
International Journal of Computer Applications (0975 – 8887)

Volume 43– No.24, April 2012

33

Parallelizing Apriori on Dual Core using OpenMP

Anuradha.T

ANU,Guntur

A.P.,INDIA

Satya Pasad R
ANU,Guntur
A.P.,INDIA

S.N.Tirumalarao
NEC,Guntur
A.P.,INDIA

ABSTRACT
Accumulation of abundant data from different sources of the

society but a little knowledge situation has lead to Knowledge

Discovery from Databases or Data Mining. Data Mining

techniques use the existing data and retrieve the useful

knowledge from it which is not directly visible in the original

data. As Data Mining algorithms deal with huge data, the

primary concerns are how to store the data in the main memory

at run time and how to improve the run time performance.

Sequential algorithms cannot provide scalability, in terms of the

data dimension, size, or runtime performance, for such large

databases. Because the data sizes are increasing to a larger

quantity, we must use high-performance parallel and

distributed computing to get the advantage of more than one

processor to handle these large quantities of data. The recent

advancements in computer hardware for parallel processing is

multi core or Chip Multiprocessor (CMP) systems. In this paper

we present an efficient and easy technique for parallelization of

apriori on dual-core using openMP wih perfect load balancing

between the two cores. We present the performance evaluation

of apriori for different support counts with different sized

databases on dual core compared to sequential implementation

General Terms
Data Mining, Parallel Processing

Keywords
Data Mining, Parallel Processing

1. INTRODUCTION
Data Mining deals with large volumes of data to extract the

previously unseen and useful knowledge (1,2).Association Rule

mining (ARM) or frequent itemset mining is an important

functionality of Data Mining(3). The apriori algorithm (4) is

one of the best algorithms for finding frequent itemsets from a

transactional database. It requires scanning the entire database

more number of times. As Data Mining mainly deals with large

volumes of data, the main concern should be how to improve

the performance of the algorithm. One way of improving the

performance of apriori is parallelizing the algorithm (5, 6). The

recent advancement in computer hardware for parallel

processing is Multi-Core architectures(7,8).In this paper we

present the performance evaluation of parallelization of apriori

for different sized databases with different support counts on a

dual core system compared to its sequential implementation

using an efficient and easy technique with perfect load

balancing between the processors.

2. Related Work

Apriori algorithm is the first algorithm proposed for frequent

itemset mining which depends on candidate generation (4, 9).

Han et al. proposed FP-growth method for frequent itemset

mining without candidate generation (10). Apriori and FP-

growth methods use horizontal data format to represent the

transactional database. Zaki proposed Eclat algorithm for

frequent itemset mining using vertical data format(11). To

handle the

scalability problem of sequential algorithms, parallel and

distributed algorithms are proposed(12).Rakesh Agrawal, John

C.Shafer proposed the first two parallel association algorithms

count distribution and data distribution (13). David W. Cheung

et al. proposed a distributed association rule mining algorithm

FDM, which reduces the number of messages to be passed at

mining association rules (14). Mohammed J. Zaki presented a

survey on parallel and distributed association rule mining

(6).Zaıane et al. proposed a parallel algorithm for mining

frequent patterns using FP-Growth mining (15).Wenbin Fang et

al. presented two implementations of frequent itemset mining

on new generation Graphics processing units (16).Shirish

Tatikonda et al. discussed mining subtrees from a tree

structured data by considering various memory optimizations in

(17). Li Liu et al. proposed a cache-conscious FP-array

(frequent pattern array) and a lock-free dataset tiling

parallelization mechanism to parallelize frequent itemset

mining on multi core using FP-tree based mining(18).

3. LITERATURE

3.1 Multi core

Multi core refers two or more processors. But they differ from

independent parallel processors as they are integrated on the

same chip circuit (7,8).A multi core processor implement

message passing or shared memory inter core communication

methods for multiprocessing. If the number of threads are less

than or equal to the number of cores, separate core is allocated

to each thread and threads run independently on multiple cores.

(Figure 1) If the number of threads are more than the number

of cores, the cores are shared among the threads.

Any application that can be threaded can be mapped efficiently

to multi-core, but the improvement in performance gained by

the use of multi core processors depends on the fraction of the

program that can be parallelized.[Amdahl's law] (19)

Figure 1: Independent threads on the cores

c

o

r

e
1

c

o

r

e
2

c
o

r

e
3

c

o
r

e
4

thread1 thread2 thread3 thread4

http://en.wikipedia.org/wiki/Amdahl%27s_law

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.24, April 2012

34

3.2 OpenMP
OpenMP (Open Multi Processing) is an application program

interface (API) that supports multi-platform shared memory

multi processing programming in C/C++ and Fortran on many

architectures(20,21,22).It consists of a set of compiler

directives. OpenMP uses Fork-Join Parallelism to implement

multi threading.

3.3 Fork-Join Parallelism
Initially programs begin as a single process: master thread. We

can make some part of the program to work in parallel by

creating child threads. Master thread executes in serial mode

until the parallel region construct is encountered. Master thread

creates a team of parallel child threads (fork) that

simultaneously execute statements in the parallel region. The

work sharing construct divides the work among all the threads.

After executing the statements in the parallel region, team

threads synchronize and enumerate (join) but master continues

(Figure 2).

Figure 2: Fork-Join parallelism

4 .ASSOCIATION RULE MINING
The concept of Association rule mining was originated from

the market basket analysis (3). It considers a transactional

database D which consists of the transactional records of the

customers {T1,T2,…,Tn}. Each transaction T consists of the

items purchased by the customers in one visit of the super

market. The items are the subset of the set of whole items I in

the super market we are considering for analysis. We represent I

as the set {I1, I2,…., Im}.An itemset consists of some

combination of items which occur together or a single item

from I. Association rule mining X Y, represents the

dependency relationship between two different itemsets X and Y

in the database. The relationship is whenever X is occurring in

any transaction, there is a probability that Y may also occur in

the same transaction. This occurrence is based on two

interesting measures.

1.Support= percentage of transactions in D that contain XUY

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑋 = 𝑃(𝑋 ∪ 𝑌)
2.Confidence=percentage of transactions in D containing X

that also contain Y.

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑋 𝑌 = 𝑃(𝑌 𝑋)

Finding the association rules for any given transactional

database consists of two parts:

1. Finding the frequent itemsets—Frequent itemsets are the

itemsets which are having a frequency more than a predefined

minimum support count (min_sup).

2. Generation of Association rules— Rules generated from the

subsets of a frequent itemset.

The major part of this rule mining is finding frequent itemsets.

Apriori algorithm is the popular algorithm for finding the

frequent itemsets.

4.1 The Apriori algorithm

It is based on the apriori property that all nonempty subsets of a

frequent itemset must also be frequent (4). It is a two step

process.

Step 1: The Prune Step: The entire database is scanned to find

the count of each candidate in Ck. Ck represents candidate k-

itemset. The count each itemset in Ck is compared with a

predefined minimum support count to find whether that itemset

can be placed in frequent k-itemset Lk.

Step 2: The join step: Lk is natural joined with itself to get the

next candidate k+1- itemset Ck+1.

The major step here is the prune step which requires scanning

the entire database for finding the count of each itemset in every

candidate k-itemset. So to find all the frequent itemsets in the

database, it requires more time if the database size is more.

4.2 Parallelizing apriori on dual- core using

openmp
In parallelizing apriori on dual-core, we use the fork–join

concept of OpenMP for finding frequent k- itemset.

Pseudocode for apriori on dualcore

//All the items in the database will be in candidate 1-itemset ,

C1.For each item in C1, the following procedure will be

followed.

1. divide the database into 2 partitions.

2. select a minimum support count ,min_sup.

3. SET_ OMP_NUM_THREADS =2

4. /* start of parallel code

#pragma omp parallel

#pragma omp sections

{

omp section

{

//partition1

find_count1(i)

}

omp section

{

//partition2

find_ count2(i)

}

} /* implicit barrier */

//The first section calculate the count of items in partition1 and

second section calculate the count of items in partition 2 .

5. sum up the counts of each partition separately

for each item[i] in C1 and if count[i]>min_sup ,place item[i] in

frequent 1-itemset,L1.

6. Join L1 with itself to get C2 where the items are of the type

(i,j).

7.Go to step 4 for finding count of items in C2.

8.Repeat this process until L k=

.

5. EXPERIMENTAL WORK
For our experimentation, we have used Intel Pentium Dual-Core

1.60 GHz processors with 3GB RAM. We have used Fedora 9

Linux (Kernel 2.6.25-14, Red Hat nash version 6.0.52) equipped

with GNU C++ (gcc version 4.3) in our study. We have used

OpenMP threads to study their performance on dual-Core

processors. In our experiments randomly generated data sets are

used. Random data sets are generated separately to have 1 to 10

lakh records with 10 different items,I1 to I10.Our algorithm is

tested with different support counts 5%,10%,15%, 20%,30%,

T1

T2

T3

T1

T2

T3

T4

Master

thread
Master

thread

Parallel

threads

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.24, April 2012

35

35% 40%,45% and 50% for each dataset. First the program is

implemented sequentially and then it is implemented on dual

core processors using openMP threads. Perfect load balancing

will be done as each thread will take only 50% of the data. To

know the time consumed by the program in different

environments, we have used time command of Linux .This

command gives the real time, user time and system time. These

timings are noted by varying datasets and for each dataset by

varying different support counts for single core and dual core

implementations.

5.1 Comparison with related Work
We have parallelized apriori in our work using the concept

similar to count distribution (CD) algorithm discussed in (13). In

count distribution also database is partitioned and each processor

is responsible for only locally stored transactions. But in count

distribution algorithm a hash-tree corresponds to all the

candidates is built and it is partitioned among processors but our

implementation does not build any hash tree. Because of the

overhead in constructing the hash tree, CD algorithm does not

perform well with respect to increasing the number of

candidates that is by lowering minimum support count(23) But

our implementation perform well at lower minimum support

counts. In Data distribution (DD) algorithm the candidate

itemsets are partitioned among the processors. And both CD and

DD algorithms are implemented on individual parallel

processors. But our implementation is done on dual core

processor. Shirish Tatikonda et al. (17) discussed parallelizing

on multi core but they have worked with mining subtrees from a

tree structured data and our implementation deals with frequent

itemset mining. Li Liu et al.(18) proposed frequent itemset

mining on multi core using FP-tree based mining and our

implementation uses apriori algorithm.

5.2 Experimental Results
Our experiments gave the following observations:

1. There is a run time performance improvement by parallelizing

the apriori algorithm on dual core compared to sequential

implementation.

2. For any dataset with different support counts, real time

consumed by the algorithm on dual core is less than that of the

time consumed for sequential execution (Figure 3 to Figure 12).

The benefit of dual core in real times can be observed more at

lower support counts than at higher support counts that means

when the frequent itemsets generated are more. (Figure 13 to

Figure 22).

 3. But we can observe only a slight reduction in the user time

on dual core compared to sequential execution at lower support

counts and user time on dual core is slightly more than

sequential execution at higher support counts.(Figure 25 to

Figure 28)

4. For any dataset , when the support count is increasing, the real

time and user time consumed will be decreasing on both

sequential and parallel implementations if the frequent itemsets

generated are different for those support counts. (Figure 3 to

Figure 12,Figure 23,Figure 24).

5.For any support count , when the dataset size is increasing, the

real and user time consumed will be increasing on both

sequential and parallel implementations.(Figire 13 to Figure

22,Figure 25 to Figure 28)

5.3 Real time Observations for different

support counts with fixed data sizes

Figure 3 : One lakh data with varying support counts

Figure 4: Two lakh data with varying support counts

Figure 5: Three lakh data with varying support counts

Figure 6: Four lakh data with varying support counts

Data size=1lakh records

0

10

20

30

40

50

60

5 10 15 20 25 30 35 40 45 50

support count(%)

re
a
l

ti
m

e
 i

n
 s

e
c
o

n
d

s

sequential implemnetation parallel implemenation

Data size=2lakh records

0

20

40

60

80

100

120

5 10 15 20 25 30 35 40 45 50

support count(%)

re
a
l

ti
m

e
 i

n
 s

e
c
o

n
d

s
sequential implemnetation parallel implemenation

Data size=3 lakh records

0

50

100

150

200

5 10 15 20 25 30 35 40 45 50

support count(%)

re
a
l

ti
m

e
 i

n
 s

e
c
o

n
d

s

sequential implemnetation parallel implemenation

Data size= 4 lakh records

0

50

100

150

200

250

5 10 15 20 25 30 35 40 45 50

support count(%)

re
a
l

ti
m

e
 i

n
 s

e
c
o

n
d

s

sequential implemnetation parallel implemenation

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.24, April 2012

36

Figure 7: Five lakh data with varying support counts

Figure 8: Six lakh data with varying support counts

Figure 9: Seven lakh data with varying support counts

Figure 10: Eight lakh data with varying support counts

Figure 11: Nine lakh data with varying support counts

Figure 12: Ten lakh data with varying support counts

5.4 Real time observations for different data

sizes with fixed support counts

Figure 13: Sup_count 5% with varying datasizes

Figure 14: Sup_count 10% with varying datasizes

Figure 15: Sup_count 15% with varying datasizes

Figure 16: Sup_count 20% with varying datasizes

Data size= 5 lakh records

0

50

100

150

200

250

5 10 15 20 25 30 35 40 45 50

support count(%)

re
a
l

ti
m

e
 i

n
 s

e
c
o

n
d

s

sequential implemnetation parallel implemenation

Data size= 6 lakh records

0

50

100

150

200

250

300

350

5 10 15 20 25 30 35 40 45 50

support count(%)

re
a
l

ti
m

e
 i

n
 s

e
c
o

n
d

s

sequential implemnetation parallel implemenation

Data size= 7 lakh records

0

50

100

150

200

250

300

350

400

5 10 15 20 25 30 35 40 45 50

support count(%)

re
a
l

ti
m

e
 i

n
 s

e
c
o

n
d

s

sequential implemnetation parallel implemenation

Data size= 8 lakh records

0

100

200

300

400

500

5 10 15 20 25 30 35 40 45 50

support count(%)

re
a
l

ti
m

e
 i

n
 s

e
c
o

n
d

s

sequential implemnetation parallel implemenation

Data size= 9 lakh records

0.00

100.00

200.00

300.00

400.00

500.00

600.00

5 10 15 20 25 30 35 40 45 50

support count(%)

re
a
l

ti
m

e
 i

n
 s

e
c
o

n
d

s

sequential implemnetation parallel implemenation

Data size= 10 lakh records

0

100

200

300

400

500

600

5 10 15 20 25 30 35 40 45 50

support count(%)

re
a
l

ti
m

e
 i

n
 s

e
c
o

n
d

s

sequential implemnetation parallel implemenation

Support count = 5%

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

Data size (in lakhs)

re
a
l

ti
m

e
 i

n
 s

e
c
o

n
d

s

sequential implemnetation parallel implemenation

Support count = 10 %

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

Data size (in lakhs)

re
a
l

ti
m

e
 i

n
 s

e
c
o

n
d

s

sequential implemnetation parallel implemenation

Support count = 15 %

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

Data size (in lakhs)

re
a
l

ti
m

e
 i

n
 s

e
c
o

n
d

s

sequential implemnetation parallel implemenation

Support count = 20 %

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

Data size (in lakhs)

re
a
l

ti
m

e
 i

n
 s

e
c
o

n
d

s

sequential implemnetation parallel implemenation

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.24, April 2012

37

Figure 17: Sup_count 25% with varying datasizes

Figure 18: Sup_count 30% with varying datasizes

Figure 19: Sup_count 35% with varying datasizes

Figure 20: Sup_count 40% with varying datasizes

Figure 21: Sup_count 45% with varying datasizes

Figure 22: Sup_count 50% with varying datasizes

5.6 User time Observations for different

support counts with fixed data sizes

Figure 23: One lakh data with varying support counts

Figure 24: Ten lakh data with varying support counts

5.7 User time observations for different

datasizes with fixed support counts

Figure 25: sup_count 5% with varying datasizes

Support count = 25 %

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

Data size (in lakhs)

re
a
l

ti
m

e
 i

n
 s

e
c
o

n
d

s

sequential implemnetation parallel implemenation

Support count = 30 %

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Data size (in lakhs)

re
a
l

ti
m

e
 i

n
 s

e
c
o

n
d

s

sequential implemnetation parallel implemenation

Support count = 35 %

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Data size (in lakhs)

re
a
l

ti
m

e
 i

n
 s

e
c
o

n
d

s

sequential implemnetation parallel implemenation

Support count = 40 %

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10

Data size (in lakhs)

re
a
l

ti
m

e
 i

n
 s

e
c
o

n
d

s

sequential implemnetation parallel implemenation

Support count = 45 %

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

Data size (in lakhs)

re
a
l

ti
m

e
 i

n
 s

e
c
o

n
d

s

sequential implemnetation parallel implemenation

Support count =50 %

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

Data size (in lakhs)

re
a
l

ti
m

e
 i

n
 s

e
c
o

n
d

s

sequential implemnetation parallel implemenation

data size=1 lakh records

0

10

20

30

40

50

60

5 10 15 20 25 30 35 40 45 50

support counts (%)

u
s
e
r

ti
m

e
 i

n
 s

e
c
o

n
d

s

sequential implementation parallel implementation

Data size=10 lakh records

0

100

200

300

400

500

600

5 10 15 20 25 30 35 40 45 50

support counts(%)

u
s
e
r

ti
m

e
 i

n
 s

e
c
o

n
d

s

sequential implementation parallel implementation

support count 5%

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

datasize in lakhs

u
s
e
rt

im
e
 i
n
 s

e
c
o
n
d
s

sequential implementation parallel implementation

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.24, April 2012

38

Figure 26: sup_count 20% with varying datasizes

Figure 27: sup_count 35% with varying datasizes

Figure 28: sup_count 50% with varying datasizes

7. CONCLUSIONS
Apriori algorithm is parallelized on dual core using a simple

and efficient technique with perfect load balancing between the

cores. The run time performance of parallelization of apriori on

dual core is compared to sequential execution with different

support counts for different databases. There is a clear run time

performance improvement of parallelizing the algorithm on

dual core in terms of real time compared to sequential

implementation on single core. In our future work we study the

performance of apriori on dual core by changing the number of

threads.

8. REFERENCES
[1] Jiawei Han and Micheline Kamber 2006 ‖Data Mining

concepts and Techniques‖, 2nd edition Morgan Kaufmann

Publishers, San Francisco.

[2] Fayyad, Usama,Gregory Piatetsky-Shapiro, and Padhraic

Smyth 1996 "From Data Mining to Knowledge Discovery

in Databases". AI Magazine Volume 17 Number 3(1996)

[3] Agrawal R, Imielinski T, Swami A 1993 ―Mining

association rules between sets of items in large databases‖

In: Proceedings of the 1993ACM-SIGMODinternational

conference on management of data (SIGMOD‘93),

Washington, DC, pp 207–216

[4] Agrawal R, Srikant R 1994 ―Fast algorithms for mining

association rules‖ In: Proceedings of the 1994 international

conference on very large data bases (VLDB‘94), Santiago,

Chile, pp 487–499

[5] R. Agrawal and J. Shafer 1996 ―Parallel mining of

association rules‖ IEEE Trans. Knowl. Data Eng., vol. 8,

pp. 962–969, Dec. 1996.

[6]M.J. Zaki 1997 ―parallel and distributed association

mining:A survey‖IEEEConcur,vol. 7, pp. 14–25, Dec.

1997.

[7] Herb Sutter 2005 ―The Free Lunch Is Over A Fundamental

Turn Toward Concurrency in Software‖ This article

appeared in Dr. Dobb's Journal, 30(3), March 2005.

[8] N.Karmakar 2011 ―The New Trend in processor Making

Multi-Core Architecture‖ www.scribd.com 15th may2011

[9] Jiawei Han, Hong Cheng,Dong Xin, Xifeng Yan 2007

―Frequent pattern mining: current status and future

directions‖ In the Journal of Data Min Knowl Disc (2007)

15:55–86,Springer Science+Business Media, LLC 2007.

[10] Han J, Pei J, Yin Y 2000 ‖ Mining frequent patterns

without candidate generation‖ In: Proceeding of the 2000

ACM-SIGMOD international conference on management

of data (SIGMOD‘00),Dallas, TX, pp 1–12

[11] ZakiMJ 2000 ―Scalable algorithms for association

mining‖ IEEETransKnowl Data Eng 12:372–390

[12]Park JS, Chen MS, Yu PS 1995 ―Efficient parallel mining

for association rules‖ In: Proceeding of the 4th

international conference on information and knowledge

management, Baltimore, MD,pp 31–36

[13] Agrawal R, Shafer JC 1996 ―Parallel mining of association

rules: design, implementation, and experience‖ IEEE

Trans Knowl Data Eng 8:962–969

[14] Cheung DW, Han J, Ng V, Fu A, Fu Y 1996 ―A fast

distributed algorithm for mining association rules‖ In:

Proceeding of the 1996 international conference on parallel

and distributed information systems, Miami Beach, FL, pp

31–44

[15] O. R Zaiane,M. El-Hajj, and P. Lu 2001 ―Fast parallel

association rule mining without candidacy generation‖ in

Proc. ICDM, 2001, [Online].Available:

citeseer.ist.psu.edu/474 621.html, pp. 665–668.

[16] Wenbin Fang, Mian Lu, Xiangye Xiao, Bingsheng He,

Qiong Luo 2009 ―Frequent itemset mining on graphics

processors‖ Proceedings of the Fifth International

Workshop on Data Management onNew Hardware

(DaMoN 2009) June 28, 2009, Providence, Rhode-Island

[17]. Shirish Tatikonda, Srinivasan Parthasarathy ―Mining

TreeStructured Data on Multicore Systems‖, VLDB ‘08,

August 2430,2008, Auckland, New Zealand

[18] Li Liu2, 1, Eric Li1, Yimin Zhang1, Zhizhong Tang 2007

‖Optimization of Frequent Itemset Mining on Multiple-

Core Processor‖ VLDB ‗07, September 23-28, 2007,

Vienna, Austria.

[19] Amdahl, Gene 1967 "Validity of the Single Processor

Approach to Achieving Large-Scale Computing

Capabilities". AFIPS Conference Proceedings (30): 483–

485.

[20] OpenMP Architecture , ―OpenMP C and C++

ApplicationProgramInterface‖, Copyright © 1997-2002

sup count=20%

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

Datasize in lakhs

u
s
e
rt

im
e
 i

n
 s

e
c
o

n
d

s

sequential implementation parallel implementation

sup count =35%

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Datasize in lakhs

u
s
e
r

ti
m

e
 i
n
 s

e
c
o
n
d
s

sequential implementation parallel implementation

sup count =50%

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10

Datasize in lakhs

u
s
e
r

ti
m

e
 i
n
 s

e
c
o
n
d
s

sequential implementation parallel implementation

http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.24, April 2012

39

OpenMP Architecture Review

Board.http://www.openmp.org/

[21] Kent Milfeld 2011 ―Introduction to Programming with

OpenMP‖ September 12th 2011, TACC

[22] Ruud van der pas 2009 ―An Overview of OpenMP‖ NTU

Talk January 14 2009

[23] S N sivanandam, S Sumathi 2006 ―DataMining

concepts,tasks and Techniques‖ First print 2006 by

Thomson Business Information Pvt. Ltd., India.

