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ABSTRACT 

The high performance of an elliptic curve (EC) crypto system 

depends efficiently on the arithmetic in the underlying finite 

field. We have to propose and compare two levels of Galois 

Field GF(2163) and GF(2193). The proposed architecture is based 

on Lopez-Dehab elliptic curve point multiplication algorithm, 

which uses Gaussian normal basis for GF(2163) field arithmetic. 

In which derived parallelized elliptic curve point doubling and 

addition algorithms with uniform addressing are based on 

Lopez-Dehab method. The proposed GF(2193) is based on an 

efficient Montgomery add and double algorithm, also  the 

karatsuba-offman multiplier and Itoh-Tsjuii algorithm are used 

as the inverse component. The hardware design is based on 

optimized Finite State Machine(FSM), with a single cycle 193 

bits multiplier, field adder and field squarer . The different 

optimization at the hardware level improves the acceleration of 

the ECC scalar multiplication; increases frequency and the speed 

of operation such as key generation, encryption and decryption. 

Finally we have to implement our design using Xilinx 

XC4VLX200 FPGA device.  

Keywords 

Elliptic curves cryptography, ECC, FPGA, Montgomery, 

Karatsuba-Offman, Galois field operations.    

1. INTRODUCTION 

 Secure public key authentication and digital signatures are 

increasingly important for electronic communications and 

coerce, and they are required not only on high powered desktop 

computers, but also on smart cards and wireless devices with 

severely constrained memory and processing capabilities. 

Cryptography offers a robust solution for IT security services in 

terms of confidentiality, data integrity, authenticity and non-

repudiation. In fact, security deals mainly with the ability to face 

counter attacks[1], while speed and area which represent the 

eternal trade-off, that concern the ability to make intensive 

cryptographic processes, while keeping used hardware as low as 

possible. In other words, it is the ability of embedding a strategic 

and strong algorithm in a very few hardware. That is, finding an 

optimal solution to the one to many problem: portability against 

power consumption, speed against area, but the main issue in 

cryptography is security.  

In the last decade, the approach of hardware implementing 

Elliptic Curve Cryptography algorithm (ECC) knew a very 

concentrated contest, due essentially to the requirements of 

security, speed and area constraints. Cryptography has become 

one of the most important fields in our life, due essentially to 

two factors, increase in secrecy and increase in breaking code or 

hackers in the other side. Organization tends to increase their 

benefits by keeping their information system as transparent as 

possible. On the other hand hackers and code or key breakers are 

being organized in kind of un-official groups; this leads to being 

a step ahead before getting the codes breakdown. Scientists are 

tending to complicate the reverse engineering process of the 

encryption system, at the same time, keeping encryption keys as 

low as possible. This issue is being tackled by many 

mathematics, mainly those working     on elliptic curves 

[2].Elliptic curve cryptosystems possess a number of degrees of 

freedom like Galois field characteristic, extension degree, 

elliptic curve parameters, or the fixed point generating the 

working subgroup on the curve. The beauty of this new field is 

potentially related to the simplicity of the operators used in the 

encryption process, to the non-secure transmission constraints 

used in the exchange of the keys and to the enhanced complexity 

that might face hackers when unwanted information goes out of 

the organization. This paper focuses on the high performance 

comparisons of hardware design of ECC over GF (2163) and GF 

(2193). 

2. ELLIPTIC CURVE CRYPTOGRAPHY 

Basically, the main operation of elliptic curves consists of 

multiplying a point by a scalar in order to get a second point, the 

complexity arises from the fact that given the initial point and 

the final point, the scalar could not be deduced, leading to a very 

difficult problem of reversibility, or crypto-analysis, called also 

the elliptic curve discrete logarithm problem[1]. In 1985, 

Koblitz and Miller introduced the use of elliptic curves in public 

key cryptography called Elliptic curve Cryptography(ECC). 

The ECC algorithms with their small key sizes present 

nowadays the best challenge for cryptanalysis problems 

compared to RSA or AES, thus dealing with ECC will lead to 

smaller area hardware, less bandwidth use and more secure 

transactions. The attractiveness of ECC algorithms is that they 

operate on a Galois Field (GF), by means of two simple 

operations, known as the field addition and field multiplication, 

which define a ring over GF (Pm) where P and m are primes. In 

the particular case, where we deal with hardware designs, a 

binary field is preferred, where the couple (P, m), defines the set 

of elliptic curves. In our case, P=2 and m=163 and 193. 

In this paper, we propose a high performance elliptic curve 

cryptographic processor over GF(2m) i.e. GF(2163) and GF(2193). 

The proposed architecture based on a modified Lopez-Dahab 

elliptic curve point multiplication algorithm and uses GNB for 
GF(2m)  field arithmetic. Three major characteristics of the 

proposed architecture are uses fast arithmetic units based on a 

word-level multiplier adopts a parallelized point doubling and 

point addition unit with uniform addressing mode, it utilizes 

benefits of GNB representation. Therefore the proposed 

architecture leads to a considerable reduction of computational 

delay. The proposed architecture has the feature of modularity 
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and a simple control structure; it is well suited to VLSI 

implementations. 

Algorithm  1. Bit- level multiplication algorithm for GF(2m) : 

 Input: A, B ϵ GF(2m)   

Output: D =(D0,D1,D2,……,Dm-1) ϵ GF(2m), D=A.B 

1. For 0 ≤ t ≤ m-1 

2. For 0 ≤ s ≤ m-1 

3. Ds+t+1 ← ys,s+1 

4. end for 

5. end for  

6. return D 

In this research, we present a hardware design of the elliptic 

curve cryptography scheme, using Montgomery scalar 

multiplication based on the “add and double” algorithm, 

targeting as a primary goal of an increase in the speed of the 

hardware and an optimization in the ensuing inverse component. 

3. MATERIALS AND METHODS 

3.1 Hardware design     

The strategy of hardware executing the ECC algorithms reposes 

on the ability of making the scalar multiplication in the GF (2m) 

in a very few clock [1]. While increasing m, implementations 

become very time and resource consuming. Most of the known 

architectures concern the acceleration of the multiplication 

process by modifying the elliptic equations by changing the Z 

coordinate term[5], or by multiplication scalability[6], or by 

using many serial and parallel Arithmetic units[7], or using High 

parallel Karatsuba Multiplier[8], those based on the Massy-

Omura multipliers, or the work based on a hybrid multipliers 

approach, also some parallel approach approaches, or the new 

word level structure, or through the systolic architecture, or by 

using the half and  add method, or by parallelizing both the add 

and double Montgomery algorithms[9]. 

The second problem concerns the inversion based on the Fermat 

little theorem, or the almost inverse algorithm based on Kali 

ski‟s research [10]. In order to concentrate on one of the 

problems, some modifications have been done on the ECC 

equations in order to postpone inversion to the last stage, while 

dealing only with the multiplication process.                                                                          

3.2 Elliptic curve mathematical background 

ECC is based on the discrete logarithm problem applied to 

elliptic curves over a finite field. In particular, for an elliptic 

curve E that relies on the fact that it is computationally easy to 

find: 

                                Q=kx □ P       (1) 

    Where: 

 P and Q =Points of the elliptic curve E and their 

coordinates belongs to the underlying GF(2m).                k= A 

scalar that belongs to the set of numbers {1…#G-1}, G being 

the order of the curve E.                               The algorithm 

for an encryption is described in below. 

Algorithm  – Encryption 

User A – Alice first select a random generator point (x,y) lying 

on the elliptic curve. 

Message (M) to be encrypted is coded on to an elliptic curve 

point Pm= (xm, ym). 

Alice selects a random private key „nA‟ and then computes the 

public key as: PA= nA (x, y) (10) 

To encrypt her message, Alice uses her private key and Bobs 

(user B) public key. 

The encrypted message denoted by Cm is created as follows: 

Cm = {PA, (Pm+Na.PB)}   (11)   PB is the public key of Bob – 

user B.  

As it can be seen from the above algorithm, point multiplication 

plays a major role during the encryption process. The same hold 

during decryption too. The encrypted message is then 

communicated to the receiver. The receiver – bob then decrypts 

the message using the decryption mechanism[4]. 

The algorithm for decryption at the receiver end is as follows: 

Algorithm  – Decryption 

 When Bob receives the encrypted message, he first 

multiplies the public key of Alice, which happens to be the first 

point in the encrypted message with his private key NB. 

The result of this is then subtracted from the second point the 

cipher text  

This gives him the original message Pm. 

Nowadays, there is no known algorithm able to compute k given 

P and Q in a sub exponential time. The equation of a non-super 

singular elliptic curve with the underlying field GF (2m) is 

presented in eq.(2). It is formed by choosing the elements “a” 

and “b” within GF (2m) with:                      

                y2+xy=x3+ax2+b           (2)    

In most ECC hardware designs the choice of using three 

coordinates respond on avoiding the periodic division of Eq.(3), 

which consumes a lot of resources in terms of execution cycles, 

as well as memory and power consumption: 

A point is converted from a couple of coordinates to a triple 

system of coordinates using one of the transforms of                                          

                                

     

  

             (3) 

Thus a point P(x,y) is mapped into P (x,y,z), that is a third 

projective coordinate is introduced in order to “flatten” 

the equations and avoid the division. Projective 

coordinates allow us to eliminate the need for performing 

inversion. The startup transformation required for the 
design is simply done by initializing X,Y and Z as in Eq.4[11]. 

 {X=□x, Y=□y, and Z=□1□□□□□□□}              (4) 

Introducing the new tri-coordinates into Eq.2 becomes: 

     Y2+XYZ=X3Z+aX2Z2+bZ4                          (5) 

The VHDL implementation will be based now on Eq. (5). After 

completion of the successive operations of addition and 

multiplication, back to two affine coordinates as follows: 

     {x=X/z, y=Y/z2}                   (6) 
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In order to make the different computations, the Montgomery 

point doubling and Montgomery point addition algorithms are 

used,  mainly through the ingenious observation of 

Montgomery, which states that the Y coordinate does not 

participate into the computations and can be delayed to the first 

stage. Thus back to working with only two projective 

coordinates [18]. 

Algorithm.2-Montgomery scalar multiplication algorithm 

Input: k=(kn-1, kn-2,………..,k1,k0)2 with kn-1=1, 

             P(x,y) ε E (GF(2m)). 

Output: Q=KP.  

1. Set x1=x, z1=1,x2=x4+b, z2=x2; 

2. for i=n-2 to 0 do 

3.     if ki=1 then 

4.        (x1,z1)← Madd (x1,z1,x2,z2,x); 

               (x2,y2)← Mdouble (x2, z2, b);  

5.    else  

6.        (x2, y2)← Madd (x2,z2,x1,z1,x); 

            (x1, y1)← Mdouble (x1,z1,b); 

7.   end if 

8. end for 

9. Q←Mxy(x1, z1, x2, z2, x, y); 

10.  return Q;  

 

In algorithm 2, Madd( ) function is the point addition operation 

on the elliptic curve, Mdouble ( ) is the point doubling 

computation, and Mxy ( ) is the coversion of projective 

coordinates to affine  coordinates. The reader is referred to 

(Lopez and Dehab 1999) [13] for detailed explanation. Function 

Madd ( ), Mdouble ( ) and Mxy ( ) in Algorithm 2 are defined as 

follows: 

       Madd(x1,y1,x2,y2,x) 

{    X←x1 z2 x2 z1 +x(x1z2+x2z1)
2; 

      Z←(x1 z2+x2z1)
2; 

      return(X,Z); 

  } 

Requiring, 1 field squaring operations, 4 field multiplications 

and two simple field additions. 

 

    Mdouble (x1, z1, b) 

{  X←x1
4+bz1

4; 

    Z←x1
2 z1

2 ; 

    return (X, Z); 

  }  

Requiring, 4 field squaring operations, 2 field multiplications 

and one simple field addition. 

    Mxy(x1,z1,x2,z2,x,y)  

 {  xk ← x1/z1; 

     yk ← [x2+y+(x+x1/z1)(x+x2/z2)](x+xk)/x=y; 

     return (xk, yk) 

   } 

In these functions, (x,y) is the coordinate of the original point P, 

which is fixed during the calculation of kP; (xk, yk) is the 

coordinate of kP. k is represented on an m bits register. The 

three basic functions in turn rely on finite field operations such 

as addition, multiplication, and inversion. 

The inversion in GF (2193) required at the final stage, could be 

realized in one of the two known methods, either via the 

extended Euclidean algorithm, or by the Fermat‟s theorem 

which states that knowing after proof that: 

   leads to consider that 

 is also factual. 

 Thus, in order to compute the inverse of one element 

in GF (2193), one needs to take the power of this element (2193-

2)times.By using the Itoh-Tsjuii algorithm based on the add and 

multiply Method leads to realize the inverse as presented in 

(Table 3) [12].  

3.3 ECC components 

A new ECC processor for GF(2163),proposed in this paper, is 

shown in fig.1 The ECC processor consists of eight main 

components. Eight components are host interface (HI), data 

memory, register file, instruction memory, control-1, control-2, 

AU-1 and AU-2. The HI communicates with host processor. 

Processor transmits all parameters for kp to HI with strart signal, 

and receives „kp‟ results and end signal. For high performance 

implementation of point doubling and addition, we add 7×163-

bit register file, which receives data from HI and transmits 

temporary computation results (X1, X2, Z1, Z2) to data memory. 

The AU-1 is used for point doubling and addition and controlled 
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                             Fig 1: Ecc Components Block Diagram 

 

by control-1. The AU-2 performs the coordinate conversion in 

algorithm. The control-2 receives operation code from 

instruction memory and generates control signals for AU-2, HI 

and Data memory. “L” gives the number of required clock 

cycles to perform elliptic curve point multiplication over 

GF(2163), where we assumed the digit size ω=55, i.e., L=3.   

The 193 bits ECC components has been developed using the 

VHDL language. The different components forming the design 

are as follows: A 193 bits adder which is a simple 193 „2 bits‟ 

Xors. A 193 bits modulo which is a xor-array evaluated through 

a Matlab script as an input-output matrix, through polynomial 

reduction using the National Institute of standards and 

Technology (NIST) proposed polynomial P(x)=x193+ x15+1. 

A193 bits squarer that has also been generated from a Matlab 

script.     

4. RESULTS AND PERFORMANCE 

COMPARISIONS 

We present the respective estimated number of cycles, required 

for each part of the algorithm at each stage of FSM controller. 

 

Table 1. Field Operations Required For The ECC Operation 

 
Occurrences in one Field 
operations 

#Cycles #Cycle of 
the FSM 

Field multiplication(193 bits)                   
Field squaring (A2)1                                                    

Field squaring (A2)6                                                     

Field squaring (A2)15                                                   

Field addition                                            

Field reduction    (modulo) 

1                                                                   
1                       

1                        

1                        
1                        

1 

24                             
15                              

7                                

8                              
11                             

24 

Working with 193 bits and 2193 order numbers or more, is not a 

direct way and checking of the results is very bulky, in this 

matter, different Matlab scripts with similar input/output 

behavior to the VHDL programming have been written, in order 

to compare the execution steps, as well the final results, timing 

is not taken into consideration in this specific stage. The 

benchmark tests have been done with the inputs of (Table 7) (in 

hexadecimal format). 

 

 

Table 2. Performance Comparisons of ECC (GF(2193)) 

with previous Design 

 Frequency Design [MHz] 

(Max) 

Performance [µs] 

Chelton et al.[14]  153.900                                                            
Smyth et al.[15]  166.000                                                           

Sozzani et al.[16]  416.700                                                            

Satoh and Takano[17]  
510.200                                               

Sakiyama et al.[6]  555.600                                                      

Mohamed Abdelkader  
561.136                                                       

This work (Fastest)  1930 

19.5500                                                                                           
3720.0000                                                                                   

30.0000                                                                                    

190.0000                                                                                            
12.0000                                                                                        

6.1799                                                                                           

1.625 

 

Table 3. Estimation of the FSM stages and their 

respective execution number of cycles 

FSM steps #stages # execution cycles 

Startup                                                              

Affine to Projective                                 
Initial point Doubling                         

Counter increase                                 

Counter compare                         
Montgomery point  

Addition     

Montgomery point 
Doubling                   

Projective to affine 

1                                                                     

1                                                                         
2                                                                                

1                                                                                

1                                                                                   
7                                                                             

7                                                                       

62 

1                                                                              

1                                                                                
2                                                                                 

1                                                                                   

1                                                                             
192                                                                         

192                                                                 

1 

*: The symbol #:   stands for: “Number of” 

Table 4.Performance comparisons: 

 

GF(2m) Device/Size F(MHZ)/time 

163-bit XC4VLX200/ 

24,363 Slices 

143/10μs 

193-bit XC4VLX200/ 6376 

Slices 

1930/1.625μs 

 

 

Reset 

Start ECC 

Field multiplier 

Field squarer 

Field adder 

FSM controller 

K,b 

Buffer 

space 

Q(X,Y) 
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Fig.2 Final Result Of The Scalar Multiplication K□P 

 

Table 5.  The X and Y coordinates of the Result Q=KP 

k=„1376F29DD55FCA07557F281055FCA07557F281D55FCA67551‟ 

xk= 0FFF0FFFFFFFFFFFFF0FFF0FFF0FFFFFFFF00FFFFFFFFFFFF‟ 

yk= 

12A85D262AA5B53EAA7FD712AAF35F8AA9C28E2AA33558EAA‟ 

 

Fig.2 and Table V show the output results of the ECC scalar 

multiplication for a “193 bits” arbitrary value of k. 
 

 
 

Fig.3 Simulation Result Of Encryption Operation 

 

Fig.3.The frequency of encryption operation is 1930 MHZ and 

speed of operation also increases. It can be used in any 

application where security is needed but lacks the power, storage 

and computational power that is necessary for our current 

cryptosystems. 
 

 
 

Fig.4 Simulation Result Of Decryption Operation 

 

 Fig.4.The frequency of decryption operation is 1930 MHZ and 

speed of operation also increases. It can be used in any 

application where security is needed but lacks the power, storage 

and computational power that is necessary for our current 

cryptosystems. 

5. DISCUSSION 

The main contribution of present research concerned three major 

points: An optimal Finite State Machine (FSM) controlling the 

whole components, minimizing empty cycles. Optimization of 

the  inversion process, by reducing the number of different 

squaring from 192-21, leading to an inversion. Separation of the 

data path routing from the control part, in order to modify only 

the multiplier, the squarer, the adder as well as the modulo 

components. 

The results, we have obtained are very encouraging and will 

impact our decision on the embedding of larger encryption 

schemes, mainly the extension to the NIST proposed curves 

(233, 283, 409 and 571), taking into account: The use of two or 

more multipliers (tuned parallel design), the use of internal 

memories such as Block RAMs (optimized timing memory 

accesses), the speed up of the FSM, as well as using different 

ECC hardware algorithms, these optimization schemes are 

constrained to minimize the parallel inputs of the design and 

reduce routing circuitry, that severely decrease efficiency, lower 

speed and increase power consumption. 

6. RESULTS AND CONCLUSION 

We have presented the design of a fast version of an EC crypto-

hardware based on a Finite State Machine. A new ECC 

processor for GF(2163) is proposed in this paper. The ECC 

processor consists of eight main components: host interface 

(HI), data memory, register file, instruction memory, control-1, 

control-2, AU-1 and AU-2.We have proposed GF(2163) result, 

indicating that using different optimization at the design of 

hardware level improves efficiency,  acceleration of the ECC 

scalar multiplication and the frequency i.e, the frequency of 

scalar multiplication, encryption and decryption operations are 

143 MHZ and the number of slices are 24,363. 

 

Secondly, GF(2193) design introduces a better optimization at the 

level of multiplier and the squaring components, which utilizes 

the modular inverse circuit. The main characteristics of this 

design is concerned with the elimination of delays between the 

different internal components, the minimization of the global 

clocking resources and a strategic separation of the data path 

from the control part.  

We have proposed GF(2193) result, indicating that using different 

optimization at the design of hardware level improves 

efficiency,  acceleration of the ECC scalar 

multiplication(615384 per seconds) and the frequency i.e, the 

frequency of scalar multiplication, encryption and decryption 

operations are 1930 MHZ and speed of operation such as key 

generation, encryption and decryption are also increased. It can 

be used in any application where security is needed but lacks the 

power, storage and computational power that is necessary for 

our current cryptosystem. As the Internet becomes more and 

more accessible to the public, security measures have to be 

strengthened. Elliptic curve cryptosystems allow for shorter 

operand lengths than other public-key schemes based on the 

discrete logarithm in finite fields. We have implemented our 

design using Xilinx XC4VLX200 FPGA device. 
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