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ABSTRACT 

Wireless Sensor Networks (WSNs) are an important focus of 

research due to their many envisioned applications. They are 

formed by small, inexpensive and resource limited devices 

that can interact with the environment and communicate in a 

wireless manner with other devices. For energy conservation, 

the clustering technique is used where network organizes 

around a small set of cluster heads which then gather data 

from their local cluster aggregate this data and transmit it to 

the base station. Here we present two models for adding fault-

tolerance to clustering algorithms with a hierarchy maintained 

among various levels of cluster heads from base station. 

Since, sensor nodes are often deployed in harsh environments, 

they are prone to failure. Cluster-head failure can leave a 

cluster disconnected from the base station until the network 

reorganizes again. The proposed model „FTHC: Fault 

Tolerance in Hierarchical Clustering Environment for WSN‟ 

is used for both Inter and Intra clustering environment. We 

evaluate the proposed model and compare it with protocol 

MECH in terms of network lifetime when the cluster head 

fail. 
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cluster head failure, fault tolerance.  

1. INTRODUCTION 
A wireless sensor network (WSN) consists of a number of 

autonomous sensors to monitor physical or environmental 

conditions [9], such as temperature, sound, vibration, 

pressure, motion or pollutants and to cooperatively pass their 

data through the network to a main location. The development 

of wireless sensor networks was motivated by military 

applications [10, 11] such as battlefield surveillance; today 

such networks are used in many industrial and consumer 

applications also. Recently, research from the networking 

community as well as advances in micro-fabrication 

technology have brought about the realization of practical 

commercial wireless sensor networks, as can be seen in [3, 5, 

6, 7, 8]. Since the nodes in WSNs are prone to failure due to 

energy depletion, hardware failure, communication link 

errors, malicious attack, and so on as in [14, 15].  The nodes 

in sensor networks have very limited energy and their 

batteries cannot usually be recharged or replaced due to 

hostile or hazardous environments. So, one important 

characteristic of sensor networks is the power budget of 

wireless sensor nodes. Two components of a sensor node, 

sensing unit and wireless transceiver, usually directly interact 

with the environment which is subject to variety of physical, 

chemical, and biological factors. It results in low reliability of 

performance of sensor nodes. Even if condition of the 

hardware is good, the communication between sensor nodes 

are affected by many factors, such as signal strength, antenna 

angle, obstacles, weather conditions, interference. Fault 

tolerance is the ability of a system to deliver a desired level of 

functionality in the presence of faults as in [10, 12, 13]. Since 

the sensor nodes are prone to failure, fault tolerance should be 

seriously considered in many sensor network applications. 

Actually, extensive work has been done on fault tolerance and 

it has been one of the most important topics in WSNs.  

In this paper, we present two models for adding fault-

tolerance to clustering algorithms. Since, sensor nodes are 

often deployed in harsh environments, they are prone to 

failure. Our work focuses on two models for adapting to the 

failure of a cluster-head. In the Intra-Cluster Recovery model, 

the failure of the cluster head replaces a failed cluster head 

with another node in the same cluster. In the Inter cluster, the 

new cluster head takes the responsibilities and the whole 

network works in the same manner without any interruption 

due to cluster head failure. We implement our models for 

cluster-head failure detection and recovery over the clustering 

protocol MECH and then modify MECH to test these models 

and examine the performance of these recovery algorithms for 

improved coverage.  

The remainder of this paper is organized as follows. In 

Section 2 we briefly cover related work on the problem of 

clustering and fault-tolerance in Wireless Sensor Networks. In 

Section 3 we discuss our proposed system model for building 

fault tolerance into a clustering algorithm. Finally, we present 

conclusion in Section 4. 

2. RELATED WORK 
W. Heinzelman, A. Chandrakasan, and H. Balakrishnan in [1] 

proposes a self-organizing, adaptive clustering protocol that 

uses randomization to distribute the energy load evenly 

among the sensors in the network as   in [9]. In [1], the nodes 

organize themselves into local clusters, with one node acting 

as the local base station or cluster-head. If the cluster heads 

were chosen a priori and fixed throughout the system lifetime, 

as in conventional clustering algorithms, it is easy to see that 

the unlucky sensors chosen to be cluster-heads would die 

quickly, ending the useful lifetime of all nodes belonging to 

those clusters. Thus it includes randomized rotation of the 

high-energy cluster-head position such that it rotates among 

the various sensors in order to not drain the battery of a single 

sensor. In addition, it performs local data fusion to 

“compress” the amount of data being sent from the clusters to 

the base station, further reducing energy dissipation and 

enhancing system lifetime. Sensors elect themselves to be 

local cluster-heads at any given time with a certain 

probability. These cluster head nodes broadcast their status to 

the other sensors in the network. Each sensor node determines 

to which cluster it wants to belong by choosing the cluster-
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head that requires the minimum communication energy.  Once 

all the nodes are organized into clusters, each cluster-head 

creates a schedule for the nodes in its cluster. This allows the 

radio components of each non-cluster-head node to be turned 

off at all times except during its transmit time, thus 

minimizing the energy dissipated in the individual sensors. 

Once the cluster head has all the data from the nodes in its 

cluster, the cluster-head node aggregates the data and then 

transmits the compressed data to the base station. Since the 

base station is far away in the scenario we are examining, this 

is a high energy transmission. However, since there are only a 

few cluster heads, this only affects a small number of nodes. 

S. Lindesy and C. Raghavendra in [2] proposes an idea for 

each node to receive from and transmit to close neighbours 

and take turns being the leader for transmission to the BS. 

This approach will distribute the energy load evenly among 

the sensor nodes in the network. We initially place the nodes 

randomly in the play field, and therefore, the i –th node is at a 

random location. The nodes will be organized to form a chain, 

which can either be accomplished by the sensor nodes 

themselves using a greedy algorithm starting from some node. 

Alternatively, the Base station can compute this chain and 

broadcast it to all the sensor nodes. To construct the chain, we 

start with the furthest node from the BS. We begin with this 

node in order to make sure that nodes farther from the BS 

have close neighbors, as in the greedy algorithm the neighbor 

distances will increase gradually since nodes already on the 

chain cannot be revisited. When a node dies, the chain is 

reconstructed in the same manner to bypass the dead node. 

For gathering data in each round, each node receives data 

from one neighbor, fuses with its own data, and transmits to 

the other neighbor on the chain.  Nodes take turns transmitting 

to the BS, and we will use node number i mod N (N 

represents the number of nodes) to transmit to the BS in round 

i. Thus, the leader in each round of communication will be at 

a random position on the chain, which is important for nodes 

to die at random locations. The cost is very small since the 

token size is very small.  

A. Manjeshwar and D. Agrawal in [3] give protocol that is 

targeted at reactive networks and is the first protocol 

developed for reactive networks. In this scheme (Threshold 

sensitive Energy Efficient sensor Network protocol), at every 

cluster change time, in addition to the attributes, the cluster-

head broadcasts to its members, hard threshold (HT): This is a 

threshold value for the sensed attribute. It is the absolute value 

of the attribute beyond which, the node sensing this value 

must switch on its transmitter and report to its cluster head. 

Soft Threshold (ST): This is a small change in the value of the 

sensed attribute which triggers the node to switch on its 

transmitter and transmit. The nodes sense their environment 

continuously. The first time a parameter from the attribute set 

reaches its hard threshold value, the node switches on its 

transmitter and sends the sensed data. The sensed value is 

stored in an internal variable in the node, called the sensed 

value (SV). The nodes will next transmit data in the current 

cluster period, only when both the following conditions are 

true: 

 The current value of the sensed attribute is greater than the 

hard threshold. 

 The current value of the sensed attribute differs from SV by 

an amount equal to or greater than the soft threshold.  

Next scheme in [4] is based on radio model like LEACH is 

based on. The approach is divided into rounds and each round 

consists of three phases: set-up phase, steady phase and 

forwarding phase. However, it has some drawbacks for sensor 

networks. First, it didn‟t consider the distribution of nodes.  

The number of nodes in each cluster is distributed unequally. 

After cluster-head gathers all the data from cluster members, 

it forwards the data to the base station directly. For cluster-

heads that are far away from the base station, clearly direct 

transmission is bad for energy conservation. To improve the 

above drawbacks in LEACH, the cluster constructing method 

has to be changed. The communication between cluster-heads 

and base station also needs to be modified. MECH is mainly 

aimed at these two drawbacks. Cluster constructing method 

avoids the uneven member distribution for clusters. The 

hierarchical routing scheme avoids the long range direct 

communication between cluster-heads and the base station. 

Ruay-Shiung Chang and Chia-Jou Kuo in [4] use two 

parameters to establish the hierarchical relation among 

clusters: hop_count and energy level. However, there are a 

few drawbacks also. First, control messages are more than 

those in [3], because to get more information to construct 

more evenly distributed topology and the hierarchical routing 

tree. The cluster-head in protocol [3] transmits data to base 

station directly. The cluster heads in MECH use hierarchical 

routing to forward the data to the base station. Second, the 

synchronization mechanism may be expensive in hardware 

equipments for sensor nodes. 

 

3. PROPOSED SYSTEM MODEL 

3.1 Fault Tolerance in Hierarchical 

Clustering Environment 
FTHC is based on protocol [4]. Our approach is divided into 

rounds and each round consists of five phases: set-up phase, 

steady phase, forwarding phase, CH failure, and recovery 

phase as shown in Fig. 1. We construct clusters before each 

round. Every node broadcasts a hello message to its 

neighbors. The Time to live of this hello message is set to one 

since we only need to gather neighbors of one hop. The radio 

range is also set to a certain transmission range. Each node 

records the number of neighbors. When the number of 

neighbors of a node reaches N, the node will broadcast an 

advertisement to its one hop neighbors informing it‟s the head 

of cluster. All the nodes who receive this advertisement record 

it. Furthermore, such nodes never broadcast the advertisement 

even if their number of neighbors reaches N.  In order to 

synchronize, each cluster-head counts the total number of its 

cluster members and broadcasts the information to the base 

station. The base station computes the maximum number of 

time slots needed and broadcasts this information back to each 

cluster-head.   

 

 

 

 

 

Fig. 1 Working of the Scheme FTHC 

3.1.1 Setup phase and Steady phase 
Because the maximum number of cluster members is bounded 

by N, the cluster-head can schedule the TDMA time slot for 

each cluster member at each round. In the set-up phase, every 

node will turn on the receiver such as in [4]. Then, the cluster-

head will broadcast an advertisement that contains the TDMA 

time slot information. Each cluster member will know the 

time slot which belongs to it. Thus, the cluster member will 

keep the transceiver off until its time slot and will transmit the 

Setup            Steady         Forwarding      Failure detection    Recovery 

Phase             Phase               Phase                  Phase                      Phase 
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sensed data in its allotted time slot in the steady phase. The 

algorithm followed is: 

Step 1 Start   

Step 2 For each node N1 , Send “Hello” message   

to all nodes N2....Nn . 

Step 3 For each node N2....Nn ,Send reply to N1   

with distance. 

Step 4 If neighbour count=CN then 1  sends  

message “I m head” to N2....Nn. 

Step 5 All nodes N2....Nn  who receive message,  

Sends reply to CH. 

Step 6 For each node in the cluster, CH receives  

data (sensing data + battery left). 

Step 7 Chooses node with max left battery for  

next setup round. 

Step 8 For each node N in cluster, Send data to  

CH in respective time slots. 

Step 9 Stop 

3.1.2 Forwarding phase 
FTHC uses two parameters to establish the hierarchical 

relation among clusters: hop_num and Energy_msg. The 

following steps describe how the FTHC implements the 

hierarchy. 

Step 1 Start 

Step 2 Initialise hop_num=0,Energy_msg=100 

Step 3 BS sends message to all CHs containing  

hop_num & Energy_msg 

1. For each CH receiving msg  

hop_num=hop_num+1,  

2. If Energy _msg > Energy_CH, then 

Energy_CH=Energy_msg 

Step 4 For each CHy receiving msg from CHx ,  

CHx becomes forwarding CH 

Step 5 For each CHx receiving msg from CHy 

1. If  hop_numold < hop_numnew, do 

nothing 

2. If  hop_numold > hop_numnew, replace 

forwarding CH 

3. If  hop_numold = hop_numnew, then if 

Energyold <= Energynew replace 

forwarding CH,else do nothing. 

Step 6 Stop 

 

In clustering, the network organizes around a small set of 

cluster heads which then gather data from their local cluster 

aggregate this data and transmit it to the base station as in Fig. 

2.  During a round, once selection has been performed, the 

only nodes transmitting data are the subordinate nodes. Once 

the nodes organize themselves into clusters, each cluster-head 

creates a schedule for the nodes in its cluster. Therefore, in the 

current state of the protocol, a node in the cluster has no idea 

as to whether its cluster-head has failed, since it will never 

hear from the cluster-head again. Thus, the failure of a cluster 

head effectively disconnects the entire cluster for the 

remainder of the round as can be seen in Fig. 3. Also, all 

transmissions made by nodes post the cluster-heads failure are 

lost since they never get sent to the base-station. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
  Base station 

                   Node 
               Cluster head CH 

Fig. 2 Hierarchical clustering in FTHC 

3.1.3 Failure detection phase  

After every fixed set of transmissions all nodes turn their 

radio receiver back on and the cluster head sends a small ping 

message indicating that it is up and running. If such a 

transmission is not received, the nodes can assume that the 

cluster-head has failed and employ the recovery algorithm  

 

      

Fig. 3. CH failure 

3.1.4 Failure recovery phase  
We present two models for recovery from cluster-head failure 

in FTHC. We call these models Inter-Cluster Recovery and 

Intra-Cluster Recovery. In the basic form of FTHC, each node 

attaches itself to a single cluster-head during the selection 

phase of each round. In this scenario, if the cluster-head to 

which a node is attached fails, the nodes in the cluster are left 

transmitting to no one until the next round begins with a 

whole new selection process. In the Inter-Cluster Recovery 

model, the nodes in the cluster with their CH failed become 

members of the CH of the upper level cluster as in Fig.  4. 

However, simply picking alternative cluster-heads to serve in 

case of lower CH failure is not sufficient since these nodes 

must now accommodate room in their TDMA schedules for 

the nodes they are serving in failure. Without this, when a mid 

round failure detected, the nodes making this detection cannot 

switch to their backups since those nodes will already be in 

the middle of a round. When the transmission phase of a 

round begins, a node transmits according the schedule of 

cluster-head. Upon detection of the failure of this cluster-

head, a node changes its transmission time slot and frequency 

to that of the cluster-head with the backup cluster head. 

Cluster 4 
disconnects 
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Successive failures can be handled in this manner until a node 

runs out of backup cluster-head.  

 
 

 

 

 

 

 

 

Fig. 4  Inter cluster recovery 

 

The Intra-Cluster Recovery scheme of recovery is much 

simpler than the Inter-Cluster recovery. The idea here is to 

have a failed cluster-head seamlessly replaced by the next 

high energy node in the same cluster as in Fig. 5. This 

prevents the need for a network-wide re-clustering round and 

instead contains the changes to the cluster in which failure has 

occurred. In our implementation of this model, when a 

cluster-head failure is detected by means of a missed ping 

message, the node with the next highest battery left takes over 

as the cluster-head.  

 
 

 

 

Fig. 5  Intra cluster recovery 

3.2 Results and discussion 
For our simulation setup, we experiment with networks of 20 

sensors randomly placed in 100x100 area. Since one of the 

goals of this simulation study was to examine the improved 

uptime of the network in the face of cluster-head failures, for 

the purpose of this simulation we considered homogeneous 

nodes with identical batteries (100%). The simulations also 

employ a linear power model as in [1] where the energy 

required to transmit over a given distance is a linear function 

of the distance. In Fig. 6 and Fig. 7, the graphs have been 

plotted to show the lifetime of the clusters along the different 

number of rounds. In MECH, a node dies when its battery life 

becomes 0. The first node dies in round 44. All the nodes of 

the cluster 0 die in round 73. Cluster 1, 2, 3 and 4 die in round 

80. While in FTHCE, the first node dies accidently, not due to 

zero energy level which dies in round 23 and the recovery 

algorithm is applied. Hence the lifetime of network increases 

and first cluster dies in round 78 due to energy level reaching 

0 in both FTHC intra and FTHC inter cluster recovery 

schemes. Clusters 1, 2, 3 and 4 die in round 80 in FTHC intra. 

In FTHC inter Cluster 1 and 2 die in round 80, while Cluster 3 

and 4 die in round 86. These results show that the life time of 

overall network increases in FTHC as compared to MECH.  

 

 
 

Fig. 6  Network Lifetime Comparison 

 

 
Fig. 7  Cluster Lifetime 

Fig. 8 shows comparison between MECH, FTHC inter and 

FTHCE intra in terms of the number of rounds when first and 

last node dies.  
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Fig. 8 Failure time for first and last node 

Fig. 9 gives an idea of how the failure of cluster heads at 

various levels leads to the disconnection of clusters from other 

clusters/ Base station in MECH, FTHC intra and FTHC inter 

respectively.  

 

 

Fig. 9  Network Lifetime after the cluster head failure 

In MECH, when the cluster head at level 4 (CH4) dies results 

in the disconnection of cluster 4 from the rest of the network.  

Similarly, the failure of cluster heads at levels 3, 2, 1, 0 i.e. 

CH3, CH2, CH1, and CH0 respectively results in the 

disconnection of the clusters 3, 2, 1 and 0 respectively from 

the rest of the network. The percentage of clusters 

disconnected has been shown better understanding of the 

results. While in case of FTHC inter and FTHC intra, 

whenever cluster head at any of the levels fails accidently, the 

recovery algorithm is called up and new cluster head takes the 

responsibility for the rest of the round. Therefore the 

disconnection of the cluster at that level from the rest of the 

network does not take place. Though these better results in the 

FTHC has been achieved at the cost of increased overhead of 

messages between nodes and/ or between nodes and base 

station. Also additional cost for Inter-Cluster recovery is due 

to the additional uptime for cluster heads caused by longer 

schedules. 

4. CONCLUSION 
In this paper we have discussed about the problem of network 

disconnectivity due to cluster head failures in wireless sensor 

networks and we have tried to find a solution for that. We 

have proposed fault tolerance in wireless sensor networks 

with hierarchical clustering environment. In this model, there 

is a trade-off for the increased fault tolerance. Since every 

cluster-head serving as a backup makes room for all the nodes 

it serves in its schedule, there are a number of unused 

bandwidth slots in each round. However, this costs minimal 

additional energy since all nodes except for cluster heads have 

their radios switched off when it is not their turn to transmit. 

Hence, there is a small increase in the energy cost for a cluster 

head since it now has a longer round to deal with. Also, if a 

node is forced to move to a new cluster head in case failure of 

its own cluster head, it must now spend more energy 

communicating with this cluster-head since it is further away 

than the failed cluster-head. The preliminary simulation 

results also show that increased network connectivity and 

fault-tolerance can be achieved at the cost of increased 

overhead of messages and longer schedules. In applications 

where connectivity is critical, this is a viable trade-off to 

make. 
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