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ABSTRACT 
In this works, we use the approach based on observers such as 

the Luenberger observer and the sliding mode observer in 

order to introduce the diagnosis of nonlinear systems. The 

robustness of the proposed observers is tested through a 

physical example. The obtained results show that for non 

linear systems the performances of sliding mode observer 

observer is better than using a classic kind of observer. The 

synthesis of nonlinear observers will be used for actuator fault 

detection and isolation using residual generation. Finally, a 

comparison of observers‟ performances will be interesting for 

judging the effectiveness of this approach. 
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1. INTRODUCTION 
The main objective of an automatic control system is to 

assure an acceptable performance which cannot be achieved 

only by improving the individual reliability of the functional 

units. It also requires an efficient fault detection, isolation and 

accommodation capability. Several conventional linear as well 

as nonlinear observers have been suggested during the past 

decades, so different techniques of testing the observability of 

nonlinear system are presented in literature.  For this reason 

many observability analysis are developed for these systems 

to judge the nonlinearity. An observer is a copy model with a 

term of correction which establishes the convergence of the 

estimate state to the real state. It‟s called also a software 

sensor. In literature, the observers developed for the nonlinear 

systems differ from those of linear ones. In this paper we 

study a Luenberger observer [6] and a sliding mode observer 

[3].  Then we develop them and we formulate diagrams for 

simulation. Besides, the performances of the proposed 

observers are tested through a physical example. Finally, we 

present an approach for fault diagnosis of the same nonlinear 

system and we define the actuator fault detection and isolation 

using the different kind of observers. A comparison study will 

be interesting for judging the importance of the used method. 

 

 

2. SYNTHESIS OF NONLINEAR 

OBSERVERS 
The observer which is described in fig 1 is a useful tool used 

for estimation and failure diagnosis especially for monitoring 

based on models and in this sense we will use different type of 

observers in order to calculate the observed error and compare 

between different methods in order to improve the 

performances. 

 

       U                                                Y 

 

 

                                                                                  X  

 

 

Fig. 1. Synthesis of nonlinear observer 

2.1 Synthesis of a Luenberger observer 
In 1964, Luenberger introduced his well-known state 

estimator for linear and nonlinear systems [6].  

The Luenberger observer is indeed the simplest type of the 

closed-loop observers. In this observer, the output error will 

be fed back to the observer. This gain is selected such that 

(A−LC, C) be observable. Consider the following state space 

representation: 

            x (t) =Ax t +  Bu(t)                                                                                                                       

y t = Cx(t)                                                             (1)                                                                                                      

With A, B and C are nonlinear matrix, x is the state and u is 

the input. Then the structure of the Luenberger observer is 

given by: 

             x  (t)=Ax (t)+Bu(t)+L(y t - y (t))   

            y (t)) = Cx  (t)                                                              (2)    

               

X = 𝑓(X, U) 

      Model 

    Y =   h (X, U) 

Observer 
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This observer can also be used for the plant with deterministic 

noises we define L as a positive gain. 

2.2 Sliding mode observer 
It provides robust performance for observing the states of 

nonlinear systems with uncertainties. It is well known that 

modeling inaccuracies can have strong adverse effects on 

nonlinear observer systems.  

Therefore, any practical design must address them explicitly. 

Two major and complementary approaches to dealing with 

model uncertainty are robust and adaptive approaches. In fact, 

the sliding mode observer was shown successful in dealing 

with model-free systems [2].   

The idea is to define a time-varying surface (s(x, t)) in the 

state-space such that the problem of s = x(t)- 𝑥(𝑡)  is 

equivalent to remain on the surface s(t) for t > 0 [13]. The 

major difficulty here is how to find a suitable sliding surface 

(s(t)). To design a sliding mode observer, let us consider the 

general state space model: 

x =  f(x, u)                                                                                                                                                                                                                                                                                      

y t = c x t                                                                       (3) 

Where x 𝜖 Rn is the state vector, u 𝜖 Rm is the bounded control 

input, and C is known. Then the structure of the Sliding mode 

observer is given by: 

x  (t)=f  (x, u) +λ sign(s t )                                                      (4)                                                  

We choose 𝝀 > 0   and properly fixed for the estimation and 

the diagnosis [12].                                        

 

3. CASE OF TWO LEVEL TANKS 
The system of two- level tanks presented in figure 2 consists 

of a set of elementary components : the top tray (BH), the pan 

bottom (BB), a valve gain K1 from the top (VKH) and a valve 

gain K2 from the bottom (VKB), different sensors that allow 

us to measure the height of the product in the tank top (H1) 

and the tank bottom (H2) and the inflow of the product (qe)and 

(q1) in the tank top and the bottom tank respectively.  The 

flow admission is controlled directly (open loop) by a digital 

computer.  

 

                     Qe 

 

                S1 

 

                                                               S2                         H2 

 H1                                                                                                                           

                                           Q1 

 

     Fig.2. Description of the nonlinear system under study 

The dynamic model of the system can be presented as follows: 

𝑆1
dh1 

dt
 = qe  - q1 

𝑆2
dh2

dt
 =   q1  - qs                                                                                                         (5) 

s 1 1q k h  

1 2 1 2q k h h   

4.   SIMULATION RESULTS FOR 

ESTIMATION 
In this section we apply the proposed methods to our 

disturbed system described previously. The main objective 

here is firstly to demonstrate the procedure of different 

observers required to achieve identification or diagnosis, 

secondly is to generate residuals and compare the 

performances of the different observers. In the simulation of 

our system, we apply the same flow qe for the three observers.                                                                                                                                                                                         

4.1 Estimation results using a classic 

observer 
Using the classic observer, we obtain after the matlab 

simulation the flow qe which is the input of our system (fig.3) 

with L = 0.19. 

 

Fig3. The varying flow qe 

We obtain the height ℎ1  and its estimated ℎ 1 using the 

Luenberger observer (fig 4.a) and the observed error e1 

between them (fig 4.b). 
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Fig.4.a. The height h1and  its estimated 

 

Fig.4.b The observed error e1 

We find also the height h2 and its estimated  ℎ 2 (fig 4.c) and 

the observed error e2 (fig 4.d) which must be implemented in 

order to evaluate the performance of this kind of observer. 

Fig.4.c. The height h2and  its estimated 

 

Fig.4.d. The observed error e2 

4.2 Estimation results using a sliding mode 

observer [8] 
To compare the performance of the observers, we simulate the 

observed error e1 between h1 and its estimated ℎ 1then the 

observed error e2 between h2 and its estimated ℎ 2 so we obtain 

(fig 5.a and 5.b). 

 

Fig.5.a. The observed error e1 

 

Fig.5.b. The observed error e2
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5. SIMULATION RESULTS FOR 

DIAGNOSIS 

In this paper, we assume that only actuator faults can occur 

and no sensor faults are involved. For simplicity, we consider 

the case that only one single actuator is faulty at one time 

because extensions to multi-faults situation are 

straightforward. During this part, we will use a specific 

algorithm for the FDI scheme [4] which is composed of six 

steps: 

 We form the new faulty model  

 We build a bank of m observers for detection and 

isolation of fault. 

 We generate the residuals ri(t). 

 From the thresholds δi and the fault code εj(t) we 

elaborate the structure matrix Φ. 

 We generate the structured residuals for the fault 

isolation and identification. 

 We estimate finally fai 

 

To do this, we will determine the appropriate thresholds δi = 

constant and build the vectors of fault codes εj(t) composed 

of ri(t) [1] . 

 

rsi = 

𝑟𝑠1

𝑟𝑠2

𝑟𝑠3

𝑟𝑠4

   =   1  0  0  0     

𝑓𝑎1

𝑓𝑎2

𝑓𝑎3

𝑓𝑎4

  

ai(t) =       1  if    𝑟𝑖  (𝑡) ≥ 𝛿𝑖    

                 0   if   𝑟𝑖  (𝑡) < 𝛿𝑖                                                (6) 

 

𝜀𝑗 (t) = (𝑎1   𝑡  𝑎2   𝑡 …𝑎𝑖  (𝑡))
T  

                                         (7) 

  𝑟𝑖  = 𝑅  𝑦 𝑖 −  𝑦 , 𝑖 ∈ 𝑚                                                     (8) 

We use R as an operator of the residual and in our case it is 

the norm 2 defined as the difference between the estimated 

output and measured output, so (8) becomes: 

  𝑟𝑖  (𝑡) =  𝑦 𝑖 −  𝑦  , i = 1,…, m                                          (9) 

In fact in our case, comparing the observed error of the 

sliding mode observer to the classic one, we find that the first 

one is useful for the estimation. In fact, e1max is equal to 

0.027 and e2max  is equal to 11.10
-3

, so that they are near to 

zero. Furthermore, concerning the Luenberger observer e1max 

is equal to 0.24 and e2max  is equal to 0.07. 

For the isolation and identification of the fault, we must 

define the threshold 𝛿𝑖  , i=1,..,m    as adaptive because of the 

error measurement [10]. 

𝛿𝑖 =   𝑟 𝑖(𝑡 − 𝜏)  +1                                                          (10) 

 We fix 𝜏 = 4 [11].                       

Φ = [ε1(t) ε2(t) …. εm(t)]                                                    (11) 

rs          Φf                                                                                                                     (12) 

5.1 Diagnosis results using a classic 

Luenberger  observer 

The figure 6.a shows the variation of the residual r1 during 

the time using a classic observer which is the Luenberger 

one. We find that r1 has a positive peak at tf= 20s the time of 

actuator fault injection, but it doesn‟t converge rapidly to 

zero. We choose a gain  L1= 0.19 [14]. 

 

 
 

Fig.6.a. The residual r1 using a classic observer 

 

The figure 6.b shows the variation of the residual r2 during 

the time using a classic observer. We find that r2 has a 

negative peak at tf= 20s the time of actuator fault injection, 

but it converge rapidly to zero comparing to r1. We choose a 

gain  L2= 0.19 

 

 
Fig.6.b. The residual r2 using a classic observer 
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5.2 Diagnosis results using a Sliding 

mode observer  
In fact we have chosen H as a Hurwitz matrix so that the 

observer has a dynamics faster than the system. γ is a 

constant and P is a design positive definite matrix solution of  

Lyapunov equation which is  HT P + PH = -Q [1].We should 

notice that Q is a definite positive matrix, which can be 

chosen freely. For the simulation, the values of H, P and γ 

used in equation (7) are given:  H= -5 I3 , P = I3  and γ = 2 

and the injection of a single fault fa1 equal to 2 m3/s and at tf 

= 20 s. The figure 8.a and 8.b show the variation of the 

residuals especially after the fault injection. However, if we 

have multiple faults injection on the system we move to the 

use of structured residuals (equation11).  

 

Fig.7.a. The residual r1 using a sliding mode observer 

 

The figure 7.a shows the variation of the residual r1 during 

the time using a sliding mode observer. We find that r1 has a 

negative peak at tf= 20s the time of actuator fault injection, 

and it converge rapidly to zero. 

 

 
Fig.7.b. The residual r2 using a sliding mode observer 

The figure 7.b shows the variation of the residual r2 during 

the time using a sliding mode observer. We find that r2 has a 

negative peak at tf= 20s the time of actuator fault injection 

and  it converge rapidly to zero different from the classic one. 

 

 

5.3 Comparison of performances 

For the comparison of performances, we define: tf : fault 

occurrence moment, tD : fault detection moment, tI : fault 

isolation moment and tR : fault reset moment [15].  

The target of this study is the comparison between the 

Luenberger observer and the sliding mode observer in order 

to validate our method (second one); in fact table 1 illustrate 

this when we compare the error of estimation, the time of the 

fault detection tI and the convergence speed [16]. 

Here, we find that the Luenberger observer has a minimum 

error of estimation but the sliding mode observer is more 

useful for the diagnosis. In fact, the amplitude of the 

residuals is inferior to the classic observer and we have 

estimated the fault as 𝑓𝑎1
  = 2.25 m3/s. Table1gives the 

different performances for analyzing an observer. 

Criterions such as the error of estimation, the amplitude of 

the residuals and the convergence speed can judge the 

effectiveness of the used observer.  

                             Table.1. Analysis of observers’ performances 
 

 

 

 

 

 

 

 

 

6. CONCLUSION 
During this work, we have presented two kind of nonlinear 

observers which are the classic Luenberger observer and the 

sliding mode observer.  

Through, the example of a nonlinear system named the two 

level tanks which was described previously,  we have tested 

the robustness of the proposed observers in the estimation 

task.  

Besides, we move to the diagnosis and actuator fault 

detection and isolation for the same system.  

We describe the approch and its steps then we inject at   

tf = 20s a fault of 2m3/s and  we discuss the variation of the 

residuals r1 and r2 during the time, their peaks and their 

convergence to zero. 

Finally, a comparison study was done to judge the useful 

observer for estimation and diagnosis field. 

Other kind of observers can be used in the same approch in 

order to validate this method such as the neural observer [7]. 
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