
International Journal of Computer Applications (0975 – 8887)

Volume 43– No.8, April 2012

22

Defect Prevention Technique Used In Test Case for
Quality Improvement

Abhiraja Sharma Virendra Kumar Som Pachori
Assistant Professor Assistant Professor M.Tech(S.E.)

Suresh Gyanvihar University

Jaipur-302017

ABSTRACT
To produce high quality software both software developers

and testers need continuous improvement in their work

methodologies and processes. In this paper, we develop the

test case which drives from use case and applying defect

classification scheme (ODC) at every test for classifying the

defects. For this we conduct an exploratory study on two large

web projects to identify a fault classification that is

representative of and supported by real world faults. Through

our study we provide support to several categories of an

existing web application fault classification, and identify new

fault categories. Researchers and experimenters will find the

proposed fault classification useful when evaluating

techniques for testing web applications

General Terms
Experimentation

Keywords
Test case, ODC, defect prevention technique,

1. INTRODUCTION
Defect prevention is a process to find the reason or cause by

which defect occurs. SEI gives the definition that “Defect

prevention is a process whose purpose is to change to relevant

process to prevent that type of defect from recurring”. ODC is

a technique that characterizes the different types of defects.

The main purpose of this whole process is to produce quality

software and this will be achieved when software is defect

free.ODC, can improve software quality by offering testing

teams a more detailed look at the defects they uncover

throughout the software development lifecycle. Idea behind

this approach is that instead of generating test cases from

traditional specification document, use case model can be

used as an effective tool for the generation of Test cases and

produce the defect free environment for similar type of

projects. In this paper we study two similar types of projects

first is web project of hospital and second is web project of

college. First we produce test case and after that applying

ODC scheme and categories the defect. After this we use of

defect data and similar type of test case for another project.

2. STEPS OF WORKING
The first project is ARPAN HOSPITAL. The second GURU

CHARYA academic project

2.1 Derive Test Case from Use Case
Advantage of test case generation from use cases is that

normally in organizations stakeholders for test cases and use

cases belong to different groups. Like, requirement engineers

and system developers are responsible to develop and manage

use cases while software testers write test cases and test

scripts. Although one way elicitation of test cases from use

cases is possible but it does not define relationships among

test cases and fulfills least traceability requirements between

test cases and use cases. It is possible that a change in one test

case may have its impact on other test cases; in the absence of

relationships among test cases; a state can be reached where a

state of disorder among test cases can exist. Similarly based

on the interaction among test cases a possible impact is

possible on use cases as well.

2.2 Defect Dictation
Defects are found by preplanned activities specifically

intended to uncover defects. In general, defects are identified

at various stages of software life cycle through activities like

Design review, Code Inspection, GUI review, function and

unit testing. Once defects are identified they are then

classified using first level of Orthogonal Defect Classification.

2.3 Categorize Defect
The classification scheme is ODC. Orthogonal Defect

Classification (ODC) is a methodology used to classify

software defects. When combined with a set of data

analysis techniques designed to suit the software

development process, ODC provides a powerful way to

evaluate the development process and software product.

2.4 Defect Fix
Find the Root Cause Analysis of defect and fix it. The goal of

RCA is to identify the root cause of defects and initiate

actions so that the source of defects is eliminated.

2.5 Defect Prevention
Defect prevention is an important activity in any software

project. The purpose of Defect Prevention is to identify the

cause of defects and prevent them from recurring. Defect

Prevention involves analyzing defects that were encountered

in the past and taking specific actions to prevent the

occurrence of those types of defects in the future. Defect

Prevention can be applied to one or more phases of the

software lifecycle to improve software process quality

3. DEFECT PREVENTION ON PROJECT
To study of the defect area in software project two similar

type of project are taking. These selected projects were

developed under Microsoft .net platform. Information like

number of lines of code (KLOC) produced by the software.

Here four Test case Table and four defect table.

3.1 Steps of Working
Generate the TEST CASE the table of “test case” shown

blow. Collect the defect from every “test case”. Apply defect

prevention technique. Defect density is a measure of the total

number of defects in a project divided by the size of the

software being measured.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.8, April 2012

23

Defect Density (DD) = Number of defects / size (KLOC) – (1)

Defect density is calculated to track the impact of defect

reduction and to judge the quality improvement on the project

that has implemented defect preventive action with the project

that did not follow any preventive action

Table 1: Use Case 1

Use

case

id

Use Case

Description

Test

Case

ID

Test Case Description

UC1

Successfully

login into

the system

TC1 To verify that login

page is successfully

displayed to the user.

User can

TC2

To verify that user with

valid login id and

password is able to

successfully login to the

system.

TC3 To verify that user with

invalid login id or

password is not allowed

to login in the system.

TC4 To verify that

application home page

is displayed on

successful login into the

system.

TC5 To verify that valid alert

message is displayed to

the user on un

successful attempt to

login in the system.

TC6 To verify that by pressing

„Enter‟ key of key board

user is successfully logged
into the system provided

that valid user id and

password are given.

Table: 2 Defect Table 1 from Use Case Table 1

Test

case no.
REQ Design LOG GUI Doc Total

TC1 0 1 3 0 0 4

TC2 1 0 6 0 0 7

TC3 0 2 2 0 0 4

TC4 0 0 1 1 0 2

TC5 1 1 5 0 0 7

TC6 1 0 6 1 0 8

TOTAL 3 4 23 2 0 32

Table 3: Use Case 2

Use

case

id

Use Case

Description

Test

Case

ID

Test Case Description

UC2

Secretary

can

schedule

patient for

nurse,

physician

and lab

technician

on

Scheduling

grid.

TC7 To verify that secretary is

able to successfully

access the scheduling

grid.

TC8 To verify that secretary

can select scheduling

duration with time unit 5

having any time length

within defined duration

for time.

TC9 To verify that by double

clicking on the selected

time slot duration, „New

Appointment‟ screen is

displayed to the

secretary.

TC10 To verify that secretary

can select nurse,

physician or lab

technician on scheduling

main page and schedule

patients for these roles.

TC11 To verify that secretary is

unable to save patient

data without providing

mandatory field values of

SEX, NAME

TC12 To verify that secretary is

not allowed to select an

already scheduled slot on

scheduling grid page.

TC13 To verify that appropriate

alert message is

displayed when secretary

attempts to schedule a

patient on already

reserved slot.

TC14 To verify that alert

message is displayed

when secretary attempts

to schedule a patient on

break slots.

TC15 To verify that secretary is

able to schedule a patient

on break slots.

TC16 To verify that secretary is

not allowed to schedule a

patient on blocked slots.

TC17 To verify that links and

buttons displayed on

„New Appointment‟

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.8, April 2012

24

screen are functionally

active.

TC18 To verify that secretary

can provide remarks for

patient on „New

Appointment‟ screen.

TC19 To verify that secretary is

able to search patient‟s

data on „New

Appointment‟ screen.

TC20 To verify that secretary

can view patient‟s history

on „New Appointment‟

screen.

TC21 To verify that „Save‟

button is shown disabled

when secretary first time

access „New

Appointment‟ screen.

TC22 To verify that calendar

widget is opened when

secretary clicks

„Calendar‟ link to

provide patient‟s date of

birth.

TC23 To verify that proper

alert message is

displayed when secretary

provides invalid format

for date of birth value.

Table 4: Defect Table 2 from Use Case Table 2

Table 5: Use Case 3

Use

case

id

Use Case

Description

Test

Case ID

Test Case Description

UC3

Secretary

can update

scheduling

Grid

duration.

TC24

To verify that secretary

is able to update

already saved

scheduling duration.

TC25

To verify that secretary

is not allowed to

update scheduling grid

duration if already

scheduled

appointments are

affected.

TC26

To verify that secretary

is allowed to update

break timings on

scheduling grid.

TC27

To verify that secretary

is not allowed to

specify break timing

outside the available

scheduling grid

duration.

TC28

To verify that any

update in scheduling

grid only affects the

grids of specified

dates.

Test

case

no.

REQ Design LOG GUI Doc Total

TC7 1 1 2 0 0 4

TC8 1 0 3 1 1 6

TC9 0 2 1 2 0 5

TC10 0 1 2 1 0 4

TC11 1 0 4 1 0 6

TC12 1 0 2 0 0 3

TC13 0 3 1 0 0 4

TC14 0 1 3 1 0 5

TC15 0 0 1 1 0 2

TC16 1 0 2 0 0 3

TC17 1 1 3 0 1 6

TC18 1 0 2 0 0 3

TC19 0 0 1 2 0 3

TC20 1 1 1 2 0 5

TC21 2 0 1 0 0 3

TC22 0 0 3 0 2 5

TC23 0 2 2 0 0 4

Total 10 12 34 11 4 71

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.8, April 2012

25

TC29

To verify that any

update in scheduling

grid doesn‟t affect the

history appointments.

Table 6: Defect Table 3 from Use Case Table 3

Table 7: Use Case 4

Use

case

id

Use Case

Description

Test

Case ID

Test Case

Description

UC4

Secretary can

update patient

Schedules

(like

reschedule

appointment,

cancel

appointment,

update

appointment

etc.) on

scheduling

grid.

TC30

To verify that

secretary is able to

re-schedule a patient

appointment to a

new slot.

TC31

To verify that

secretary is able to

cancel a patient‟s

appointment.

TC32

To verify that

secretary is able to

update a patient‟s

appointment.

TC33

To verify that by

double clicking a

scheduled slot „Edit

Appointment‟ screen

is displayed.

TC34

To verify that

secretary is not

allowed to save data

on „Edit

Appointment‟ screen

without providing

the mandatory fields

data.

TC35

To verify that

secretary is able to

re-schedule a patient

from one physician

grid to another.

TC36

To verify that links

and buttons

displayed on „Edit

Appointment‟ screen

are functionally

active.

TC37

To verify that

secretary can

provide remarks for

patient on „Edit

Appointment‟

screen.

TC38

To verify that

secretary is able to

search patient‟s data

on „Edit

Appointment‟

screen.

TC39

 To verify that

secretary can view

patient‟s history on

„Edit Appointment‟

Table 8: Defect Table 4 from Use Case Table 4

Test

case no.
REQ Design LOG GUI Doc Total

TC31

2 2 3 1 0 8

TC32

1 2 2 0 0 5

TC33

1 0 6 2 0 9

TC34

2 0 7 1 0 10

TC35

1 2 6 0 0 9

C36

1 1 4 2 0 8

TC37

1 1 4 0 0 6

TC38

0 2 2 0 2 6

TC39

3 0 3 1 0 7

TOTAL 15 10 37 7 2 68

Test

case

no.

REQ Design LOG GUI Doc Total

TC24

2 2 3 1 0 8

TC25

1 2 4 0 1 8

TC26

1 0 4 0 0 5

TC27

2 1 3 1 0 6

TC28

2 2 3 1 0 8

TC29

1 0 4 0 0 5

Total 9 7 21 3 1 40

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.8, April 2012

26

 Now we calculate the total no. of defect and defect density

Table 9: Defect Densities

Fig 1: Plotting a graph of KLOC and no. of defect

The project size can be measured either in terms of kilo lines

of code (KLOC) produced or in terms of Function Point (FP).

For the projects that are taken for study, the project size is

measured in terms of KLOC. Comparison is then made

between KLOC and number of defect produced by the project.

This comparison is depicted in the above figure. From (fig 1),

it is evident that, the number varies.

Table 10: Code Descriptions

Code

Name Description of

defect type

REQ
Requirements

Error in

understanding

the

requirements, or

inadequate

Requirements

definition.

DSN
Design error

Error in

developing

design,

or

inadequate

design, or

technical

Inadequacy in

design.

LOG
Logical error

Logical Error

GUI
Graphical error

Error in

screen/report

layout and

design

DYP
Documentation

error

Typographical

error in

documentation

or in code,

including

spelling errors,

mistyped words,

and missing

delimiters in

code.

TC AND UC

Test case and

Use case

Table 11: Observed defect pattern across projects

Use

case no
REQ Design LOG GUI Doc Total

 1 3 4 23 2 0 32

 2 10 12 34 11 4 71

 3 9 7 21 3 1 41

 4 15 10 37 7 2 71

Total 37 33 115 23 7 215

Fig 2: From table 11 we got a chart representation and

this chart present no. of defect in classified way.

4. DEFECT PREVENTION
From above tables and graph we collected the defect data

now we applying prevention action on second project

0

10

20

30

40

50

60

70

80

No of
Defects

Kloc

0

20

40

60

80

100

120

140

UC1 UC 2 UC 3 UC4

REQ

Design

LOG

GUI

Doc

USE

CASE(UC

) No

KLO

C

No of

Defects

Defect

Density(Approx.)

 1 5 32 0.006

 2 8 71 0.009

 3 3 40 0.013

 4 14 68 0.005

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.8, April 2012

27

(similar like first project). Preventive action is

implemented in the next set of similar project, and the

process improvement was observed in terms of average

defect density.

Table 12: Use Case (GURU CHARYA)

Use

case id

Use Case

Description

Test

Case ID

Test Case

Description

UC1

Login page

TC1

To verify that login

page is successfully

displayed to the

user

TC2

To verify that user

with valid login id

and password is

able to successfully

login to the system.

TC3

To verify that user

with invalid login

id or password is

not allowed to

login in the system

TC4

To verify that

application home

page is displayed

on successful login

into the system

TC5

To verify that valid

alert message is

displayed to the

user on un

successful attempt

to login in the

System.

Successfully login

into the system.

TC6

To verify that by

pressing „Enter‟

key of key board

user is successfully

logged into the

system provided

That valid user id

and password are

given.

UC2

Admin and

student data

TC7

To verify that

admin is able to

successfully access

the scheduling grid.

TC8

The student data

show properly to

admin

TC9

New changes and

up dates shows to

admin

TC10

To verify that by

double clicking on

the selected

Student, „New

Screen‟ is

displayed to the

Admin

TC11

To verify that

admin can select

Subject, year and

result

TC12

To verify that

„Save‟ button is

shown disabled

when admin first

time access „New

Student‟ screen.

TC13

To verify that do

not save same data

of student

TC14

To verify that

secretary is unable

to save student data

without providing

mandatory field

values of SEX,

NAME and AGE.

TC15

To verify that

appropriate alert

message is

displayed when

admin attempts to

schedule a student

on already reserved

slot

TC16

To verify that links

and buttons

displayed on „New

Student‟ screen are

functionally active

TC17

To verify that

admin is able to

search student data

on „New Student‟

screen.

TC18

To verify that

proper alert

message is

displayed when

admin provides

invalid format for

date of birth value

UC3

Admin

updates for

students

TC19

To verify that

admin able to

access updating

grid

TC20

To verify that

updating shows on

page

TC21

To verify that alert

message shows to

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.8, April 2012

28

student.

TC22

To verify that click

of student work

properly

TC23

To verify that full

page view to

student

UC4

STUDENT

RESULT

TC24

To verify that login

page is successfully

displayed to the

student

TC25

To verify that user

with valid login id

and password is

able to successfully

login to the system.

TC26

To verify that user

with invalid login

id or password is

not allowed to

login in the system.

TC27

To verify that result

page is displayed

on successful login

into the system.

TC28

To verify that the

right result shows

to right student

TC29

To verify that

DOB and SEX

TC30

To verify that full

page view to

student

TC31

To verify that

proper alert

message is

displayed when

admin provides

invalid format for

date of birth value

We can see that the similar type projects have the similar type

of test cases for example the “LOGIN PAGE” is same for

both of projects. So the defect prevention can apply similar

type of project. Here we implement DP in next project.

Table 12: After D.P

Fig 3: Compression of Defect Density after D.P
The Defect Prevention as provided in the table 1 and table7

shows that the defect density after implementing DP is well

below that of defect density before the DP implementation.

The average defect density has gone down from 0.0108 (first

set of projects-Table 1) to 0.0074 (second set of project –

Table 7). By implementing the defect preventive action, not

only reduces the defect density, rework effort is also reduced

due to which effort involved in various processes is also

reduced considerably.

5. CONCLUSION
Implementation of defect prevention action not only helps to

give a quality project, but also a valuable investment. Defect

prevention practices enhance the ability of software developer

to learn from those errors and, more importantly, learn from

the mistakes of others. The benefits of adopting defect

prevention strategy would be enormous and to list a few.

 Defect prevention reduces development time and

cost.

 Increases customer satisfaction.

 Reduces rework effort, hereby decreases cost and

improves product quality.

Our work describes a study carried out in a graduate

Engineering course in order to identify the patterns and root

causes of defects detected in course projects. The root causes

were validated through a student survey. From the analysis of

these patterns and their root causes, we derived the

improvement actions that are useful to design better course

projects

6. REFERENCES

[l] Chillarege, Bhandari, et al, “Orthogonal defect

classification – A concept for in-process measurement”..

IEEE Bansactions on Software Engineering 18, 11 (Nov

1992), 943-956.

0

20

40

60

80

100

120

UC 1 UC 2 UC 3 UC 4

KLOC

No of
Defects

Defect
Density
After Dp

Defect
Density
befor Dp

Use case

no
Kloc

No of

defects

Defect

density(ap

prox.) 1 6 20 0.003

 2 8 42 0.004

 3 3 35 0.012

 4 25 110 0.004

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.8, April 2012

29

[2] Ram Chillarege, Kothanda Ram Prasad "Test and

Development Process Retrospective - A Case Study

using ODC Triggers” June 2002 DSN '02: Proceedings

of the 2002 International Conference on Dependable

Systems and Networks

[3] Chillarege, R., and Biyani, S., 1994, “Identifying Risk-

using ODC Based Growth Models”, Proc. of the fifth

International Symposium on Software Reliability

Engineering, November 6-9, Monterey, California, 282-

288

[4] Bhandari, I.S., Halliday, M.J., Tarver, E.D., Brown, D.D.,

Chaar, J.K., Chillarege, R "A Case Study of Software

Process Improvement During Development," ., IEEE

Transactions on Software Engineering, vol. 19, no. 12,

December 1993, pp. 1157-1170.

[5] Guide to Software Quality Assurance “Prepared by: ESA

Board for Software Standardisation and Control (BSSC)

ESA PSS-05-11 Issue 1 Revision 1 (March 1995)

 [6] Michal Lyu “Software reliability and system reliability”

Orthogonal defect classification April 1996 Handbook of

Software Reliability Publisher: McGraw-Hill, Inc.

 [7] Pan Tiejun ,Zheng Leina, Fang Chengbin.”Defect

Tracing System Based on ODC,” 2008 International

Conference on Computer Science and Software

Engineering.

[8] Pankaj Jalote, Naresh Agarwal, 2007, “Using Defect

Analysis Feedback for Improving Quality and

Productivity in Iterative Software Development” In proc-

ITI 3rd International Conference on Information and

Communications Technology, pp. 703-713.

 [9] Suma V and T R Gopalakrishnan Nair , 2008, “ Effective

Defect Prevention Approach in Software Process for

Achieving Better Quality Levels” Proceedings of World

Academy of Science, Engineering and Technology

Volume 32 August 2008

 [10] Sunita Chulani "Constructive Quality Modeling for

Defect Density Prediction: COQUALMO",

International Symposium on Software Reliability

Engineering (ISSRE'99), Boca Raton, November 1-4,

1999.

http://portal.acm.org/author_page.cfm?id=81100306883&coll=GUIDE&dl=GUIDE&CFID=83907341&CFTOKEN=59714661
http://portal.acm.org/author_page.cfm?id=81100490777&coll=GUIDE&dl=GUIDE&CFID=83907341&CFTOKEN=59714661
http://portal.acm.org/citation.cfm?id=647883.738410&coll=GUIDE&dl=GUIDE&CFID=83907341&CFTOKEN=59714661
http://portal.acm.org/citation.cfm?id=647883.738410&coll=GUIDE&dl=GUIDE&CFID=83907341&CFTOKEN=59714661
http://portal.acm.org/citation.cfm?id=647883.738410&coll=GUIDE&dl=GUIDE&CFID=83907341&CFTOKEN=59714661
http://portal.acm.org/citation.cfm?id=647883.738410&coll=GUIDE&dl=GUIDE&CFID=83907341&CFTOKEN=59714661
http://portal.acm.org/citation.cfm?id=239425.239453&coll=GUIDE&dl=GUIDE&CFID=83907341&CFTOKEN=59714661

