
International Journal of Computer Applications (0975 – 8887)

Volume 44– No.1, April 2012

1

VLSI Implementation of Scalable Encryption Algorithm
for Different Text and Processor Size

T.Kalpana

Assistant Professor
SR. Engineering College

Warangal, AP, India

K.Srinivas
Assistant Professor

JNTUH College of Engineering
Karimnagar, AP,India.

ABSTRACT

The Efficiency of present symmetric encryption algorithms

mainly depends on implementation cost and resulting

performances. Present symmetric encryption, like the

Advanced Encryption Standard (AES) rather focus on finding

a good tradeoff between cost, security and performances.

Some present symmetric encryption algorithms are targeted

for software implementations and shows significant efficiency

improvements on these platforms compared to other

algorithms. From these algorithms, consider a general context

where we have very limited processing resources (e.g. a small

processor). It yields design criteria such as: low memory

requirements, small code size, limited instruction set, i.e.

Scalable Encryption Algorithm (SEA).

For this purpose, loop architecture of the block cipher is

presented.

The total modules of SEA written in VHDL coding, the

simulation and synthesis results are verified by the Virtex-4 of

Xilinx 9.1i. This paper also carefully describes the

implementation details and corresponding area requirements

General Terms

Security, Algorithms

Keywords

Block cipher, SEA.

1. INTRODUCTION
This Scalable Encryption Algorithm (SEA) has been recently

attracting increased attention. The ability to use parametric in

the Plaintext, key and processor sizes and it was initially

designed as a low-cost encryption/authentication are two main

reasons why, Scalable encryption algorithm is becoming more

popular. They are considered to be particularly suitable for

implementation on platforms with constrained storage and fast

specifications. Scalable Encryption Algorithm (SEA) follows

unusual design principle for flexibility proposes. It is

parametric in the text, key and processor size. Many

algorithms behave differently on different platforms (e.g. 8-bit

or 32-bit processors). It provides efficient combination of

encryption and decryption. SEA is mostly used in embedded

applications such as software implementations in controllers,

smart cards, or processors.

 The security attacks [1][2] on scalable encryption algorithm

were easily evaluated compare to other algorithms like Tiny

Encryption Algorithm TEA [3] and Yuval’s proposal [4].

The security of the SEA being adapted in function of its key

size, SEA has the efficient combination of encryption and

decryption or the ability to derive keys. SEA is implemented

in embedded applications such as building infrastructures

present a significant opportunity and challenge for new

cryptosystems [5] [6]. Embedded software implementation of

SEA has been done. The advantages of embedded software

implementation include ease of use, ease of upgrade,

portability, low development cost and flexibility. There main

disadvantages on the other hand, are their lower performance

and limited ability to protect private keys from compared to

hardware implementations [7][8].Software implementations

can easily be achieved on micro processor. However, they

would be too slow for critical time applications

In the rest of the paper we first describe the algorithm

specifications then we describe the architecture

implementation and results.

2. ALGORITHM DESCRIPTION
Scalable Encryption Algorithm (SEA) is a symmetric

algorithm [9] [10], which works on the concept of Block

cipher. In SEA same keys are used for both encryption and

decryption.

The complete description of the scalable encryption algorithm

is emphasizing its basic operation starting with the important

parameters and afterwards follows the round and key round

description.

2.1. Parameters and Definitions

SEAn,b operates on various text, key, and word sizes. It is

based on a Feistel structure [11] [12] with a variable number

of rounds, and is defined with respect to the following

parameters:

 n- Plaintext size, key size;

 b- Processor (or word) size;

2

n
n
b b
 Number of words per Feistel branch;

 nr Number of block cipher rounds.

As an only constraint, it is required that n is a multiple of 6b.

For example, using an 4-bit processor, we can derive 48, 96,

144, . . . -bit block ciphers, respectively denoted as SEA48,4,

SEA96,4, SEA144,4, ...

 Let x be a
2

n
-bit vector. Consider the following two

representations. Bit representation:

     1 2 1 0
2

n
x x x x x
b

  
  
  

  (2.1)

Word representation:
1 2 2 1 0

x x x x x xw n n
b b


 

 (2.2)

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.1, April 2012

2

2.2 Basic Operations

Due to its simplicity constraints, SEAn,b is based on a limited

number of elementary operations (selected for their

availability in any processing device) denoted as follows:

(1) Bitwise XOR() (2) Substitution box S (3) Word

rotation R and inverse word rotation R−1, (4) Bit rotation r (5)

Addition mod ⊞

These operations are formally defined as follows:

2.2.1 Bitwise XOR():

In Feistel cipher structures bit-by-bit XOR (modulo-2 sum)

operation is used in every round for providing secrecy of data

The XOR operation is used in this algorithm and it is defined

in equation 2 2 2
2 2 2

n n n
Z Z Z    ;

     , , 0 1
2

n
x y z x y z i x i y i i        

 (2.3)

2.2.2 Substitution Box S:

In cryptography, S-boxes constitute a basic component of

symmetric key algorithms. In block ciphers, they are typically

used and are difficult to understand the relationship between

the plaintext and the cipher text. Non-linear and non-

correlated S-boxes are the most secure with respect to linear

and differential cryptanalysis. In this encryption algorithm,

the encryption and decryption blocks are implemented with 4-

bit S-Box.

 SEAn,b uses the 4-bit S-Box and is shown in table I.

 = {0, 9, A, B, 4, D, F, E, 8, 5, 2, 7, 1, 3, 6, C},

Table1. 4-Bits Box

For efficiency purposes, it is applied bitwise to any set of four

words of data using the following recursive definition shown

in equation.

 : :
2 2

n n
b bS Z Z x x S x
b b
   

 3 3 1 3 2 3 ,
x x x x

i i i i
  

 

 3 1 3 2 3 3 3 1
x x x x

i i i i
  

   

 3 2 3 3 3 3 2
x x x x

i i i i
  

  

  , 0 1,
3 3 3 1 3 3 3 3

n
bx x x x i

i i i i
     

  
 (2.4)

Where ∧ and ∨ respectively represent the bitwise AND and

OR.

2.2.3 Word rotation R:

The word rotation(R) and inverse word rotation(R-1)

implementations are used in SEA. It improves the efficiency

of encryption and decryption. In the word rotation, a stream of

bits is divided into blocks of data. Occupying of bits in each

block is dependent on the processor (or word) size. The

rotations are performed between blocks. According to the

equation 2.5 left shift is performed between the blocks. In

inverse word rotation right shift is performed between the

blocks.

The word rotation R, defined on nb-word vectors.

 : : , 0 2
12 2

n nb bR Z Z x y R x y x i n
i ib b b

       


1
0

y xn
b

  (2.5)

2.2.4 Bit rotation r:

The bit rotation implementation is used in SEA. It improves

the efficiency and secrecy of encryption and decryption. In the

bit rotation, a stream of bits is divided into blocks of data.

Occupying of bits in each block is dependent on the processor

(or word) size. The rotations are performed between bits in a

block. The bit rotation equation2.6 The bit rotation r, defined

on nb-word vectors.

 : :
3 32 2

n nb br Z Z x y r x y x
i ib b

     >>>1

3 1 3 1
y x

i i


 

3 2 3 2
y x

i i


  <<<1, 0 1
3

n
bi   (2.6)

Where >>> and <<< represent the cyclic right and left shifts

inside a word.

2.2.5 Addition mod ⊞ :

 Now a day’s modulo addition is widely used in encryption

algorithms. The addition mod implementation is used in

SEA. It is a mathematical function and it performs carry

skipped addition. It has some advantages over bitwise XOR,

these are

1. Improvement of the diffusion process,

2. Improvement of non-linearity,

3. Same cost/speed as the bitwise XOR in most processors,

4. Necessity to avoid structural attacks.

The mod 2b addition is defined on in equation 2.7

C. The Round and Key Round

⊞: : : ,
2 2

n n
b bZ Z x y z
b b
  = x ⊞ y

, 0 1Z X Y i ni i i b
     (2.7)

00 91 A2 B3

44 D5 F6 E7

88 59 210 711

112 313 614 C15

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.1, April 2012

3

Based on the previous definitions, the encrypt round FE,

decrypt round FD and key round FK are pictured in Fig. 2.1

R-1

R

r S

Ki

R r S

 Ci

Li Ri KLi KRi

Li+1 Ri+1

KRi+1KLi+1

 Figure.2.1: A view of Encrypt/Decrypt round and key

round

The security of this algorithm mainly depends on number of

rounds. In key round, according to equation 2.8, the round

input is split into its left and right halves say KLi and KRi

for the input to round i. In this the KRi is first added bit-by-

bit modulo 2 addition to (constant values means 1,2,3…etc)

then the resulted data goes into substitution box(S-Box) and

performed non-linear substitutions then a bit(r) type and

word(R) type rotations performed on resulted data of S-Box,

then it xored with KLi and the resultant new data is
1

KL
i

and KRi is directly taken as
1

KR
i

.The left and right halves

are then “swapped” to produce the left half KLi and right

half KRi of the output of round i as
1

KL KRi i



 and

1
KR KLi i




 .

In encryption round, according to equation 2.10, the round

input is split into its left and right halves say Li and Ri for

the input to round i. In this the Ri is first added bit-by-bit

modulo 2 to Ki (produced key from key round) then the

resulted data goes into substitution box(S-Box) and performed

non-linear substitutions then a bit(r) type rotations performed

on resulted data of S-Box, then it x-ored with word rotation

performed Li and the resultant new data is
1

L
i

and Ri is

directly taken as 1iR  .The left and right halves are then

“swapped” to produce the left half Li and right half Ri of the

output of round i as

1

L Ri i



 And

1
R Li i




The equation 2.11 explains decryption round which is similar

to the encryption round, the only difference is instead of

considering word rotation on Li , and an inverse word

rotation is performed on output of xor.

It is defined as the functions

2 2
:

2 /2 2 /2 2 /2
F Z Z Zn n n 

Such that
1

L Rii



 (2.8)

[;] (, ,)
1 1 1

((()))
1

L R F L R K R
i i D i i i i

R L r S R K
i i i

 
  

 


1
L Rii




 (2.9)

[,] (, ,)
1 1 1

((()))

KL KR F KL KR C KRi i iKi i i

KL R r S KR Ci i i

 
  

 

1
KL KRii




 (2.10)

3. IMPLEMENTATION OF SEA

3.1 Architecture of Scalable Encryption

Algorithm (SEA)

The VLSI architecture for the implementation of the Scalable

Encryption Algorithm consists of the three main components,

key scheduling, Encryption and Decryption. The

implementation mainly consists of 8-bit processor size, ten no

of rounds, key and plaintext of 48-bits size.

3.1.1 Encryption Block
In the implementation entire design has been divided in to

various modules given below.

 Key schedule block,

 Single round of Key schedule block,

 Encryption block,

 Single round of Encryption block.

3.1.1.1 Key schedule block

Key input (48-Bit)

Round 1

. . .

 Round 10

 Round 9

 Round 2

K1 (48-Bit)

K2 (48-Bit)

K9 (48-Bit)

K10 (48-Bit)

Figure.3.1: Key schedules for ten rounds

Key schedule has been implemented as a module, which is

used in encryption block to provide keys for encryption of

plaintext. Key scheduling is implemented for ten rounds. The

key schedule block takes 48-bit key as input and it produce

ten subkeys of length 48-bit. Each subkey is used for each

round of encryption and used for each round of decryption in

reverse order. The simple architecture for key schedule as

shown in Fig.3.1

3.1.1.2 Single Round of Key schedule block

The single round implementation of key schedule as shown in

Fig.3.2 this block takes 48-bit as input. The input key of

single round is splits into two left and right halves, i.e. left 24-

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.1, April 2012

4

bit half and right 24-bit. The right 24-bit of key is performed

modulo addition with constants like 1, 2, 3, 4….etc

(represented in terms of bits). The usage of number of

constant values is dependent on number of rounds. Round

constant is changed by key rounds. By using this round

constant, reduce the related key attacks [13].

24-Bit

Output i(48-Bit)

24-Bit

Right i

Right i Const i

Substitution Box

Bit Rotation

Left i

Word Rotation

Left i Right i

Left iRight i

24-Bit
24-Bit

24-Bit

24-Bit

24-Bit

Input i(48-Bit)

XOR

24-Bit

24-Bit

24-Bit

24-Bit

Figure.3.2: Single round of key schedule

3.1.1.3 Encryption block

 Encryption block has been implemented as a module.

All other modules like modulo addition, S-Box, bit rotation,

word rotation are internal modules of encryption block..

Encryption is implemented for ten rounds. The encryption

block takes 48-bit as input key and 48-bit as plaintext. The

encryption block and key schedule blocks are implemented

for ten rounds.

Plain Text (48-Bit)

Cipher Text (48-Bit)

Key (48-Bit)

K
e
y

 G
e
n

e
ra

ti
o

n
 B

lo
c
k

 KL1 SEA Round 1

. . .

KR1K1 (48-Bit)

KR1

KL2 KR2

KL10 KR10

KL6 KR6

KL7 KR7

KL5 KR5

SEA Round 10

SEA Round 7

SEA Round 6

SEA Round 5

SEA Round 2

. . .

. . .
. . .

KR2

KR5

KL6

KL7

KL10

K2 (48-Bit)

K5 (48-Bit)

K6 (48-Bit)

K7 (48-Bit)

K10 (48-Bit)

 Figure.3.3: Architecture of Encryption Block

Each subkey from original key is generated in key schedule

and used in parallel for every encryption round. For the First

five rounds of encryption, the right half of first five subkeys

are used for encryption process and for next five rounds of

encryption the left half of next five subkeys are used for

encryption process is shown in Fig.3.3.

In the architecture of encryption block, key generation block

takes 48-bit as input key “2B7E151628AE” and it produce ten

sub keys. Key left 24-bits and key right 24-bits are left and

right parts of the key. Right 24-bits of first five subkeys are

used for the first half of encryption. Light 24-bits of next five

subkeys are used for the next half of encryption. Required

ciphertext is produced after completion of encryption process

with key and plaintext “212223242526”.

3.1.1.4 Single Round of Encryption block

Output i(48-Bit)

24-Bit

Right i

Key i Right i

Substitution Box

Bit Rotation

Left i

Left i Right i

Left iRight i

24-Bit

24-Bit

24-Bit

24-Bit
24-Bit

Input i(48-Bit)

XOR

Word Rotation

24-Bit

24-Bit

24-Bit

24-Bit

24-Bit

Figure.3.4: Single round architecture of Encryption

Block

Single round architecture of encryption block is same as

single round of key schedule block. The single round

implementation structure as shown in Fig.3.4 The working

principle internal blocks of single round of encryption is same

as single round of key schedule block.

In the implementation, entire design is divided in to various

modules given below.

 Decryption block,

 Single round of Decryption block,

 Inverse word rotation.

3.1.1.4.1 Decryption block

Decryption block has been implemented as a module. All

other modules like modulo addition, S-Box, bit rotation,

inverse word rotation are internal modules of decryption

block. The Feistel structure ensures that decryption and

encryption are very similar processes but the only difference

is that the subkeys are applied in the reverse order when

decrypting.

The decryption block takes 48-bit as input key and 48-bit as

ciphertext (final round output of encryption block). Each

subkey from original key is generated in key schedule and

used in parallel for every decryption round. For the first five

rounds of decryption, left half of last five subkeys of key

schedule are used for decryption process and for next five

rounds of decryption the right half of next five subkeys are

used for decryption process is shown in Figure.3.5

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.1, April 2012

5

Key (48-Bit)

Plain Text (48-Bit)

Cipher Text (48-Bit)

K
ey

 G
en

er
at

io
n

 B
lo

ck

 KL10 Decryption Round 1

. . .

KL10K10 (48-Bit)

KR10

KL9 KR9

KL1 KR1

KL5 KR5

KL4 KR4

KL6 KR6

Decryption Round 10

Decryption Round 7

Decryption Round 6

Decryption Round 5

Decryption Round 2

. . .

. . .
. . .

KL9

KL6

KR5

KR4

KL1

K9 (48-Bit)

K6 (48-Bit)

K5 (48-Bit)

K4 (48-Bit)

K1 (48-Bit)

 Figure.3.5: Architecture of Decryption block

In the architecture of decryption block, key schedule block

takes 48-bit as input key “2B7E151628AE” and it produce ten

sub keys. Key left 24-bits and key right 24-bits are left and

right parts of the key. Right 24-bits of first five subkeys are

used for the last half of decryption process. Left 24-bits of

next five subkeys are used for the first half of decryption

process. Required plaintext is produced after completion of

decryption process with key and ciphertext “EC74983B2526”.

3.1.1.4.2 Single round of Decryption block

Output i(48-Bit)

24-Bit

Right i

Key i Right

Substitution Box

Bit Rotation

Left i

Inverse word rotation

Left i Right i

Left iRight i

24-Bit24-Bit

24-Bit

24-Bit24-Bit

24-Bit 24-Bit

Input i(48-Bit)

XOR

Word Rotation

24-Bit

 Figure.3.6: Single round architecture of Decryption

Single round architecture of decryption block is same as

single round of encryption block. The only difference is, in

single round decryption block the ciphertext is splits into two

halves say left and right block then the inverse word rotation

performed on resulted output of xor. The single round

implementation decryption block structure as shown in

Fig.3.6. The working principle internal blocks of single round

of decryption is same as single round of encryption block.

3.1.1.4.3 Inverse word rotation.

In this inverse word rotation circular right shift is performed

between blocks (words).

4. RESULTS
The netlist output is made available in various netlist formats

including VHDL. Such a description can be simulated and its

simulation is referred as Post Synthesis simulation. Timing

issues, Determination of proper clock Frequency and race and

hazard considerations can only be checked by a post synthesis

simulation run after a design is synthesized.

The netlist output is made available in various netlist formats

including VHDL. Such a description can be simulated and its

simulation is referred as Post Synthesis simulation. Timing

issues, Determination of proper clock Frequency and race and

hazard considerations can only be checked by a post synthesis

simulation run after a design is synthesized.

The Post-Route simulation waveform for Key schedule of 48-

bit is shown in Fig.4.1. It can be seen that input key

is“2B7E151628AE” is applied to key schedule, it provides ten

subkeys of 48-bit.

The Post-Route simulation waveform for Encryption Block of

48-bit is shown in Fig.4.2. It can be seen that Plaintext is

“212223242526” is applied to encryption block. Ciphertext is

“EC7498382526” provides after ten rounds encryption

process with use of subkeys.

The Post-Route simulation waveform for Decryption of 48-bit

is shown in Fig.4.3. It can be seen that Ciphertext is

“EC7498382526” is applied to decryption block. Plaintext is

“212223242526” provides after ten rounds decryption process

with use of subkeys in reverse order to encryption.

The Post-Route simulation waveform for Encryption and

Decryption is shown in the Fig.4.4. From the Fig.4.4 the

encryption and decryption is implementing for ten rounds.

The key scheduling block is used to generate ten subkeys

which are used for encryption and decryption of ten rounds. In

the encryption process, the subkeys with the Plaintext

“212223242526” are used for the generation of the Cipher

text “EC74983B2526”, which occurs after ten rounds of

encryption.

The Ciphertext of the encryption process is given as the input

to the decryption process for the regeneration of the original

Plaintext “212223242526”. The keys used in decryption

process are in reverse order to the encryption process.

Table2. Implementation results for sea with different n

and b parameters

Plaintext

size(n)

Processor

size(b)

No. of

Slices

No. of

Slices

Flip-

Flops

Frequency

(MHz)

48

48

4

8

205

197

157

161

332

329

72

72

72

4

6

12

214

201

205

165

164

169

352

337

337

96

96

4

8

281

279

218

226

354

341

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.1, April 2012

6

Figure.4.1: Post-Route Simulation waveform for Key schedule

Figure.4.2: Post-Route Simulation waveform for Encryption Block

Figure.4.3: Post-Route Simulation waveform for Decryption Block

Figure.4.4:The Post-Route simulation waveform for Encryption and Decryption

International Journal of Computer Applications (0975 – 8887)

Volume 44– No.1, April 2012

7

The implemented results for SEA with different n and b

parameters are presented in Table5.3, where the area

requirements (in slices) and the working frequency are

presented in table. The obtained working frequencies are very

close for all implementations. For set of parameters increasing

processor (b) size for a given plaintext (n) generally decreases

the area requirements in slices. The examination from the

table is, the processor size is not a limiting factor for the

working frequency, increasing the word size leads to the most

efficient implementation for area.

5. CONCLUSION
In this paper, the VLSI architecture of Scalable Encryption

Algorithm provides flexibility to implement it for various sets

of parameters like plaintext, key size and bus size, but the

plaintext and key size must be same size. The VLSI

architecture of SEA is designed using VHDL and is simulated

in Xilinx 9.1i or Modelsim6.0.This paper presented FPGA

implementations of a scalable encryption algorithm for

various sets of parameters. The presented parametric

architecture allows keeping the flexibility of the algorithm by

taking advantage of generic VHDL coding. It executes one

round per clock cycle, computes the round and the key round

in parallel and supports both encryption and decryption at a

minimal cost. Compared to other recent block ciphers, SEA

exhibits a very small area utilization that comes at the cost of

a reduced throughput. Consequently, it can be considered as

an interesting alternative for constrained environments.

6. REFERENCES

[1] Rao, K.D.; Gangadhar, C. VLSI realization of a secure

cryptosystem for image encryption and decryption

Communications and Signal Processing (ICCSP), 2011

IEEE International Conference 2011 , Page(s): 543 - 547

[2] Dam J. Elbirt, “ReconFig.urable Computing for

Symmetric-Key Algorithms”.

[3] D.J. Wheeler, R. Needham, TEA, a Tiny Encryption

Algorithm, in the proceedings of FSE 1994, Lecture

Notes in Computer Science, volume 1008, pp 363-366,

Leuven, Belgium, December 1994, Springer-Verlag.

[4] G. Yuval, Reinventing the Travois: Encryption/MAC in

30 ROM Bytes, in the proceedings of FSE 1997, Lecture

Notes in Computer Science, volume 1267, pp 205-209,

Haifa, Israel,January 1997, Springer-Verlag.

[5] A. Menezes, P. van, “Handbook of Applied

Cryptography”.

[6] Hongyong Jia; Yue Chen; Xiuqing Mao; Ruiyu Douv

Efficient and scalable multicast key management using

attribute based encryptionv Information Theory and

Information Security (ICITIS), 2010 IEEE International

Conference 2010 , Page(s): 426 - 429

[7] B. Schneier, “Applied Cryptography” John Wiley &

Sons Inc., New York, New York, USA, 2nd edition,

1996.

[8] R. Doud. Hardware Crypto Solutions Boost VPN.

Electronic Engineering Times, (1056):57{64, April 12

1999.

[9] H. Feistel. Cryptography and Computer Privacy.

Scientific American, 228(5):15-23, May 1973.

[10] F.-X. Standaert, G. Piret, N. Gershenfeld, and J.-J.

Quisquater,“Sea: A scalable encryption algorithm for

small embedded applications,” in Proc. CARDIS, 2006,

pp. 222–236.

[11] F.-X. Standaert, G. Piret, G. Rouvroy, J.-J. Quisquater,

J.-D.Legat, ICEBERG an Involutional Cipher Efficient

for Block Encryption in ReconFig.urable Hardware, in

the proceedings of FSE 2004, Lecture Notes in Computer

Science, vol 3017, pp 279-299, New Delhi, India,

February 2004, Springer-Verlag.

[12] E. Biham, New types of cryptanalytic attacks using

related keys,Journal of Cryptology, vol 7, num 4, pp

229-246, Fall 1994, Springer Verlag

[13] Jiang Bian; Seker, R.; Topaloglu, U.; Bayrak, C. A

scalable Role-based Group Key Agreement and Role

Identification mechanism Systems Conference (SysCon),

2011 IEEE International 2011 , Page(s): 278 – 281

7. AUTHORS PROFILE

T.Kalpana received the B.Tech. degree in electronics and

instrumentation engineering from Kakatiya Institute of

Technology and Science, Warangal , Kakatiya University,

Warangal, India, in 2001, the M.Tech. Degree in Digital

systems and Computer Electronics, Jawaharlal Nehru

Technological University Hyderabad in 2010, Currently, she

is an Assistant Professor in Electronics and Communication

Engineering Department, SR Engineering College

(Autonomous), Warangal, AP, India. Her fields of interest

include signal processing and communication systems.

K.Srinivas received the B.E. degree in electrical and

electronics engineering from Chithanya Bharathi Institutue of

Technology and Science, Hyderabad, Osmania University,

Hyderabad, India, in 2002, the M.Tech. Degree in power

systems and Power Electronics from the Indian Institute of

Technology, Madras, Chennai, in 2005, pursuing Ph.D from

Jawaharlal Nehru Technological University Hyderabad.

Currently, he is an Assistant Professor in Electrical and

Electronics Engineering Department, Jawaharlal Nehru

Technological University Hyderabad College of Engineering

Karimanagar. His fields of interest include power quality and

power-electronics control in power systems

