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ABSTRACT 

Multi-scalar multiplication and multi-exponentiation are     the 

major problems in digital signal processing(DSP) and in 

public-key cryptography. In DSP, multiplication of the filter 

coefficients, which is used in different signal processing 

algorithms, is a time consuming operation. Also in elliptic 

curve cryptography(ECC), this multiplication process takes a 

lot of time. Though there are several algorithms to speed up 

this multiplication process, but they are not up to the 

satisfactory limit. The algorithms are based on the 

minimization of the multipliers or adders required, i.e. the 

minimization of the numbers of „one‟ appear in the binary 

representation of the signal and the coefficients in DSP or of 

the number of general multiplications and points addition in 

ECC. Different existing algorithms in this context are Joint 

Sparse Form(JSF), w-NAF, Double Base Chain(DBC), 

Hybrid Binery-Ternary Joint Sparse Form(HBTJSF) etc. In 

this paper, a novel algorithm has been proposed which is the 

modified HBTJSF, known as Triple-Base Hybrid Joint Sparse 

Form(TBHJSF). The proposed method is based on the 

decomposition of an integer or fraction that mixes the power 

of the base 2,3 and 5. The experimental results show that it 

requires less numbers of multiplier and adder and hence show 

its novelty over other algorithms. 
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TBHJSF, TBNS, w-NAF. 

1.  INTRODUCTION 
The complexities of multiplication and addition in the 

design of digital filter or multi-exponentiation operation and 

points addition in ECC are the major problem in current 

signal processing and different cryptographic algorithms. To 

speed-up these operation, Shamir‟s trick[1][2] can be used 

which eliminates the unnecessary separate computation of 

the two expressions. Shamir explained in[1], that two 

integers m and n can be expanded in the binary form at the 

same time and shown an extra savings of doublers and 

multipliers. He proposed that if „a‟ represents the bit length 

of the largest exponent, this method requires „a‟ squaring 

and 3a/4 multipliers on average. In ECC, where the 

operation [m]P + [n]Q is an important part to perform,  the  

elements  can be easily inverted using Shamir‟s algorithm. 

Here the scalars m and n can be represented as a 2×a matrix 

as, 

 

 
𝑘
𝑙
  =  

𝑘𝑛−1   𝑘𝑛−2  …………… . . 𝑘1   𝑘0

ln−1   ln−2 ……………… . . l1    l0
                           (1) 

 

where ki and li ∈ { 1, 0, -1} for all „i‟, The numbers of adders 

required in Shamir‟s method is equal to the joint Hamming 

weight.  

 

For example, two integers 145 and 207 can be represented 

in JNAF form using Shamir‟s method[1][2][3][4] as    

 425
521

  =   0 1 1  0 1 0 1 0  0 1
  1 0 0  0 0 0 1 0  0 1

 JNAF,  

 

here the joint Hamming weight is 6. Hence only six adders 

are required  to compute 425P + 521Q. 

 

In case of digital signal processing (DSP), an FIR filter 

implementation of the linear convolution  
1

0

( ) ( ). ( )
N

k

Y n X k H n k




                                          (2)  

Can be performed by multiplying X(k) with H(n – k).                                          

To reduce the complexity of these multi-scalar 

multiplications, it is important to select filter coefficients with 

small number of nonzero binary digits.  

 

Solinas, in[5][6], introduced Joint Sparse Form (JSF) where 

the average number of nonzero columns have further been 

reduced to a great extent. For example, the two given integers 

425 and 521 in JSF form can be represented as   

 

425 = (  1 0 1   0 1 0 1 0 0 1 )     and 

521 =  ( 1 0 0 0 0 0 1 0 0 1 ) 

 

Hence, here the computation of 425P + 521Q requires 9 

doublers and 4 adders(in general, t-1 doublers and (t-1)/2 

adders, where t denotes the bit-length ). 

 

In [7], Dimitrov and Cooklev introduced Hybrid Binery-

Ternery Number System (HBTNS) to speed-up modular 

exponentiation and multi-scalar multiplication. Using this 

method, any integer „n‟ can be represented in digits[] and 

base[] form as 

Digits[] = [ Di, Di -1, ------------- D0]  and 

Base[] = [ Bi, Bi-1, --------------- B0 ]   , where  Di ∈ { 0, 1} 

and  Bi ∈ {2, 3}                                                                  (3)   

                          

The Algorithm proposed by J. Adikari et. all in [1] is given 

below. 

------------------------------------------------------------------------ 

Algorithm I: Hybrid binary-ternary joint sparse form 

[HBTJSF]. 

------------------------------------------------------------------------ 

Input: Two positive integer k1 and k2 

Output: Arrays hbt1[], hbt2[], base[] 

1. i = 0 

2. while k1> 0 or k2> 0 do 

3. if k1 ≡ 0(mod 3) and k2 ≡ 0(mod 3) then 

4. base[i] = 3; 

5. hbt1[i] = hbt2[i] = 0; 

6. k1= k1/3; k2 = k2/3; 

7. else if  if k1 ≡ 0(mod 2) and k2 ≡ 0(mod 2) then 

8. base[i] = 2; 



International Journal of Computer Applications (0975 – 8887) 

Volume 43– No.3, April 2012 

10 

9. hbt1[i] = hbt2[i] = 0; 

10. k1= k1/2; k2 = k2/2; 

11. else 

12. base[i] = 2; 

13. hbt1[i] = k1 mods 6;  hbt2[i] = k2 mods 6; 

14. k1 = (k1 – hbt1[i])/2; k2 = (k2 – hbt2[i])/2; 

15. end if 

16. i = i + 1 

17. end while 

18. return hbt1[], hbt2[], base[] 

------------------------------------------------------------------------ 

With the help of this Algorithm I, 1134 in HBTNS form can 

be represented as[8][9] 

Digits[] = [0, 0, 0, 0, 0, 1, 0, 0, 1]   and 

Base[]   = [3, 3, 3, 3, 2, 2, 3, 2, 2],  

 

whereas 1134 in binary form can be represented as 1134 = [ 

1 0 0 0 1 1 0 1 1 1 0 ]. Hence it is clear that in HBTNS, 

there are only 9-digits among which 2 are non-zero whereas 

in binary form 1134 requires 11 bits among which 6 are 

non-zero. So HBTNS eliminates 4 non-zero digits. Elliptic 

curve scalar multiplication and coefficient multiplication in 

DSP based on mixing powers of the bases 2 and 3 require 

doublings and additions as well as triplings. In [1], Dimitrov 

et. al. proposed an efficient method of tripling for ordinary 

elliptic curves over large prime fields. 

 

In [1], Adhikari, Dimitrov and Imbert proposed a new 

method, known as Hybrid Binary-Ternary Joint Sparse 

Form (HBTJSF), to further reduce the numbers of non-zero 

columns and hence to speed-up multiplication and 

exponentiation processes. In [1], Adhikari et. al. explained 

about how a pair of integers can be converted into HBTJSF. 

The conversion process starts by checking whether both the 

integers are divisible by 3. If they are divisible by 3, both 

digits are to be set to zero and the base is to be set to 3.  If 

they are not divisible by 3, then it should be checked that 

whether they are divisible by 2. If they are divisible by 2, 

then digits are set to zero and the base is set to 2. Finally, if 

the pair is not divisible by 3 as well as by 2, the numbers 

should made divisible by 6 by subtracting ki mods 6 ∈ { -2, 

-1, 0, 1, 2, 3} from ki and then divide the results by 2. This 

concept will be clear from Example 1. 

 

Example 1: Representation of 1556 and 1026 in HBTJSF. 

 

Sol:  1556 and 1026 in HBTJSF can be represented as 

1556 = ( 2  0  1    0   0  2    0  2    0 ) 

1026 =  ( 1  0  1   0   0  1   0  3   0 )   and 

Base[] = ( 2  3  2  2  3  2  3  2  2 )    

 

Since HBTJSF uses the digit set { -2, -1, 0, 1, 2, 3 } 

(mentioned in [1]), total 14 points are to be pre-computed to 

find kP + lQ as shown in Table 1[1]. 

 

Here, the points 2P, 2Q, 3P and 3Q  need not to be 

computed since the pairs (2P, 2Q and 3P, 3Q) are divisible 

either by 2 or by 3. Again since P – 2Q is easily derived 

from 2Q – P, only one set of difference are to be computed 

and hence, among the 14 points, only 7 points are to be pre-

computed.  

 

 

2. PROPOSED ALGORITHM 
Here a new algorithm known as Triple-Base Hybrid Joint 

Sparse Form [TBHJSF] will be discussed. This is basically 

a modification of HBTJSF. Here a new base(5) is to be 

added in Base[] array. The base 5 is chosen here in order to 

perform decimal shifting[since 5*2 =10 when multiplied 

with 1.7 gives 17 and hence if 17 can be represented in 

TBHJSF, 1.7 can easily be computed from the 

representation of 17].   

In the proposed Algorithm, a pair of integers can be 

represented in TBHJSF by first checking whether the two 

integers are divisible by 5. If they are divisible by 5, the 

digits for both the integers will be set to 0, otherwise they 

should be check whether they are divisible by 3. If they are 

divisible by 3, the digits for both the integers will be set to 

0, otherwise the integers should be check whether they are 

divisible by 2. If they are divisible by 2, the digits for both 

the integers will be set to 0, otherwise both the integers are 

made divisible by 30(2*3*5) by adding or subtracting x, 

where x ∈ { -14, -13, -----, 0, 1, 2, --------- 15} and then the 

sum are divided by 2. The quotients are then  treated as the 

two integers and the previous steps are repeated.  

------------------------------------------------------------------------ 

Proposed Algorithm[Algorithm II]  

------------------------------------------------------------------------ 

Input: Two positive integers m1 and m2 ; 

Output: Arrays Digit1[], Digit2[], Base[]; 

1. i = 0; 

2. while m1 > 0 or m2 > 0, do 

3. if  m1 ≡0(mod 5) and m2 ≡ 0(mod 5)   then 

4. base[i] = 5; 

5. Digit1[i] = Digit2[i] = 0; 

6. m1 = m1/5 , m2 = m2/5; 

7. else if m1 ≡0(mod 3) and m2 ≡ 0(mod 3)   then 

base[i] = 3; 

8. Digit1[i] = Digit2[i] = 0; 

9. m1 = m1/3 , m2 = m2/3; 

10. else if m1 ≡0(mod 2) and m2 ≡ 0(mod 2)   then 

11. base[i] = 2; 

12. Digit1[i] = Digit2[i] = 0; 

13. m1 = m1/2 , m2 = m2/2; 

14. else 

15. base[i] = 2; 

16. Digit1[i] = m1 mods 30, Digit2[i] = m2 mods 30 ; 

17. m1 = (m1 - Digit1[i])/2, m2 = (m2 - Digit2[i])/2 ; 

18. end if ; 

19. i = i + 1; 

20. end while;   

21. return Digit1[],Digit2[], base[]; 

------------------------------------------------------------------------ 

Example 2: Representation of 1556 and 1026 in TBHJSF. 

Sol: 1556 and 1026 in TBHJSF can be represented as 

1556 = ( 1   0   0   4    0   0   2    0 ) 

1026 = ( 1   0   0   13       0   0   3   0) 

Base[] = (2   3   5   2   3   5   2   2 ) 

From the above example it is clear that the number of non-

zero column has been reduced by one( though the number of 

reduction of non-zero column is more than one in general 

case) at the cost of the size of the pre-computation look-up-

table as shown in Table A, Appendix-I. From the Table it is 

clear that among the 550 points, only 144 points are to be pre-

computed. Whereas for DBNS, the numbers of pre-

computation are 7 among 14 points. The pre-computation 

compression ratio for TBNS is (144/550) = 0.2618, whereas 

for DBNS, the same is (7/14) = 0.5 which is an advantage of 

TBNS. 
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3. THEORETICAL ANALYSIS 
It is clear that any integer can be represented in the form 30i 

+ 5j+ k with i∈{ 0,1,2,3,……}, j ∈ {0,1,2,3,4,5} and k ∈ { 

0,1,2,3,4}. We have to find out how many non-zero column 

can be obtained using the proposed algorithm, i.e. how often 

the given integers are divisible by 30, 15, 10, 6, 5, 3 and 2. 

Let us consider two integers of the form (30i + 5j+ k) and 

(30i´ + 5j´+ k´ ). The total number of states available for 

different values of j and k are 900. We can denote these 

states as Skj , k´j´ and hence we have 750x750 transition 

matrix M, where M[30i + 5j+ k,  30i´ + 5j´+ k´ ] is equal to 

the probability P(S2kj , k´j´| S1kj , k´j´) to go from state S1kj , k´j´ 

to S2kj , k´j´ . For example, S00,00 represents the state when 

both the integers are divisible by 30, S02,04  represents the 

states when both are divisible by 2 only, S11,03 represents the 

state when both are divisible by 3 only and S10,30 represents 

the state when both are divisible by 5 only. Now if two 

numbers are divisible by 30, then divisions by 5 performed 

in step 6 of the proposed algorithm lead to any of the state‟s 

S00,00, S00,11, S00,22, S00,33, S00,44, S11,00, S11,11, S11,22, S11,33, 

S11,44, S22,00, S22,11, S22,22, S22,33, S22,44, S33,00, S33,11, S33,22, 

S33,33, S33,44, S44,00, S44,11, S44,22, S44,33 and S44,44 with 

probability 1/25. For example, two integers 150( j = k = 0) 

and 155( j = 1, k = 0) belonging to state S00,10,when divided 

by 5 give 30(j = k = 0) and 31(j = 0, k = 1) which belong to 

state S0001. Similarly other two integers of the same 

state(S00,10) are 150 and 185. These two integers when 

divided by 5 give 30( j = k = 0)and 37( j = 0, k = 2) which 

belong to state S00,12. Thus it can be proved that two integers 

belonging to S0010 when divided by 5 give one of the 25 

states like S00,01, S00,12, S00,23, S00,34, S00,50, S11,01, S11,12, 

S11,23, S11,34, S11,50, S22,01, S22,12, S22,23, S22,34, S22,50, S33,01, 

S33,12, S33,23, S33,34, S33,50, S44,01, S44,12, S44,23, S44,34 and S44,50. 

That is the probability to go to state S00,01 from S00,10 when 

divided by 5, is 1/25. Similarly divisions by 3 in step 10 of 

Algorithm II lead to any of the state‟s S10,00, S10,20, S10,40, 

S30,00,  S30,20, S30,40, S50,00, S50,20 and S50,40 with probability 

1/9 and divisions by 2 in step 14 lead to four different states 

with probability 1/4. For example, from S00,20 we go to any 

of the four states  S00,10, S00,40, S30,10 and S30,40 with 

probability 1/4. Now in the last case when the numbers are 

neither divisible by 5 or 3 nor by 2, the numbers are then 

made divisible by adding or subtracting ( 1, 2, 3, 4, ……15) 

from each of them and then performed divisions by 2 which 

lead to the states S00,00, S00,30, S30,00 and S30,30 with 

probability 1/4. The complete transition matrix is given in 

Table B, Appendix II.  

Lemma 1: The probability to go from state S0020 to S0002 

when divided by 5 is 1/25. 

Proof: The pairs of integer belong to state S0020 are (150, 

160), (150, 190), (150, 220), (150, 250), (150, 280), (180, 

160), (180, 190), (180, 220), (180, 250), (180, 280), (210, 

160), (210, 190), (210, 220), (210, 250), (210, 280), (240, 

160), (240, 190), (240, 220), (240, 250), (240, 280), (270, 

160), (270, 190), (270, 220), (270, 250), (270, 280) and 

others. 

Now  

(150, 160) dividing by 5 give 30(j = k = 0) and 32(j = 0, k = 

2) which belong to state S0002.  

(150, 190) dividing by 5 give 30(j = k = 0) and 38(j = 1, k = 

3) which belong to state S0013.  

(150, 220) dividing by 5 give 30(j = k = 0) and 44(j = 2, k = 

4) which belong to state S0024.  

(150, 250) dividing by 5 give 30(j = k = 0) and 50(j = 4, k = 

0) which belong to state S0040.  

(150, 280) dividing by 5 give 30(j = k = 0) and 56(j = 5, k = 

1) which belong to state S0051.  

(180, 160) dividing by 5 give 36(j = k = 1) and 32(j = 0, k = 

2) which belong to state S1102.  

(180, 190) dividing by 5 give 36(j = k = 1) and 38(j = 1, k = 

3) which belong to state S1113.  

(180, 220) dividing by 5 give 36(j = k = 1) and 44(j = 2, k = 

4) which belong to state S1124.  

(180, 250) dividing by 5 give 36(j = k = 1) and 50(j = 4, k = 

0) which belong to state S1140.  

(180, 280) dividing by 5 give 36(j = k = 1) and 56(j = 5, k = 

1) which belong to state S1151.  

 

(210, 160) dividing by 5 give 42(j = k = 2) and 32(j = 0,k = 

2) which belong to state S2202.  

(210, 190) dividing by 5 give 42(j = k = 2) and 38(j = 1, k = 

3) which belong to state S2213.  

(210, 220) dividing by 5 give 42(j = k = 2) and 44(j = 2, k = 

4) which belong to state S2224.  

(210, 250) dividing by 5 give 42(j = k = 2) and 50(j = 4, k = 

0) which belong to state S2240.  

(210, 280) dividing by 5 give 42(j = k = 2) and 56(j = 5, k = 

1) which belong to state S2251.  

 

(240, 160) dividing by 5 give 48(j = k = 3) and 32(j = 0, k = 

2) which belong to state S3302.  

(240, 190) dividing by 5 give 48(j = k = 3) and 38(j = 1, k = 

3) which belong to state S3313.  

(240, 220) dividing by 5 give 48(j = k = 3) and 44(j = 2, k = 

4) which belong to state S3324.  

(240, 250) dividing by 5 give 48(j = k = 3) and 50(j = 4, k = 

0) which belong to state S3340.  

(240, 280) dividing by 5 give 48(j = k = 3) and 56(j = 5, k = 

1) which belong to state S3351.  

 

(270, 160) dividing by 5 give 54(j = k = 4) and 32(j = 0, k = 

2) which belong to state S4402.  

(270, 190) dividing by 5 give 54(j = k = 4) and 38(j = 1, k = 

3) which belong to state S4413.  

(270, 220) dividing by 5 give 54(j = k = 4) and 44(j = 2, k = 

4) which belong to state S4424.  

(270, 250) dividing by 5 give 54(j = k = 4) and 50(j = 4, k = 

0) which belong to state S4440.  

(270, 280) dividing by 5 give 54(j = k = 4) and 56(j = 5, k = 

1) which belong to state S4451.  

 

Hence the possible outcomes when pair of integers 

belonging to state S0020 divided by 5 are pairs of integers 

belonging to states S0002, S0013, S0024, S0040, S0051, S1102, S1113, 

S1124, S1140, S1151, S2202, S2213, S2224, S2240, S2251, S3302, S3313, 

S3324, S3340, S3351, S4402, S4413, S4424, S4440 and S4451. The 

other pairs of integers belonging to S0020 when divided by 5 

go to any one of the above mentioned states. Hence the 

probability to go from state S0020 to S0002 when divided by 5 

is 1/25. 

Lemma 2: The probability to go from state S0002 to S0001 

when divided by 2 is 1/4. 

 

Proof: The pairs of integer belong to state S0002 are (60, 62), 

(60, 92), (90, 62), (90, 92) and others. 

Now (60, 62) dividing by 2 give 30( j = k = 0) and 31(j = 0, 

k = 1) which belong to state S0001. 

(60, 92) dividing by 2 give 30( j = k = 0) and 46(j = 3, k = 

1) which belong to state S0031. 

(90, 62) dividing by 2 give 45( j = 3, k = 0) and 31(j = 0, k = 

1) which belong to state S3001. 

(90, 92) dividing by 2 give 45( j = 3, k = 0) and 46(j = 3, k = 

1) which belong to state S3031. 
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Hence the possible outcomes when pair of integers 

belonging to state S0002 divided by 2 are pairs of integers 

belonging to states S0001, S0031, S3001 and S3031. The other 

pairs of integers belonging to S0002 when divided by 2 go to 

any one of the above mentioned states. Hence the 

probability to go from state S0002 to S0001 when divided by 2 

is 1/4. 

 

The stationary distribution π∞  is obtained by taking the 

limiting value of  π0M
n[M =Transition probability Matrix], 

where π0 = initial probability = ( 1/900, 1/900, 1/900, 

….1/900), i.e. 

π∞ = lim n → ∞ π0M
n                                                            (4) 

 

Hence we have, π∞[i]= the stationary distribution of the ith 

element in the row vector π after n steps is 7.07x10-2, for i 

∈{0,15,450,465} and otherwise π∞[i] = 2.87x10-3. With the 

help of these two values we can compute the following 

average probabilities. 

 

p5 =    π∞  (30𝑖 + 5𝑗 + 𝑘)4
𝑘=0

5
𝑗=0

29
𝑖=0 ,  

                                                             [ if i,j,k ≡ 0 (mod 5)]  

     =2. π∞ i [for i = 0 and 450]+10.π∞(i) 

                                                             [for other values of i]  

   = 2x7.07x10-2 + 10x 2.87x10-3  = 1701x10-4 ≈ 43/250 

 

p3 =    π∞  (30𝑖 + 5𝑗 + 𝑘)4
𝑘=0

5
𝑗=0

29
𝑖=0  ,   

                                                             [ if i,j,k ≡ 0 (mod 3)] 

    = 4. π∞ i [for i = 0, 15, 450 and 465] + 20. π∞ i  
                                                             [for other values of i] 

    = 4x7.07x10-2 + 20x 2.87x10-3  = 3402x10-4 ≈ 73/250 

pz =    π∞  (30𝑖 + 5𝑗 + 𝑘)4
𝑘=0

5
𝑗=0

29
𝑖=0  ,  

   [if i,j,k ≡ 0(mod 5) or i,j,k ≡ 0(mod 3)or i,j,k ≡ 0(mod 2)] 

 

    = 4. π∞ i  [for i = 0, 15, 450 and 465] + 159. π∞(i) 

                                                              [for other values of i] 

    = 4x7.07x10-2 + 159x 2.87x10-3 = 7391.3x10-4 ≈ 185/250 

 

Here p5 and p3 denote the probabilities to perform a division 

by 5 and 3 respectively and pz represents the probability to 

perform a division so that a zero column will be generated. 

Hence the probability to perform a division by 2 is p2 = 1 – 

(p5 + p3) ≈ 134/250 and the probability to generate a 

nonzero column is pnz = 1- pz ≈ 65/250 .  

Using these probabilities we can compute the average base 

as 

ẞ =  21343735434000
  ≈ 2.6357                                          (5) 

 

Hence for a pair of n-bit integers, the number of columns 

using the proposed Algorithm can therefore be calculated as  

(logẞ 2)xn ≈0.7152n. Hence using TBHJSF, the number of 

addition, required  in the calculation to find out the response 

of a digital filter or to find out the point addition in ECC, is 

Number of addition = (probability of non-zero columns)x 

0.5273n = (65/250)x0.7152n ≈ 0.186n. 

 

Table 2 gives a comparative study of the proposed Algorithm 

with HBTJSF, JSF and interleaving w-NAF with respect to 

average base, average number of columns, average number of 

base-2 columns, base-3 columns, base-5 columns, non-zero 

columns and number of pre-computations required. Table 3 

gives the theoretical results of TBHJSF in comparison with 

HBTJSF, JSF and w-NAF. This results is shown here in 

rounded to nearest hundredth form. 

4. COMPARISON 
The results obtained from the theoretical analysis using 

TBHJSF when compared with that obtained using HBTJS, 

JSF and interleaving w-NAF methods show the novelty of the 

proposed algorithm. Here also two types of curves like 

ordinary elliptic curve over large prime fields with Jacobian 

coordinates(with a = -3) and tripling oriented Doche-Icart-

Kohel curves[8], have been considered like[9][10]. Table 3 

shows the costs of the operations on the two types of curves 

and Table 4 shows the summarized results of operations for 

256-bit pairs of integers using the data of Table II with respect 

to TBHJSF, HBTJSF, JSF and interleaving w-NAF. Here the 

costs of pre-computations is not included. If the results are 

compared then it can be inferred that TBHJSF is 

advantageous than other methods. Similar types of values can 

be obtained for other size also. Figure.1. shows graphically 

the requirements of adders, doublers, triplers and pentuplers 

and Figure.2. shows the requirements of multipliers used for 

ECC over prime fields in Weierstrass Jacobian Coordinates (a 

= -3)[11][12] with respect to the proposed method, HBTJSF, 

JSF, 4-NAF methods. The curves are drawn for up to 2 KB 

pairs of integers. From these figure, the advantages of 

proposed algorithm can be clearly understood. The differences 

will be significant for the pairs of integers of large size.      

5. CONCLUSIONS 
The proposed algorithm can also be used efficiently in DSP to 

design FIR filter. In DSP, the computational complexities for 

arithmetic operations like addition, multiplication etc. are the 

major problems that can be reduced to great extent using the 

proposed method. From the representation of any integer in 

Triple Base Number System(TBNS)[13] obtained using the 

proposed methods, representation in Single Digit TBNS can 

be derived at the cost of a Look-up-table that represents the 

prime numbers in SDTBNS[14] form. Hence the proposed 

algorithm can further reduce the number of hardware and at 

the same time enhance the speed. 
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Figure 1. Requirements of hardware for different size of integers w.r.t. TBHJSF, HBTJSF, JSF and 4-NAF. 
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Figure.2. Number of multipliers required for ECC over prime fields in Weierstrass Jacobian coordinates using the proposed 

method and HBTJSF, JSF and 4-NAF methods. 

Table  1 

14 points pre-computation for HBTJSF Scalar multiplication as mentioned in [1] 

 P ---- ---- 

Q P ± Q 2P ± Q 3P ± Q 

--- P ± 2Q ----  3P ± Q 

--- P ± 3Q 2P ± 3Q ---- 

 

Table 2 

Comparative study of the proposed Algorithm with HBTJSF, JSF and interleaving w-NAF 

Parameters TBHJSF HBTJSF JSF Interleaving  w-NAF 

Average base 2.6357 2.4077 2 2 

Average no. of columns 0.7152n 0.7888n n + 1 n + 1 

Average no. of base-2 columns 0.3833n 0.4278n n + 1 n + 1 

Average no. of base-3 columns 0.2088n 0.3608n 0 0 

Average no. of base-5 columns 0.123n 0 0 0 

Average no. of non-zero columns 0.1859n 0.3208n 0.5n 2n/(w+1) 

Pre-computation  144 14 2 2w – 1 - 2 
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Table 3 

Costs of some curve operations for ordinarily elliptic curves over prime fields in Jacobian Coordinates(a = - 3) and Tripling-

oriented DIK curves 

Weierstrass/Jacobian(a = -3)  

 Cost  S = 0.8M 

Doubling 3M+5S 7M 

Tripling  7M+7S 12.6M 

Pentupling 

(1Pentupling = 2.5Doubling) 

7.5M+12.5S 17.5M 

Addition(mixed) 7M+4S 10.2M 

 

Tripling-oriented DIK 

 Cost  S = 0.8M 

Doubling 2M+7S 7.6M 

Tripling  6M+6S 10.8M 

Pentupling (1Pentupling = 2.5Doubling)  5M+17.5S  19M 

Addition(mixed) 7M+4S 10.2M 

 

Table  4 

Comparisons between HBTPJSF, HBTJSF, JSF and Interleaving w-NAF for 256-bit integers 

Weierstrass/Jacobian( a = -3) 

 TBHJSF HBTJSF JSF Inter. 4-NAF 

Multiplier Counts for doubling 686 770 1792 1792 

Multiplier Counts for tripling 673 1164 0 0 

Multiplier Counts for pentupling 551 0 0 0 

Multiplier Counts for add. 485 838 1306 1044 

Total Multiplier Counts  2442 2772 3098 2836 

Pre-computation 144 14 2 6 

 

[Though total multiplication counts for Interleaving 4-NAF is 2836,  the  actual  counts  is  somewhat more than this, because here, 

the multiplication counts for pre-computation have not considered.]  

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 43– No.3, April 2012 

16 

Tripling-oriented DIK 

 TBHJSF HBTJSF JSF Inter. 4-NAF 

Multiplier Counts for doubling 746 833 1946 1946 

Multiplier Counts for tripling 796 998 0 0 

Multiplier Counts for pentupling 598 0 0 0 

Multiplier Counts for addition  485 838 1306 1044 

Total Multiplier Counts  2625 2669 3252 2990 

Pre-computation 144 14 2 6 

 

Appendix – I 

 

TABLE  A 

 

PRECOMPUTATION LOOK-UP-TABLE FOR TBHJSF 

 
 P  --- --- ----

- 

----

- 

--- 7P ----

- 

---- ---- 11

P 

--- 13

P 

14

P 

--- 

Q P ± 

Q 

2P 
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3P 

± 
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4P 

± 
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5P 

± 

Q 

6P 

± 

Q 

7P 

± 

Q 

8P 

± 

Q 

9P 

± 

Q 
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P ± 

Q 

11

P ± 

Q 

12

P ± 

Q 

13

P ± 

Q 

14

P ± 

Q 

15

P ± 

Q 

-- P ± 

2Q 

---- 3P 

± 

2Q 

4P 

± 

2Q 

5P 

± 

2Q 

6P 

± 

2Q 

7P 

± 

2Q 

8P 

± 

2Q 

9P 

± 
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2Q 

11

P ± 

2Q 
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P ± 

2Q 

13

P 

± 

2Q 

14

P ± 

2Q 
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P ± 

2Q 

-- P ± 

3Q 

2P 

± 

3Q 

---- 4P 

± 

3Q 

5P 

± 

3Q 

6P 

± 

3Q 

7P 

± 

3Q 

8P 

± 

3Q 

9P 

± 

3Q 

10

P ± 

3Q 

11

P ± 

3Q 

12

P ± 

3Q 

13

P ± 

3Q 

14

P ± 

3Q 
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P ± 

3Q 
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4Q 

2P 
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4Q 

3P 
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Appendix – II 

Table B 

 

To show a 900x900 Transition matrix, 300 pages are required. Hence instead of transition matrix, here we will show the 

probabilities of transition from one state to another for the major states in tabular form. 

 
Probabilities  Transition from states Transition to states 

1/25 S0000 ,S0010, S0020, S0030, S0040, S0050  S0000 - S0010, S0011- S 0021, S0022 - S0032, S0033 - S0043, S0044 - S0054, S1100 - S1110, S1111 - S1121, S1122 

- S1132, S1133 - S1143, S1144 - S1154, S2200 - S2210, S2211 - S2221, S2222 - S2232, S2233 - S2243, S2244 - 
S2254, S3300 - S3310, S3311 - S3321, S3322 - S3332, S3333 - S3343, S3344 - S3354, S4400 - S4410, S4411 - 

S4421, S4422 - S4432, S4433 - S4443, S4444 - S4454, 

S1000, S1010, S1020, S1030, S1040, S1050, 
 

S0100 – S0110, S0112 – S0121, S0123 – S0132, S0134 – S0143, S0150 – S0154, S1200 – S1210, S1211- S1221, 
S1222 - S1232, S1233 – S1243, S1244 – S1254, S2300 – S2310, S2311 – S2321, S2322 – S2332, S2333 – S2343, 

S2344 – S2354, S3400 – S3410, S3411 – S3421, S3422 – S3432, S3433 – S3443, S3444     - S3454, S5000 – 

S5010, S5011 – S5021, S5022 – S5032, S5033 – S5043, S5044 – S5054 

S2000, S2010, S2020, S2030, S2040, S2050, 

 

S0200 – S0210, S0211 – S0221, S0222 – S0232, S0233 – S0243, S0244 – S0254, S1300 – S1310, S1311- S1321, 

S1322 – S1332, S1333 – S1343, S1344 – S1354, S2400 - S2410, S2411 – S2421, S2422 – S2432, S2433 – S2443, 

S2444 – S2454, S4000 - S4010, S4011 –S4021, S4022 – S4032,S4033 – S4043, S4044 – S4054, S5100 – S5110, 
S5111 – S5121, S5122 – S5132, S5133 – S5143, S5144 – S5154  

S3000, S3010, S3020, S3030, S3040, S3050, 

 

S0300 – S0310, S0311 – S0321, S0322 – S0332, S0333 – S0343, S0344 – S0354, S1400 – S1410, S1411 – S1421, 

S1422 – S1432, S1433 – S1443, S1444 – S1454, S3000 – S3010, S3011 – S3021, S3022 – S3032, S3033 – S3043, 

S3044 – S3054, S4100 – S4110, S4111 – S4121, S4122 – S4132, S4133 – S4143, S4144 – S4154, S5200 – S5210, 
S5211 – S5221, S5222 – S5232, S5233 – S5243, S5244 – S5254  

S4000, S4010, S4020, S4030, S4040, S4050, 

 

S0400 – S0410, S0411 – S0421, S0422 – S0432, S0433 – S0443, S0444 – S0454, S2000 – S2010, S2011 – S2021, 

S2022 – S2032, S2033 – S2043, S2044 – S2054, S3100 – S3110, S3111 – S3121,S3122 – S3132, S3133 – S3143, 
S3144 – S3154, S4200 – S4210, S4211 – S4221, S4222 – S4232, S4233 – S4243, S4244 – S4254, S5300 – S5310, 

S5311 – S5321, S5322 – S5332, S5333 – S5343, S5344 – S5354 

S5000, S5010, S5020, S5030, S5040, S5050, S1000 – S1010, S1011 – S1021, S1022 – S1032, S1033 – S1043, S1044 – S1054, S2100 – S2110, S2111 – S2121, 

S2122 – S2132, S2133 – S2143, S2144 – S2154, S3200 – S3210, S3211 – S3221, S3222 – S3232, S3233 – S3243, 
S3244 – S3254, S4300 – S4310, S4311 – S4321, S4322 – S4332, S4333 – S4343, S4344 – S4354, S5400 – S5410, 

S5411 – S5421, S5422 – S5432, S5433 – S5443, S5444 – S5454 

1/9 S0003, S0011, S0014, S0022, S0033, S0041, 
S0044, S0052,  

S0001, S0021, S0041, S2001, S2021, S2041, S4001, S4021, S4041, S0002, S0022, S0042, S2002, S2022, S2042, 
S4002, S4022, S4042, S0003, S0023, S0043, S2003, S2023, S2043, S4003, S4023, S4043, S0004, S0024, S0044, 

S2004, S2024, S2044, S4004, S4024, S4044, S0011, S0031, S0051, S2011, S2031, S2051, S4011, S4031, S4051, 

S0012, S0032, S0052, S2012, S2032, S2052, S4012, S4032, S4052, S0013, S0033, S0053, S2013, S2033, S2053, 
S4013, S4033, S4053, S0014, S0034, S0054, S2014, S2034, S2054, S4014, S4034, S4054, 

S0303, S0311, S0314, S0322, S0330,S0333, 

S0341, S0344, S0352,  

S0101, S0121, S0141, S2101, S2121, S2141, S4101, S4121, S4141, S0102, S0122, S0142, S2102, S2122, S2142, 

S4102, S4122, S4142, S0103, S0123, S0143, S2103, S2123, S2143, S4103, S4123, S4143, S0104, S0124, S0144, 
S2104, S2124, S2144, S4104, S4124, S4144, S0110, S0130, S0150, S2110, S2130, S2150, S4110, S4130, S4150, 

S0111, S0131, S0151, S2111, S2131, S2151, S4111, S4131, S4151, S0112, S0132, S0152, S2112, S2132, S2152, 

S4112, S4132, S4152, S0113, S0133, S0153, S2113, S2133, S2153, S4113, S4133, S4153, S0114, S0134, S0154, 
S2114, S2134, S2154, S4114, S4134, S4154, 

S1103, S1111, S1114, S1122, S1130, S1133, 

S1141, S1144, S1152,  

S0201, S0221, S0241, S2201, S2221, S2241, S4201, S4221, S4241, S0202, S0222, S0242, S2202, S2222, S2242, 

S4202, S4222, S4242, S0203, S0223, S0243, S2203, S2223, S2243, S4203, S4223, S4243, S0204, S0224, S0244, 

S2204, S2224, S2244, S4204, S4224, S4244, S0210, S0230, S0250, S2210, S2230, S2250, S4210, S4230, S4250, 
S0211, S0231, S0251, S2211, S2231, S2251, S4211, S4231, S4251, S0212, S0232, S0252, S2212, S2232, S2252, 

S4212, S4232, S4252, S0213, S0233, S0253, S2213, S2233, S2253, S4213, S4233, S4253, S0214, S0234, S0254, 

S2214, S2234, S2254, S4214, S4234, S4254, 

S1403, S1411, S1414, S1422, S1430, S1433, 

S1441, S1444, S1452,  

S0301, S0321, S0341, S2301, S2321, S2341, S4301, S4321, S4341, S0302, S0322, S0342, S2302, S2322, S2342, 

S4302, S4322, S4342, S0303, S0323, S0343, S2303, S2323, S2343, S4303, S4323, S4343, S0304, S0324, S0344, 

S2304, S2324, S2344, S4304, S4324, S4344, S0310, S0330, S0350, S2310, S2330, S2350, S4310, S4330, S4350, 

S0311, S0331, S0351, S2311, S2331, S2351, S4311, S4331, S4351, S0312, S0332, S0352, S2312, S2332, S2352, 

S4312, S4332, S4352, S0313, S0333, S0353, S2313, S2333, S2353, S4313, S4333, S4353, S0314, S0334, S0354, 

S2314, S2334, S2354, S4314, S4334, S4354, 

S2203, S2211, S2214, S2222, S2230, S2233, 
S2241, S2244, S2252,  

S0401, S0421, S0441, S2401, S2421, S2441, S4401, S4421, S4441, S0402, S0422, S0442, S2402, S2422, S2442, 
S4402, S4422, S4442, S0403, S0423, S0443, S2403, S2423, S2443, S4403, S4423, S4443, S0404, S0424, S0444, 

S2404, S2424, S2444, S4404, S4424, S4444, S0410, S0430, S0450, S2410, S2430, S2450, S4410, S4430, S4450, 

S0411, S0431, S0451, S2411, S2431, S2451, S4411, S4431, S4451, S0412, S0432, S0452, S2412, S2432, S2452, 
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S4412, S4432, S4452, S0413, S0433, S0453, S2413, S2433, S2453, S4413, S4433, S4453, S0414, S0434, S0454, 

S2414, S2434, S2454, S4414, S4434, S4454, 

S3003, S3011, S3014, S3022, S3033, S3041, 

S3044, S3052,  

S1001, S1021, S1041, S3001, S3021, S3041, S5001, S5021, S5041, S1002, S1022, S1042, S3002, S3022, S3042, 

S5002, S5022, S5042, S1003, S1023, S1043, S3003, S3023, S3043, S5003, S5023, S5043, S1004, S1024, S1044, 

S3004, S3024, S3044, S5004, S5024, S5044, S1011, S1031, S1051, S3011, S3031, S3051, S5011, S5031, S5051, 
S1012, S1032, S1052, S3012, S3032, S3052, S5012, S5032, S5052, S1013, S1033, S1053, S3013, S3033, S3053, 

S5013, S5033, S5053, S1014, S1034, S1054, S3014, S3034, S3054, S5014, S5034, S5054, 

S3303, S3311, S3314, S3322, S3330, S3333, 

S3341, S3344, S3352,  

S1101, S1121, S1141, S3101, S3121, S3141, S5101, S5121, S5141, S1102, S1122, S1142, S3102, S3122, S3142, 

S5102, S5122, S5142, S1103, S1123, S1143, S3103, S3123, S3143, S5103, S5123, S5143, S1104, S1124, S1144, 
S3104, S3124, S3144, S5104, S5124, S5144, S1110, S1130, S1150, S3110, S3130, S3150, S5110, S5130, S5150, 

S1111, S1131, S1151, S3111, S3131, S3151, S5111, S5131, S5151, S1112, S1132, S1152, S3112, S3132, S3152, 

S5112, S5132, S5152, S1113, S1133, S1153, S3113, S3133, S3153, S5113, S5133, S5153, S1114, S1134, S1154, 
S3114, S3134, S3154, S5114, S5134, S5154, 

S4103, S4111, S4114, S4122, S4130, S4133, 

S4141, S4144, S4152,  

S1201, S1221, S1241, S3201, S3221, S3241, S5201, S5221, S5241, S1202, S1222, S1242, S3202, S3222, S3242, 

S5202, S5222, S5242, S1203, S1223, S1243, S3203, S3223, S3243, S5203, S5223, S5243, S1204, S1224, S1244, 
S3204, S3224, S3244, S5204, S5224, S5244, S1210, S1230, S1250, S3210, S3230, S3250, S5210, S5230, S5250, 

S1211, S1231, S1251, S3211, S3231, S3251, S5211, S5231, S5251, S1212, S1232, S1252, S3212, S3232, S3252, 

S5212, S5232, S5252, S1213, S1233, S1253, S3213, S3233, S3253, S5213, S5233, S5253, S1214, S1234, S1254, 
S3214, S3234, S3254, S5214, S5234, S5254, 

S4403, S4411, S4414, S4422, S4430, S4433, 

S4441, S4444, S4452,  

S1301, S1321, S1341, S3301, S3321, S3341, S5301, S5321, S5341, S1302, S1322, S1342, S3302, S3322, S3342, 

S5302, S5322, S5342, S1303, S1323, S1343, S3303, S3323, S3343, S5303, S5323, S5343, S1304, S1324, S1344, 
S3304, S3324, S3344, S5304, S5324, S5344, S1310, S1330, S1350, S3310, S3330, S3350, S5310, S5330, S5350, 

S1311, S1331, S1351, S3311, S3331, S3351, S5311, S5331, S5351, S1312, S1332, S1352, S3312, S3332, S3352, 

S5312, S5332, S5352, S1313, S1333, S1353, S3313, S3333, S3353, S5313, S5333, S5353, S1314, S1334, S1354, 
S3314, S3334, S3354, S5314, S5334, S5354, 

S5203, S5211, S5214, S5222, S5230, S5233, 

S5241, S5244, S5252, 

S1401, S1421, S1441, S3401, S3421, S3441, S5401, S5421, S5441, S1402, S1422, S1442, S3402, S3422, S3442, 

S5402, S5422, S5442, S1403, S1423, S1443, S3403, S3423, S3443, S5403, S5423, S5443, S1404, S1424, S1444, 

S3404, S3424, S3444, S5404, S5424, S5444, S1410, S1430, S1450, S3410, S3430, S3450, S5410, S5430, S5450, 
S1411, S1431, S1451, S3411, S3431, S3451, S5411, S5431, S5451, S1412, S1432, S1452, S3412, S3432, S3452, 

S5412, S5432, S5452, S1413, S1433, S1453, S3413, S3433, S3453, S5413, S5433, S5453, S1414, S1434, S1454, 

S3414, S3434, S3454, S5414, S5434, S5454, 

1/4 S0002, S0004, S0013, S0024, S0031, S0042, 

S0051, S0053, S0202, S0204, S0213, S0224, 

S0231, S0242, S0251, S0253, S0402, S0404, 

S0413, S0424, S0431,S0442, S0451, S0453,  

S1302, S1304, S1313, S1324, S1331, S1342, 

S1351, S1353, S2402, S2404, S2413, S2424, 
S2431, S2442, S2451, S2453, S3102, S3104, 

S3113, S3124, S3131, S3142, S3151, S3153, 

S4202, S4204, S4213, S4224, S4231, S4242, 
S4251, S4253, S5102, S5104, S5113, S5124, 

S5131, S5142, S5151, S5153, S5302, S5304, 

S5313, S5324, S5331, S5342, S5351, S5353, 

(these all even states)   

S0001, S0031, S3001, S3031, S0002, S0032, S3002, S3032, S0004, S0034, S3004, S3034, S0012, S0042, S3012, 

S3042, S0013, S0043, S3013, S3043, S0021, S0051, S3021, S3051, S0023, S0053, S3023, S3053, S0024, S0054, 

S3024, S3054, S0101, S0131, S3101, S3131, S0102, S0132, S3102, S3132, S0104, S0134, S3104, S3134, S0112, 

S0142, S3112, S3142, S0113, S0143, S3113, S3143, S0121, S0151, S3121, S3151, S0123, S0153, S3123, S3153, 

S0124, S0154, S3124, S3154, S0201, S0231, S3201, S3231, S0202, S0232, S3202, S3232, S0204, S0234, S3204, 

S3234,  S0212, S0242, S3212, S3242,  S0213, S0243, S3213, S3243, S0221, S0251, S3221, S3251,  S0223, S0253, 
S3223, S3253, S0224, S0254, S3224, S3254,  S0214, S0401, S0431, S3401,  S3431, S0402, S0432, S3402,  S3432, 

S0404, S0434, S3404,   S3434, S0412, S0442, S3412, S3442, S0413, S0443, S3413, S3443, S0421, S0451, S3421,   
S3451, S0423, S0453, S3423,   S3453,           S0424, S0454,S3424, S3454, S1201, S1231, S4201,S4231,  S1202, S1232, 
S4202,   S4232, S1204, S1234, S4204,   S4234, S1212, S1242, S4212,   S4242, S1213, S1243, S4213,   S4243, S1221, 

S1251, S4221,   S4251, S1223, S1253, S4223,   S4253,   S1224, S1254, S4224,   S4254, S1301, S1331, S4301,   S4331,                                             
S1302, S1332, S4302,   S4332, S1304, S1334, S4304,   S4334, S1312, S1342, S4312,   S4342, S1313, S1343, S4313,   
S4343, S1321, S1351, S4321,   S4351, S1323, S1353, S4323,   S4353, S1324, S1354, S4324,   S4354, S2101, S2131, 

S5101,   S5131,  S2102, S2132, S5102,   S5132, S2104, S2134, S5104,   S5134, S2112, S2142, S5112,   S5142, S2113, 

S2143, S5113,   S5143, S2121, S2151, S5121,   S5151, S2123, S2153, S5123,   S5153, S2124, S2154, S5124,   S5154, 
S2301, S2331, S5301,   S5331,  S2302, S2332, S5302,   S5332, S2304, S2334, S5304,   S5334, S2312, S2342, S5312,   
S5342, S2313, S2343, S5313,   S5343, S2321, S2351, S5321,   S5351, S2323,S2353, S5323,S5353, S2324, S2354, 

S5324,  S2401, S2431, S5401,S5431, S2402, S2432, S5402,   S5432, S2404, S2434, S5404,   S5434, S2412, S2442, 
S5412,   S5442, S2413, S2443, S5413,   S5443, S2421, S2451, S5421,   S5451, S2423, S2453, S5423,   S5453, S2424, 

S2454, S5424,   S5454, S5354 (from all even states). 
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S0001, S0012, S0021, S0023, S0054 -  S0154, 

S0201, S0203, S0210, S0212, S0214, S0221, 
S0223, S0230, S0232, S0234, S0241, S0243, 

S0250, S0252, S0254, S0301, S0302, S0304, 

S0310, S0312, S0313, S0320, S0321, S0323, 
S0324, S0331, S0332, S0334, S0340, S0342, 

S0343, S0350, S0351, S0353, S0354, S0401, 

S0403, S0410, S0412, S0414, S0421, S0423, 
S0430, S0432, S0434, S0441, S0443, S0450, 

S0452, S0454, S1000 - S1004, S1011 - S1014, 

S1021 - S1024, S1031 - S1034, S1041 - 
S1044, S1051 - S1054, S1101,S1110, 

S1112,S1121, S1123,S1132, S1134,S1143, 

S1150,S1154, S1201 – S1254, S1301,S1303, 
S1310, S1312, S1314, S1321,S1323,S1330, 

S1332, S1334, S1341, S1343, S1350, S1352, 

S1354, S1400, S1401, S1402, S1404, S1410, 

S1412, S1413, S1420, S1421, S1423, S1424, 

S1431, S1432, S1434, S1440, S1442, S1443, 

S1450,S 1451, S1453,S1454, S2001, S2003, 
S2012, S2014, S2021, S2023, S2032, S2034, 

S2041, S2043, S2052,S2054, S2100 - S2154, 

S2201,S2210, S2212,S2221, S2223,S2232, 
S2234,S2243, S2250,S2254, S2300 - S2354, 

S2401,S2403, S2410,S2412, S2414,S2421, 

S2423,S2430, S2432,S2434, S2441,S2443, 
S2450,S2452,S2454, S3001,S3002, S3004, 

S3012, S3013, S3021, S3023, S3024, S3032, 

S3034, S3042, S3043, S3051, S3053, S3054, 
S3101, S3103, S3110, S3112, S3114, S3121, 

S3123, S3130, S3132, S3134, S3141,S3143, 

S3150, S3152, S3154, S3200 - S3254, 
S3301,S3310, S3312, S3321, S3323, S3332, 

S3334, S3343, S3350,S3354, S3400 - S3454, 

S4001,S4003, S4010,S4012, S4014,S4021, 
S4023,S4030, S4032,S4034, S4041,S4043, 

S4050,S4052, S4054,S4101,S4102, S4104, 

S4110, S4120,S4121, S4123,S4124, S4131, 
S4132,S4134,S4140, S4142, S4143, S4150, 

S4151,S4153,S4154, S4201,S4203, S4210, 

S4212, S4214, S4221, S4223,S4230, S4232, 
S4234, S4241, S4243, S4250, S4252, S4254, 

S4300 - S4354, S4401, S4410, S4412, S4421, 

S4423, S4432, S4434, S4443, S4450, S4454, 
S5001- S5004, S5011- S5014, S5021- S5024, 

S5031- S5034, S5041- S5044, S5051- S5054, 

S5101, S5103, S5110, S5112, S5114, S5121, 
S5123, S5130, S5132, S5134, S5141,S5143, 

S5150, S5152, S5154, S5201, S5202, S5204, 

S5210, S5212, S5213, S5220, S5221, S5223, 
S5224, S5231, S5232, S5234, S5240, S5242, 

S5243, S5250, S5251, S5253, S5254, S5301, 
S5303, S5310, S5312, S5314, S5321, S5323, 

S5330, S5332, S5334, S5341,S5343, S5350, 

S5352, S5354, S5400 - S5454.(These  
which are not divisible by 2 or 3 or 

5) 

S0000, S0030, S3000, S3030( from those state which are not divisible by 2 or 3 or 5) 

 

 

 
From Table B, it is clear that the probabilities 1/4, 1/9 and 1/25 occur for transitions from maximum number of the states to states 

S0000, S0030, S3000 and S3030, that is 0, 15, 450 and 465. Hence we can deduce the following probabilities, using π∞ i  [for i =
0, 15, 450 and 465] = 7.07x10-2 and π∞(i)[ for other values of i] = 2.87x10-3. 

p5 =  the probability to perform a division by 5 =     π∞  (30𝑖 + 5𝑗 + 𝑘)4
𝑘=0

5
𝑗=0

29
𝑖=0  ,   [ if i,j,k ≡ 0 (mod 5)] 

    = 2. π∞ i  [for i = 0 and 450]+ 10. π∞(i)[ for other values of i]  

    = 2x7.07x10-2 + 10x 2.87x10-3  

    = 0.1414 + 0.0287 = 0.1701x10-4 = 43/250  

p3 = the probability to perform a division by 3 =     π∞  (30𝑖 + 5𝑗 + 𝑘)4
𝑘=0

5
𝑗=0

29
𝑖=0  ,  [ if i,j,k ≡ 0 (mod 3)] 

    = 4. π∞ i  [for i = 0, 15, 450 and 465] + 20. π∞(i)[ for other values of i] 

    = 4x7.07x10-2 + 20x 2.87x10-3 

    = 0.2828 + 0.0574 = 3402x10-4 ≈ 73/250 

pz = the probability to obtain  zero column =     π∞  (30𝑖 + 5𝑗 + 𝑘)4
𝑘=0

5
𝑗=0

29
𝑖=0  ,  

                                                                                        [if i,j,k ≡ 0(mod 5) or i,j,k ≡ 0(mod 3)or i,j,k ≡ 0(mod 2)] 
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    = 4. π∞ i  [for i = 0, 15, 450 and 465] + 159. π∞(i)[ for other values of i] 

    = 4x7.07x10-2 + 159x 2.87x10-3 

    = 0.2828 + 0.4564 = 7391x10-4  = 7391.3x10-4 ≈ 185/250 

 

p2  = the probability to perform a division by 2 = 1 – ( p5 + p3) = 1 – (43/250 + 73/250) = 134/250 

 

pnz = the probability to obtain  non − zero column = 1- pz = 1 – 185/250 = 65/250 

 
 

 

 
 

 

 

 

 
 


