

38

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.4, April 2012

ABSTRACT
The present paper derives and constructs a new visualization

methodology called “Tiny-Notational Approach”, developed

for better visualization of software architecture (SA). The

“Tiny-Notations” are designed to specify the underlined

concepts that a software entity, module and component belong

to. The software architects can apply the Tiny-Notations to

determine a particular software component or its activities

related to another component because they provide additional

information to address the understandability and mutual

communication issues of the stakeholders related to SA. The

proposed notations are easy to use and understand, and also

several design aspects of components may be focused for

domain specific analysis. The paper presents an

implementation scenario of a web-based client-server system

with its software architecture.

Keywords-- Software architecture, Visualization

methodologies, Understandability, Tiny-Notations

1. INTRODUCTION
Understanding the software architecture [6][9][10][11][12] is

a vital step towards building and maintaining software

systems. However, software architecture is an intangible

conceptual entity. Therefore, it is hard to comprehend

software architecture without a visual mapping [19]. For that

reason, visualizing software architecture has been one of the

most important topics in software visualization. Software

visualization (SV) is the use of visual representations to

enhance the understanding and comprehension of different

aspects of a software system. Thus, stakeholders such as

architects, developers, testers, project managers and even

customers are interested in this visualization.

Visualizing software architecture encompasses not only the

software modules, entities and their internal structures and

interrelations, but also the evolution of these entities, modules

and their interactions over time [5][13].

2. BACKGROUND STUDY
Software visualization is the process of mapping entities in a

software system domain to graphical representations,

normally in 2D or 3D [8][9][23], to aid comprehension and

development. It has traditionally been focused on aiding the

understanding of software systems by those who perform

development and maintenance tasks on that software.

Although Software visualization supports the software

development and maintenance process, this focus excludes

other valid stakeholders such as users and architects,

maintainers, acquirers,

managers and so on. Software architecture visualization

should help all stakeholders to understand the software at

various levels of abstraction and at different points of the

software life cycle. Software Visualization can be seen as the

application of Information Visualization techniques to

software, as the data collected from all areas of a system

development, such as code, documentation, and user studies,

is abstract and, hence, has no associated physical structure

[15].

3. EXISTING APPROACHES FOR

SOFTWARE ARCHITECTURE

VISUALIZATION

There are a number of approaches with the support of tools

and languages for SA visualization [1][2][3][15][17]. In

addition, Software engineering research itself has examined

the use of specific languages to describe software architecture

[8]. These languages are referred to as Architecture

Description Languages (ADLs). Rather than focusing on

ADLs for capturing and representing architectural

information, the Tiny-Notations presented in this paper are

more concerned with the visualization of architectures in the

large, whether they have been encoded with an ADL or not.

Visualizations may indeed use the paradigm of components

and connectors [15], but in this paper the Tiny-Notations

serve at a lower level.

 The next sub section provides description about some of the

existing approaches in software architecture visualization.

3.1 DiffArch Viz

DiffArchViz is a tool developed by Sawant et al. [14]

specifically for visualizing the software architecture of

network-based large-scale systems. According to them the use

of 3D glyphs to represent the architecture was to offer more

surface area to place information on. The visualization uses

hue, luminance, size, orientation, transparency and height as

visual representations for the different attributes of software

components (represented as glyphs). The drawback of this

tool is that it categorizes raw code into software components

in a static manner, hence mandating the user to stick to this

categorization throughout the visualization process.

3.2 Axivion Bauhaus Suite

It is the architecture visualization tool developed by Software

Acumen Limited [3]. The tool supports couple of

programming languages (C, C++, MS Visual Studio .NET,

Ada, Java etc) and platforms like (windows, Linux). In this

tool, architecture visualization allows developers to browse

their software at a high-level and also to drill-down to specific

Tiny- Notational Approach for Software Architecture
Visualization

Imran Ghani
Faculty of Computer Science and

Information Systems
Universiti Teknologi Malaysia

 Bhaskar Prasad Rimal, Seung Ryul
Jeong

School of Business IT,
Kookmin University, Seoul, Korea

39

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.4, April 2012

functions where necessary. Architect can easily find out

which parts of the software are connected, how different parts

of the software will be impacted by changes, evolution and

whether parts of the software can be reused without

modification.

3.3 Structure 101

Structure101 is a Java based tool developed by

Headway software [16]. Structure101 makes software

structure (design, architecture and packaging) easy to

understand, define, communicate, control and keep simple.

However, controlling architecture can be a significant

challenge. An uncontrolled architecture can become a tangled

mess, with no clear home for specific functions, unexpected

side-effects to changes and increasing integration and test

time.

3.4 Software Architecture Visualization and

Evaluation (SAVE)

SAVE tool [18][23] defines a planned (and/or target)

architecture that creates an actual architecture from source

code which compares planned architecture with actual

identifying architectural violations. It can be used for

checking architectural consistency, identifying commonalities

and differences, exploring and understanding architectures

from source code. It includes the features such as: zooming,

filtering, refactoring. It consists of a set of Eclipse plug-ins

and supports C/C++, Java, Delphi, and Simulink code. It

provides the analysis of the impact of the change request on

the new layered architecture. Its middle layer and two of its

components, where all change occur, is expanded. By W. C.

Stratton et.al[18], the assumption is that change “only”

propagates if an interface changes. Interfaces are represented

by header files that are. The change can propagate of other

reasons, but to determine such change goes beyond the current

capabilities of SAVE.

3.5 Ecospecies Visualization Tool:

Exploring Software Architecture in 3D

EvoSpaces [8] is a reverse engineering tool that provides an

architectural level visualization of software systems as a

virtual environment. It takes advantage of the fact that

software systems are often structured hierarchically to suggest

the use of a virtual city metaphor. Entities along with their

relationships are represented as residential glyphs (e.g. house,

apartment, office, hall and etc); whereas metrics of these

entities are represented as positions and visual scales in the

3D layout (e.g. size, color value etc). The tool provides

different interaction modes with zooming and navigation

capabilities. Like any city, the EvoSpaces city is arranged in

districts grouping a number of buildings. A district represents

a package (or directory in C/C++). EvoSpaces is written in

Java and JOGL [20], an OpenGL binding in Java for the 3D

rendering. This allows us to get the fastest response time. The

tool is built as a plug-in for Eclipse.

4. PROPOSED APPROACH
In the arena of software architecture, research on visualization

is centered on finding a meaningful and effective mapping

scheme between the software architecture elements and visual

metaphors [4].

Recent research has been trying to answer different questions

such as: “why is the visualization needed?”, “who will use it

(end user, developer, managers etc)?”, and “how to represent

it (single view) [7]?” static aspect[21], “who are the different

groups of audiences for architecture visualization?”, “what

questions do they wish to answer through this visualization?”,

“how can visual metaphors and interaction techniques are

used to answer their questions [5]?”, and “how to display

information related to source text?”

In this context, software architecture visualization attempts to

answer the spacious variety of questions asked by different

stakeholders through a number of techniques and approaches.

However, what determines how effective a specific

visualization technique is, has never been a trivial question.

The researcher is not considering the cache and easy notations

while visualization or describing the architecture language

(ADLs), it is the big concern that architecture should be

simple, understandable and mutually communicable by every

concerning stakeholders. This can be achieved by making the

implicit properties of entities and their relations explicitly

visible in the architecture. Thus, we consider all these

concerns while proposing some tiny notations here for

architecture visualization.

The motivational scenarios that support the usefulness of

proposed Tiny-Notations are as follows.

 Improve understandability and mutual communication of

software architecture visualization between stakeholders. -

For example, software architect, system analyst,

developers, database admin, senior management, project

managers and team leads.

 Incorporating Tiny-Notations with existing notations

usability practices, in order to encourage an efficient

practice in the ADLs community.

 Improve the quality of Software Architecture

Visualization.

4.1 Criteria for Tiny-Notational Approach

In order to apply the proposed notations there are some

assumptions as described follows.

 All Tiny-Notation can be used in any layer of the system

in the architecture i.e., Application Layer, Presentation

Layer, Business Layer, Resource Access Layer, Resources

Layer and so on.

 Tiny-Notations can be used as a combination of two or

more Tiny-Notations (Fig 1)

 The proposed location for the valid placement of Tiny-

Notations is top-left (Fig 1)

 Colors are not used to express any further detail

4.2 Core Notations

This section describes the core Tiny-Notations proposed for

the better understandability of SA. The following Table 1

illustrates the notations with their corresponding details.

40

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.4, April 2012

Table 1. Proposed core tiny notations

 User-Interaction Representation: This pictogram describes

a human user (human head), should be used depicting a

component that interacts with or relates to human

interaction. For example, a user database, user validation

component or user interfaces.

 LAN Network Communication: This symbol identifies a

component/service under one administration related to

LAN. For example, a TaxCalculation service under the

same organization where the requester belongs to.

 Database Interaction: This notation depicts should be used

on the component that interacts with database such as

database access interface.

 Web-based Interaction: This symbol should be used when

a component/service identifies under third party

administration related to WAN. For example, a RSS feed

service not under the same organization where the

requester belongs to.

 Two-ways Interface Connection: This sign describes the

connection between the two components that has ports for

both input and output.

 One-ways Interface Connection: This sign describes the

connection between the two components that has ports

either for input or output.

4.3 Combination of Tiny Notations with

Components

In order to provide the proposed notations description and

recommended usage, Fig 1 shows some of the potential

practices of usage for different types of stakeholders. The

recommended location for the usage of the Tiny-Notations is

on the top-left of the component or existing notation as shown

in Table 2 below.

Table 2. Incorporating tiny-notations with traditional

notations to represent the components

Core Notations Description

User Component:

User interaction

with a component

A component that

communicates with

other component

within LAN

Component

interacting with

Database

Web-based display

and component

access

One-way interface

connection

Two-way interface

connection

Information storage

for Web-access

The Table 2 shows only few of the existing usage embedded

with the Tiny-Notations on top-right corner with flexibility. In

Table 2, we showed the Tiny-Notations for components as

well as for the existing notations for database, documents and

display symbols. However, the usage of Tiny-Notations is not

limited to these symbols. They can be used for any

components or existing symbols; in order to provide more

understandability to different stakeholders such as database

admin, network security admin or interface designer and so

on.

4.4 Implementation of Tiny-Notational

Approach – A Prototypical Scenario

We present our proposed notations with its implementation in

a Software Architecture for a jobs search example company

A. The company A owns a typical client-server web-based job

search system. The client side enables easy access for

jobseekers and employers support facilitates finding, applying

for jobs and adding profiles and posting jobs respectively.

Typically, the requests are sent from clients‟ browsers to web

server and response is sent back to from web server to client,

a two interaction process.

We used Tiny-Notations that serve as an easy to use

mechanism to understand the architecture in a very clear

manner; in order for better understandability and mutual

communication among different stakeholders including

interface designer, client request processor (developer) and

database admin.

In Fig 1 below we describe how to implement our tiny

notational approach in software architecture visualization.

Here we are explaining a real world example; Tiny-Notations

<<Interface>>

User

Interface

<<Interface>>

User

Interface

41

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.4, April 2012

Prototypical Scenario for Web-based Job Search System

Architecture. This scenario envisions how the server

communicates with client. It provides a client is accessing the

database for login validation via web server. The internal

visualization in server part is showing with different

component interacting with interfaces.

Fig 1: Tiny-Notations Prototypical Scenario for Web-based Job Search System Architecture

The Fig 1 exhibits the architecture of a job search system

which consists of client, web server, database server, and a

third party document base.

Almost, each of the component or existing notation is

decorated with the Tiny-Notations which sufficiently help

increase the understandability of each component that which

component belongs to what type of stakeholder and system

layers. For example, the GUI component in web server is

assigned . This means that the GUI component interacts

with Internet designer (stakeholder) need to be attentive to

understand this component and how this component interacts

with other components on Internet. Similarly, the existing

notation for database is assigned with Tiny-Notation

. This means that the corresponding database is a user

database. This helps understand database admin to take care

of all the necessary issues such as password- encryption and

so on.

5. FUTURE WORK AND CONCLUSION

The paper has presented a construct to Tiny-Notations which

specifically allow for the inclusion of understandability and

mutual communication for visualization properties in an

architectural description. The construct is built around the

concepts of „includes‟ but not „required‟ (meaning that it is

optional to use them) and is modeled on the top of existing

ADL and UML notations. The Tine-Notations could be

applied to most of ADLs. As demands for better

understandability with quality software steadily increase,

software architects must meet these demands by including

understandability as an important component in the

architecture. The proposed Tiny-Notational approach can be

used as a tool that allows architects to add understandability

into architectures from the onset of the process. This paper is

limited to our recent and key research efforts. More work is

needed in order to come up with more general and specific

notations in software architecture visualization research. In

future, however, we intend to translate the notational

presentation to provide support at ADL as well as into code

generation level. We argue that the integration of Tiny-

Notations would support at architectural description process

level leading towards a comprehensive SA visualization.

6. ACKNOWLEDGMENTS

This research has been conducted with the support of

academic visitors research grant, allocated by Universiti

Teknologi Malaysia, under vote no. 4D046.

7. REFERENCES

[1] Amit, W. and Naveen, B. 2006. SoftArchViz: A

Software Architecture Visualization Tool. IEEE Article.

[2] Acme, www.cs.cmu.edu/~acme/ accessed on 18th

November 2011.

[3] Axivion Bauhaus Suite, http://www.software-

acumen.com accessed on 5th December 2011.

[4] Gračanin, D., Matković, K., and Eltoweissy, M. 2005.

Software visualization. Innovations in Systems and

Software Engineering. pp. 221-230, Springer London.

[5] McNair, A., Daniel, M. G., and Jens, W. J. 2007.

Visualizing Software Architecture Evolution Using

Change-Sets. In Proceedings of 14th Working

Conference on Reverse Engineering. pp.130-139.

[6] Amnon, H. E. 2001. Visualization of Object-Oriented

Architectures. In Proceedings of IEEE 23rd Int‟l Conf.

http://www.software-acumen.com/
http://www.software-acumen.com/

42

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.4, April 2012

Software Eng. Workshop Software Visualization, pp. 5-

10.

[7] Panas, T., Epperly, T. Quinlan, D. Saebjornsen, A.

Vuduc, R. 2007. Communicating Software Architecture

using a Unified Single-View Visualization. In

Proceedings of 12th IEEE International Conference on

Engineering Complex Computer Systems. pp. 217-228.

[8] Sazzadul, A. and Philippe, D. 2007. EvoSpaces: 3D

Visualization of Software Architecture. In Proceedings

of 19th International Conference on Software Engineering

& Knowledge Engineering.

[9] Feijs, L and De Yong, R. 1998. 3D Visualization of

Software Architectures. J. Comm. ACM, vol. 41, no. 12,

pp. 73-78.

[10] IEEE Recommended Practice for Architectural

Description of Software Intensive Systems. 2000.

Technical report. IEEE.

[11] Shaw, M. and Garlan, D. 1996. Software Architecture:

Perspectives on an Emerging Discipline. Prentice Hall.

[12] Bass, L., Clements, P., and Kazman, R. 2003. Software

Architecture in Practice. Addison – Wesley Inc.

[13] D‟Amboise, M. and Lanza, M. 2007. BugCrawler:

Visualizing Evolving Software Systems. In Proceedings

of 11th European Conference on Software Maintenance

and Reengineering. pp. 333-334.

[14] Sawant, A. and Bali, N. 2007. DiffArchViz: A Tool to

Visualize Correspondence between Multiple

Representations of Software Architecture. In Proceedings

of 4th IEEE International Workshop on Visualizing

Software for Understanding and Analysis. pp.121-128.

[15] Keith. G., Andrew. H., and Malcolm. M. 2008. Software

Architecture Visualization: An Evaluation Framework

and Its Application. J. IEEE Transactions on Software

Engineering. pp. 260-270.

[16] Structure 101. Available online from:

http://www.headwaysoftware.com/ accessed on 4th

August 2011.

[17] Miodonski, P., Forster, T., Knodel, J., Lindvall, M., and

Muthig, D. 2004. Evaluation of Software Architectures

with Eclipse. Kaiserslautern, IESE-Report 107.04/E.

[18] William C. S., Deane E. S., Mikael, L., and Patricia. C.

2007. The SAVE Tool and Process Applied to Ground

Software Development at JHU/APL: An Experience

Report on Technology Infusion. . In Proceedings of 31st

IEEE Software Engineering Workshop. pp. 187-193.

[19] Yaser, G. and Sheelagh, C. 2008. A Survey Paper on

Software Architecture Visualization. Technical Report.

Dept of Computer Science. University of Calgary.

[20] JOGL. Java binding for OpenGL.

http://java.net/projects/jogl/ accessed on 8th April 2012.

[21] Caserta, P. and Zendra. O. 2010. Visualization of the

static aspects of software: A survey. J. IEEE

Transactions on Visualization and Computer Graphics,

vol. 99, no. RapidPosts.

[22] Sharafi, Z. 2011. A Systematic Analysis of Software

Architecture Visualization Techniques. In Proceedings of

19th IEEE International Conference on Program

Comprehension. 2011.

[23] Duszynski, S. Knodel, J. and Lindvall, M. 2009.

SAVE: Software Architecture Visualization and

Evaluation. In Proceedings of 13th European Conference

on Software Maintenance and Reengineering.

