryption is same as single round of encryption block. 

3.1.1.4.3 Inverse word rotation. 

In this inverse word rotation circular right shift is performed 

between blocks (words). 

4. RESULTS 
The netlist output is made available in various netlist formats 

including VHDL. Such a description can be simulated and its 

simulation is referred as Post Synthesis simulation. Timing 

issues, Determination of proper clock Frequency and race and 

hazard considerations can only be checked by a post synthesis 

simulation run after a design is synthesized. 

The netlist output is made available in various netlist formats 

including VHDL. Such a description can be simulated and its 

simulation is referred as Post Synthesis simulation. Timing 

issues, Determination of proper clock Frequency and race and 

hazard considerations can only be checked by a post synthesis 

simulation run after a design is synthesized. 

The Post-Route simulation waveform for Key schedule of 48-

bit is shown in Fig.4.1. It can be seen that input key 

is“2B7E151628AE” is applied to key schedule, it provides ten 

subkeys of 48-bit.  

The Post-Route simulation waveform for Encryption Block of 

48-bit is shown in Fig.4.2. It can be seen that Plaintext is 

“212223242526” is applied to encryption block. Ciphertext is 

“EC7498382526” provides after ten rounds encryption 

process with use of subkeys. 

The Post-Route simulation waveform for Decryption of 48-bit 

is shown in Fig.4.3. It can be seen that Ciphertext is 

“EC7498382526” is applied to decryption block. Plaintext is 

“212223242526” provides after ten rounds decryption process 

with use of subkeys in reverse order to encryption. 

The Post-Route simulation waveform for Encryption and 

Decryption is shown in the Fig.4.4. From the Fig.4.4 the 

encryption and decryption is implementing for ten rounds. 

The key scheduling block is used to generate ten subkeys 

which are used for encryption and decryption of ten rounds. In 

the encryption process, the subkeys with the Plaintext 

“212223242526” are used for the generation of the Cipher 

text “EC74983B2526”, which occurs after ten rounds of 

encryption.  

The Ciphertext of the encryption process is given as the input 

to the decryption process for the regeneration of the original 

Plaintext “212223242526”. The keys used in decryption 

process are in reverse order to the encryption process. 

Table2. Implementation results for sea with different   n 

and b parameters 

Plaintext 

size(n) 

Processor 

size(b) 

No. of 

Slices 

No. of 

Slices 

Flip-

Flops 

Frequency 

(MHz) 

48 

48 

4 

8 

205 

197 

157 

161 

332 

329 

72 

72 

72 

4 

6 

12 

214 

201 

205 

165 

164 

169 

352 

337 

337 

96 

96 

4 

8 

281 

279 

218 

226 

354 

341 
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Figure.4.1: Post-Route Simulation waveform for Key schedule 

 

Figure.4.2: Post-Route Simulation waveform for Encryption Block 

 

Figure.4.3: Post-Route Simulation waveform for Decryption Block 

 

Figure.4.4:The Post-Route simulation waveform for Encryption and Decryption 
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The implemented results for SEA with different n and b 

parameters are presented in Table5.3, where the area 

requirements (in slices) and the working frequency are 

presented in table. The obtained working frequencies are very 

close for all implementations. For set of parameters increasing 

processor (b) size for a given plaintext (n) generally decreases 

the area requirements in slices. The examination from the 

table is, the processor size is not a limiting factor for the 

working frequency, increasing the word size leads to the most 

efficient implementation for area. 

5. CONCLUSION 
In this paper, the VLSI architecture of Scalable Encryption 

Algorithm provides flexibility to implement it for various sets 

of parameters like plaintext, key size and bus size, but the 

plaintext and key size must be same size. The VLSI 

architecture of SEA is designed using VHDL and is simulated 

in Xilinx 9.1i or Modelsim6.0.This paper presented FPGA 

implementations of a scalable encryption algorithm for 

various sets of parameters. The presented parametric 

architecture allows keeping the flexibility of the algorithm by 

taking advantage of generic VHDL coding. It executes one 

round per clock cycle, computes the round and the key round 

in parallel and supports both encryption and decryption at a 

minimal cost. Compared to other recent block ciphers, SEA 

exhibits a very small area utilization that comes at the cost of 

a reduced throughput. Consequently, it can be considered as 

an interesting alternative for constrained environments. 
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