
International Journal of Computer Applications (0975 – 8887)

Volume 43– No.6, April 2012

10

FTHC: Fault Tolerance in Hierarchical Clustering

Environment for WSN

Swati Sharma

Computer Science and Engineering Department
Maharishi Markandeshwar University, Mullana,

Ambala

Rohit Vaid
Computer Science and Engineering Department
Maharishi Markandeshwar University, Mullana,

Ambala

ABSTRACT

Wireless Sensor Networks (WSNs) are an important focus of

research due to their many envisioned applications. They are

formed by small, inexpensive and resource limited devices

that can interact with the environment and communicate in a

wireless manner with other devices. For energy conservation,

the clustering technique is used where network organizes

around a small set of cluster heads which then gather data

from their local cluster aggregate this data and transmit it to

the base station. Here we present two models for adding fault-

tolerance to clustering algorithms with a hierarchy maintained

among various levels of cluster heads from base station.

Since, sensor nodes are often deployed in harsh environments,

they are prone to failure. Cluster-head failure can leave a

cluster disconnected from the base station until the network

reorganizes again. The proposed model „FTHC: Fault

Tolerance in Hierarchical Clustering Environment for WSN‟

is used for both Inter and Intra clustering environment. We

evaluate the proposed model and compare it with protocol

MECH in terms of network lifetime when the cluster head

fail.

Keywords

Wireless sensor networks, radio model hierarchical clustering,

cluster head failure, fault tolerance.

1. INTRODUCTION
A wireless sensor network (WSN) consists of a number of

autonomous sensors to monitor physical or environmental

conditions [9], such as temperature, sound, vibration,

pressure, motion or pollutants and to cooperatively pass their

data through the network to a main location. The development

of wireless sensor networks was motivated by military

applications [10, 11] such as battlefield surveillance; today

such networks are used in many industrial and consumer

applications also. Recently, research from the networking

community as well as advances in micro-fabrication

technology have brought about the realization of practical

commercial wireless sensor networks, as can be seen in [3, 5,

6, 7, 8]. Since the nodes in WSNs are prone to failure due to

energy depletion, hardware failure, communication link

errors, malicious attack, and so on as in [14, 15]. The nodes

in sensor networks have very limited energy and their

batteries cannot usually be recharged or replaced due to

hostile or hazardous environments. So, one important

characteristic of sensor networks is the power budget of

wireless sensor nodes. Two components of a sensor node,

sensing unit and wireless transceiver, usually directly interact

with the environment which is subject to variety of physical,

chemical, and biological factors. It results in low reliability of

performance of sensor nodes. Even if condition of the

hardware is good, the communication between sensor nodes

are affected by many factors, such as signal strength, antenna

angle, obstacles, weather conditions, interference. Fault

tolerance is the ability of a system to deliver a desired level of

functionality in the presence of faults as in [10, 12, 13]. Since

the sensor nodes are prone to failure, fault tolerance should be

seriously considered in many sensor network applications.

Actually, extensive work has been done on fault tolerance and

it has been one of the most important topics in WSNs.

In this paper, we present two models for adding fault-

tolerance to clustering algorithms. Since, sensor nodes are

often deployed in harsh environments, they are prone to

failure. Our work focuses on two models for adapting to the

failure of a cluster-head. In the Intra-Cluster Recovery model,

the failure of the cluster head replaces a failed cluster head

with another node in the same cluster. In the Inter cluster, the

new cluster head takes the responsibilities and the whole

network works in the same manner without any interruption

due to cluster head failure. We implement our models for

cluster-head failure detection and recovery over the clustering

protocol MECH and then modify MECH to test these models

and examine the performance of these recovery algorithms for

improved coverage.

The remainder of this paper is organized as follows. In

Section 2 we briefly cover related work on the problem of

clustering and fault-tolerance in Wireless Sensor Networks. In

Section 3 we discuss our proposed system model for building

fault tolerance into a clustering algorithm. Finally, we present

conclusion in Section 4.

2. RELATED WORK
W. Heinzelman, A. Chandrakasan, and H. Balakrishnan in [1]

proposes a self-organizing, adaptive clustering protocol that

uses randomization to distribute the energy load evenly

among the sensors in the network as in [9]. In [1], the nodes

organize themselves into local clusters, with one node acting

as the local base station or cluster-head. If the cluster heads

were chosen a priori and fixed throughout the system lifetime,

as in conventional clustering algorithms, it is easy to see that

the unlucky sensors chosen to be cluster-heads would die

quickly, ending the useful lifetime of all nodes belonging to

those clusters. Thus it includes randomized rotation of the

high-energy cluster-head position such that it rotates among

the various sensors in order to not drain the battery of a single

sensor. In addition, it performs local data fusion to

“compress” the amount of data being sent from the clusters to

the base station, further reducing energy dissipation and

enhancing system lifetime. Sensors elect themselves to be

local cluster-heads at any given time with a certain

probability. These cluster head nodes broadcast their status to

the other sensors in the network. Each sensor node determines

to which cluster it wants to belong by choosing the cluster-

http://en.wikipedia.org/wiki/Autonomous
http://en.wikipedia.org/wiki/Sensor
http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Sound
http://en.wikipedia.org/wiki/Oscillation
http://en.wikipedia.org/wiki/Pressure

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.6, April 2012

11

head that requires the minimum communication energy. Once

all the nodes are organized into clusters, each cluster-head

creates a schedule for the nodes in its cluster. This allows the

radio components of each non-cluster-head node to be turned

off at all times except during its transmit time, thus

minimizing the energy dissipated in the individual sensors.

Once the cluster head has all the data from the nodes in its

cluster, the cluster-head node aggregates the data and then

transmits the compressed data to the base station. Since the

base station is far away in the scenario we are examining, this

is a high energy transmission. However, since there are only a

few cluster heads, this only affects a small number of nodes.

S. Lindesy and C. Raghavendra in [2] proposes an idea for

each node to receive from and transmit to close neighbours

and take turns being the leader for transmission to the BS.

This approach will distribute the energy load evenly among

the sensor nodes in the network. We initially place the nodes

randomly in the play field, and therefore, the i –th node is at a

random location. The nodes will be organized to form a chain,

which can either be accomplished by the sensor nodes

themselves using a greedy algorithm starting from some node.

Alternatively, the Base station can compute this chain and

broadcast it to all the sensor nodes. To construct the chain, we

start with the furthest node from the BS. We begin with this

node in order to make sure that nodes farther from the BS

have close neighbors, as in the greedy algorithm the neighbor

distances will increase gradually since nodes already on the

chain cannot be revisited. When a node dies, the chain is

reconstructed in the same manner to bypass the dead node.

For gathering data in each round, each node receives data

from one neighbor, fuses with its own data, and transmits to

the other neighbor on the chain. Nodes take turns transmitting

to the BS, and we will use node number i mod N (N

represents the number of nodes) to transmit to the BS in round

i. Thus, the leader in each round of communication will be at

a random position on the chain, which is important for nodes

to die at random locations. The cost is very small since the

token size is very small.

A. Manjeshwar and D. Agrawal in [3] give protocol that is

targeted at reactive networks and is the first protocol

developed for reactive networks. In this scheme (Threshold

sensitive Energy Efficient sensor Network protocol), at every

cluster change time, in addition to the attributes, the cluster-

head broadcasts to its members, hard threshold (HT): This is a

threshold value for the sensed attribute. It is the absolute value

of the attribute beyond which, the node sensing this value

must switch on its transmitter and report to its cluster head.

Soft Threshold (ST): This is a small change in the value of the

sensed attribute which triggers the node to switch on its

transmitter and transmit. The nodes sense their environment

continuously. The first time a parameter from the attribute set

reaches its hard threshold value, the node switches on its

transmitter and sends the sensed data. The sensed value is

stored in an internal variable in the node, called the sensed

value (SV). The nodes will next transmit data in the current

cluster period, only when both the following conditions are

true:

 The current value of the sensed attribute is greater than the

hard threshold.

 The current value of the sensed attribute differs from SV by

an amount equal to or greater than the soft threshold.

Next scheme in [4] is based on radio model like LEACH is

based on. The approach is divided into rounds and each round

consists of three phases: set-up phase, steady phase and

forwarding phase. However, it has some drawbacks for sensor

networks. First, it didn‟t consider the distribution of nodes.

The number of nodes in each cluster is distributed unequally.

After cluster-head gathers all the data from cluster members,

it forwards the data to the base station directly. For cluster-

heads that are far away from the base station, clearly direct

transmission is bad for energy conservation. To improve the

above drawbacks in LEACH, the cluster constructing method

has to be changed. The communication between cluster-heads

and base station also needs to be modified. MECH is mainly

aimed at these two drawbacks. Cluster constructing method

avoids the uneven member distribution for clusters. The

hierarchical routing scheme avoids the long range direct

communication between cluster-heads and the base station.

Ruay-Shiung Chang and Chia-Jou Kuo in [4] use two

parameters to establish the hierarchical relation among

clusters: hop_count and energy level. However, there are a

few drawbacks also. First, control messages are more than

those in [3], because to get more information to construct

more evenly distributed topology and the hierarchical routing

tree. The cluster-head in protocol [3] transmits data to base

station directly. The cluster heads in MECH use hierarchical

routing to forward the data to the base station. Second, the

synchronization mechanism may be expensive in hardware

equipments for sensor nodes.

3. PROPOSED SYSTEM MODEL

3.1 Fault Tolerance in Hierarchical

Clustering Environment
FTHC is based on protocol [4]. Our approach is divided into

rounds and each round consists of five phases: set-up phase,

steady phase, forwarding phase, CH failure, and recovery

phase as shown in Fig. 1. We construct clusters before each

round. Every node broadcasts a hello message to its

neighbors. The Time to live of this hello message is set to one

since we only need to gather neighbors of one hop. The radio

range is also set to a certain transmission range. Each node

records the number of neighbors. When the number of

neighbors of a node reaches N, the node will broadcast an

advertisement to its one hop neighbors informing it‟s the head

of cluster. All the nodes who receive this advertisement record

it. Furthermore, such nodes never broadcast the advertisement

even if their number of neighbors reaches N. In order to

synchronize, each cluster-head counts the total number of its

cluster members and broadcasts the information to the base

station. The base station computes the maximum number of

time slots needed and broadcasts this information back to each

cluster-head.

Fig. 1 Working of the Scheme FTHC

3.1.1 Setup phase and Steady phase
Because the maximum number of cluster members is bounded

by N, the cluster-head can schedule the TDMA time slot for

each cluster member at each round. In the set-up phase, every

node will turn on the receiver such as in [4]. Then, the cluster-

head will broadcast an advertisement that contains the TDMA

time slot information. Each cluster member will know the

time slot which belongs to it. Thus, the cluster member will

keep the transceiver off until its time slot and will transmit the

Setup Steady Forwarding Failure detection Recovery

Phase Phase Phase Phase Phase

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.6, April 2012

12

sensed data in its allotted time slot in the steady phase. The

algorithm followed is:

Step 1 Start

Step 2 For each node N1 , Send “Hello” message

to all nodes N2....Nn .

Step 3 For each node N2....Nn ,Send reply to N1

with distance.

Step 4 If neighbour count=CN then 1 sends

message “I m head” to N2....Nn.

Step 5 All nodes N2....Nn who receive message,

Sends reply to CH.

Step 6 For each node in the cluster, CH receives

data (sensing data + battery left).

Step 7 Chooses node with max left battery for

next setup round.

Step 8 For each node N in cluster, Send data to

CH in respective time slots.

Step 9 Stop

3.1.2 Forwarding phase
FTHC uses two parameters to establish the hierarchical

relation among clusters: hop_num and Energy_msg. The

following steps describe how the FTHC implements the

hierarchy.

Step 1 Start

Step 2 Initialise hop_num=0,Energy_msg=100

Step 3 BS sends message to all CHs containing

hop_num & Energy_msg

1. For each CH receiving msg

hop_num=hop_num+1,

2. If Energy _msg > Energy_CH, then

Energy_CH=Energy_msg

Step 4 For each CHy receiving msg from CHx ,

CHx becomes forwarding CH

Step 5 For each CHx receiving msg from CHy

1. If hop_numold < hop_numnew, do

nothing

2. If hop_numold > hop_numnew, replace

forwarding CH

3. If hop_numold = hop_numnew, then if

Energyold <= Energynew replace

forwarding CH,else do nothing.

Step 6 Stop

In clustering, the network organizes around a small set of

cluster heads which then gather data from their local cluster

aggregate this data and transmit it to the base station as in Fig.

2. During a round, once selection has been performed, the

only nodes transmitting data are the subordinate nodes. Once

the nodes organize themselves into clusters, each cluster-head

creates a schedule for the nodes in its cluster. Therefore, in the

current state of the protocol, a node in the cluster has no idea

as to whether its cluster-head has failed, since it will never

hear from the cluster-head again. Thus, the failure of a cluster

head effectively disconnects the entire cluster for the

remainder of the round as can be seen in Fig. 3. Also, all

transmissions made by nodes post the cluster-heads failure are

lost since they never get sent to the base-station.

 Base station

 Node
 Cluster head CH

Fig. 2 Hierarchical clustering in FTHC

3.1.3 Failure detection phase

After every fixed set of transmissions all nodes turn their

radio receiver back on and the cluster head sends a small ping

message indicating that it is up and running. If such a

transmission is not received, the nodes can assume that the

cluster-head has failed and employ the recovery algorithm

Fig. 3. CH failure

3.1.4 Failure recovery phase
We present two models for recovery from cluster-head failure

in FTHC. We call these models Inter-Cluster Recovery and

Intra-Cluster Recovery. In the basic form of FTHC, each node

attaches itself to a single cluster-head during the selection

phase of each round. In this scenario, if the cluster-head to

which a node is attached fails, the nodes in the cluster are left

transmitting to no one until the next round begins with a

whole new selection process. In the Inter-Cluster Recovery

model, the nodes in the cluster with their CH failed become

members of the CH of the upper level cluster as in Fig. 4.

However, simply picking alternative cluster-heads to serve in

case of lower CH failure is not sufficient since these nodes

must now accommodate room in their TDMA schedules for

the nodes they are serving in failure. Without this, when a mid

round failure detected, the nodes making this detection cannot

switch to their backups since those nodes will already be in

the middle of a round. When the transmission phase of a

round begins, a node transmits according the schedule of

cluster-head. Upon detection of the failure of this cluster-

head, a node changes its transmission time slot and frequency

to that of the cluster-head with the backup cluster head.

Cluster 4
disconnects

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.6, April 2012

13

Successive failures can be handled in this manner until a node

runs out of backup cluster-head.

Fig. 4 Inter cluster recovery

The Intra-Cluster Recovery scheme of recovery is much

simpler than the Inter-Cluster recovery. The idea here is to

have a failed cluster-head seamlessly replaced by the next

high energy node in the same cluster as in Fig. 5. This

prevents the need for a network-wide re-clustering round and

instead contains the changes to the cluster in which failure has

occurred. In our implementation of this model, when a

cluster-head failure is detected by means of a missed ping

message, the node with the next highest battery left takes over

as the cluster-head.

Fig. 5 Intra cluster recovery

3.2 Results and discussion
For our simulation setup, we experiment with networks of 20

sensors randomly placed in 100x100 area. Since one of the

goals of this simulation study was to examine the improved

uptime of the network in the face of cluster-head failures, for

the purpose of this simulation we considered homogeneous

nodes with identical batteries (100%). The simulations also

employ a linear power model as in [1] where the energy

required to transmit over a given distance is a linear function

of the distance. In Fig. 6 and Fig. 7, the graphs have been

plotted to show the lifetime of the clusters along the different

number of rounds. In MECH, a node dies when its battery life

becomes 0. The first node dies in round 44. All the nodes of

the cluster 0 die in round 73. Cluster 1, 2, 3 and 4 die in round

80. While in FTHCE, the first node dies accidently, not due to

zero energy level which dies in round 23 and the recovery

algorithm is applied. Hence the lifetime of network increases

and first cluster dies in round 78 due to energy level reaching

0 in both FTHC intra and FTHC inter cluster recovery

schemes. Clusters 1, 2, 3 and 4 die in round 80 in FTHC intra.

In FTHC inter Cluster 1 and 2 die in round 80, while Cluster 3

and 4 die in round 86. These results show that the life time of

overall network increases in FTHC as compared to MECH.

Fig. 6 Network Lifetime Comparison

Fig. 7 Cluster Lifetime

Fig. 8 shows comparison between MECH, FTHC inter and

FTHCE intra in terms of the number of rounds when first and

last node dies.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.6, April 2012

14

Fig. 8 Failure time for first and last node

Fig. 9 gives an idea of how the failure of cluster heads at

various levels leads to the disconnection of clusters from other

clusters/ Base station in MECH, FTHC intra and FTHC inter

respectively.

Fig. 9 Network Lifetime after the cluster head failure

In MECH, when the cluster head at level 4 (CH4) dies results

in the disconnection of cluster 4 from the rest of the network.

Similarly, the failure of cluster heads at levels 3, 2, 1, 0 i.e.

CH3, CH2, CH1, and CH0 respectively results in the

disconnection of the clusters 3, 2, 1 and 0 respectively from

the rest of the network. The percentage of clusters

disconnected has been shown better understanding of the

results. While in case of FTHC inter and FTHC intra,

whenever cluster head at any of the levels fails accidently, the

recovery algorithm is called up and new cluster head takes the

responsibility for the rest of the round. Therefore the

disconnection of the cluster at that level from the rest of the

network does not take place. Though these better results in the

FTHC has been achieved at the cost of increased overhead of

messages between nodes and/ or between nodes and base

station. Also additional cost for Inter-Cluster recovery is due

to the additional uptime for cluster heads caused by longer

schedules.

4. CONCLUSION
In this paper we have discussed about the problem of network

disconnectivity due to cluster head failures in wireless sensor

networks and we have tried to find a solution for that. We

have proposed fault tolerance in wireless sensor networks

with hierarchical clustering environment. In this model, there

is a trade-off for the increased fault tolerance. Since every

cluster-head serving as a backup makes room for all the nodes

it serves in its schedule, there are a number of unused

bandwidth slots in each round. However, this costs minimal

additional energy since all nodes except for cluster heads have

their radios switched off when it is not their turn to transmit.

Hence, there is a small increase in the energy cost for a cluster

head since it now has a longer round to deal with. Also, if a

node is forced to move to a new cluster head in case failure of

its own cluster head, it must now spend more energy

communicating with this cluster-head since it is further away

than the failed cluster-head. The preliminary simulation

results also show that increased network connectivity and

fault-tolerance can be achieved at the cost of increased

overhead of messages and longer schedules. In applications

where connectivity is critical, this is a viable trade-off to

make.

5. REFERENCES
[1] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan.

Energy-Efficient Communication Protocols for

Wireless Microsensor Networks (LEACH). Proc. of

the 33rd Hawaii International Conference on

Systems Science-Volume 8, pp. 3005-3014, 2000.

[2] S. Lindesy and C. Raghavendra. PEGASIS: Power-

Efficient Gathering in Sensor Information System.

Proc. of 2002 IEEE Aerospace Conference, pp. 1-6,

2002.

[3] Manjeshwar and D. Agrawal. TEEN: A Routing

Protocol for Enhanced Efficient in Wireless Sensor

Networks. Proc. of the 15th International Parallel and

Distributed Processing Symposium, pp. 2009-2015,

2001.

[4] R.S. Chang and C.J. Kuo. An Energy Efficient Routing

Mechanism for Wireless Sensor Networks. Proc. of

the 20th International Conference on Advanced

Information Networking and Applications, 2006.

[5] A. A. Abbasi and M. Younis. A survey on clustering

algorithms for wireless sensor networks. Comput.

Commun., 30:2826–2841, 2007.

[6] M. Chu, H. Haussecker, and F. Zhao. Scalable

Information- Driven Sensor Querying and Routing

for ad hoc Heterogeneous Sensor Networks. The

International Journal of High Performance

Computing Applications, Vol. 16, No. 3, pp. 293-

313, 2002.

[7] S. Schmid and R. Wattenhofer. Algorithmic models for

sensor networks. In Parallel and Distributed

Processing Symposium, 2006.

[8] J. Kulik, W. R. Heinzelman, and H. Balakrishnan.

Negotiation-based protocols for disseminating

information in wireless sensor networks. Wireless

Networks, Vol. 8, pp. 169-185, 2002.

[9] K. Sohrabi, J. Pottie. Protocols for self-organization of a

wireless sensor network. IEEE Personal

Communications Vol. 7, Issue 5, pp. 16-27, 2000.

[10] M. Ding, D. Chen, K. Xing, and X. Cheng. Localized

fault-tolerant event boundary detection in sensor

networks. In INFOCOM 2005.

[11] C. Frank and K. R¨omer. Algorithms for Generic Role

Assignment in Wireless Sensor Networks. In Proc. of

the 3rd international conference on Embedded

networked sensor systems, pp. 230–242, 2005.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.6, April 2012

15

[12] R. Guerraoui and A. Schiper. Fault-Tolerance by

Replication in Distributed Systems. In Proc. of the

1996 Ada-Europe International Conference on

Reliable Software Technologies, pp. 38–57, 1996.

[13] G. Gupta and M. Younis. Fault-Tolerant Clustering of

Wireless Sensor Networks. Wireless

Communications and Networking, 3:1579–1584,

2003.

[14] B. Krishnamachari and S. Iyengar. Distributed

Bayesian Algorithms for Fault-Tolerant Event

Region Detection in Wireless Sensor Networks.

IEEE Transactions on Computers, 53:241–250, 2004.

[15] P. Levis and D. Culler. Mat´e: A Tiny Virtual Machine

for Sensor Networks. In ASPLOS-X: Proc. of the

10th international conference on Architectural

support for programming languages and operating

systems, pp. 85–95, New York, NY, USA, 2002.

