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ABSTRACT 
Accumulation of abundant data from different  sources of the 

society  but a little knowledge  situation has lead to  Knowledge 

Discovery from Databases or Data Mining. Data Mining 

techniques use the existing data and retrieve  the useful 

knowledge from it which is not directly visible in the original 

data. As Data Mining algorithms deal with  huge data, the 

primary concerns are how to store the data in the main memory  

at run time and how to improve the run time performance. 

Sequential algorithms cannot provide scalability, in terms of the 

data dimension, size, or runtime performance, for such large 

databases. Because the data sizes are increasing  to a  larger 

quantity, we must use  high-performance parallel and 

distributed computing to get the advantage of more than one 

processor to handle these large quantities of data. The recent 

advancements in computer hardware for parallel processing is 

multi core or Chip Multiprocessor (CMP) systems. In this paper 

we present an efficient and easy technique for parallelization of 

apriori on dual-core using openMP wih  perfect load balancing 

between the two cores. We present the performance evaluation  

of apriori for different support counts with different sized 

databases on dual core  compared to  sequential implementation 

General Terms 
Data Mining, Parallel Processing 
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1. INTRODUCTION 
Data Mining deals with large volumes of data to extract the 

previously unseen and useful knowledge (1,2).Association Rule 

mining (ARM) or frequent itemset mining is an important 

functionality of Data Mining(3). The apriori algorithm (4) is 

one of the best algorithms for finding frequent itemsets from a 

transactional database. It requires scanning the entire database 

more number of times. As Data Mining mainly deals with large 

volumes of data, the main concern should be how to improve 

the performance of the algorithm. One way of improving the 

performance of apriori is parallelizing the algorithm (5, 6). The 

recent advancement in computer hardware for parallel 

processing is Multi-Core architectures(7,8).In this paper we 

present the  performance evaluation  of parallelization of apriori 

for different sized databases with different support counts on a 

dual core system compared to its sequential implementation 

using an efficient and easy technique with perfect load 

balancing between the processors.  

2.  Related Work  

Apriori algorithm is the first algorithm proposed for frequent 

itemset mining which depends on candidate generation (4, 9). 

Han et al. proposed FP-growth method for frequent itemset 

mining without candidate generation (10). Apriori and FP-

growth methods use horizontal data format to represent the 

transactional database. Zaki proposed Eclat algorithm for 

frequent itemset mining  using  vertical data format(11). To 

handle the  

scalability problem of sequential algorithms,  parallel  and 

distributed algorithms are proposed(12).Rakesh Agrawal, John 

C.Shafer proposed  the first two parallel association algorithms 

count distribution and data distribution (13).  David W. Cheung 

et al. proposed a distributed association rule mining algorithm 

FDM, which  reduces the number of messages to be passed at 

mining association rules (14). Mohammed J. Zaki presented a 

survey on parallel and distributed association rule mining 

(6).Zaıane et al. proposed a parallel algorithm for mining 

frequent patterns using FP-Growth mining (15).Wenbin Fang et 

al. presented two implementations of frequent itemset mining 

on new generation Graphics processing units (16).Shirish 

Tatikonda et al. discussed mining subtrees from a tree 

structured data by considering various memory optimizations in 

(17). Li Liu et al. proposed a cache-conscious FP-array 

(frequent pattern array) and a lock-free dataset tiling 

parallelization mechanism to parallelize frequent itemset 

mining on multi core using FP-tree based mining(18). 

3. LITERATURE  

3.1 Multi core 

Multi core refers two or more processors. But they differ from 

independent parallel processors as they are integrated on the 

same chip circuit (7,8).A multi core processor implement 

message passing or shared memory inter core communication 

methods for multiprocessing. If the number of threads are less 

than or equal to the number of cores, separate core is allocated 

to each thread and threads run independently on multiple cores. 

(Figure 1) If the number of threads  are more than the number 

of cores, the cores are shared among the threads. 

Any application that can be threaded can be mapped efficiently 

to multi-core, but the improvement in performance gained by 

the use of multi core processors depends on the fraction  of the 

program that can be parallelized.[ Amdahl's law] (19) 

 
Figure 1: Independent threads on the cores  
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3.2 OpenMP  
OpenMP (Open Multi Processing) is an application program 

interface (API) that supports multi-platform shared memory 

multi processing programming in C/C++ and Fortran on many 

architectures(20,21,22).It consists of a set of compiler 

directives. OpenMP uses Fork-Join Parallelism to implement 

multi threading.  

3.3 Fork-Join Parallelism 
Initially programs begin as a single process: master thread. We 

can make some part of the program to work in parallel by 

creating child threads. Master thread executes in serial mode 

until the  parallel region construct is encountered. Master thread 

creates a team of parallel child threads (fork) that 

simultaneously execute statements in the parallel region. The 

work sharing construct divides the work among all the threads. 

After executing the statements in the parallel region, team 

threads synchronize and enumerate (join) but master continues 

(Figure 2). 

 

 

Figure 2:  Fork-Join parallelism 

 

4 .ASSOCIATION RULE MINING   
The concept of Association rule mining was   originated from 

the market basket analysis (3). It considers   a transactional 

database D which consists of the transactional records of the 

customers {T1,T2,…,Tn}. Each transaction T consists of the 

items purchased by the customers in one visit of the super 

market. The items are the subset of the set of whole items I in 

the super market we are considering for analysis. We represent I 

as the set  {I1, I2,…., Im}.An itemset consists of some 

combination of items which occur together  or a single item 

from I. Association rule mining X Y, represents the 

dependency relationship between two different itemsets X and Y 

in the database. The relationship is whenever X is occurring in 

any transaction, there  is a probability that Y may also occur in 

the same transaction. This occurrence is  based on  two 

interesting measures. 

1.Support= percentage of transactions in D that contain XUY 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑋 = 𝑃(𝑋 ∪ 𝑌) 
2.Confidence=percentage of transactions in D  containing  X 

that also contain Y. 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒  𝑋  𝑌 = 𝑃(𝑌 𝑋 ) 

Finding the association rules for any given transactional 

database  consists of two parts: 

1. Finding the frequent itemsets—Frequent itemsets are the 

itemsets which are having a frequency more than a predefined 

minimum support count (min_sup).  

2. Generation of Association rules— Rules generated from the 

subsets of  a  frequent itemset. 

The major part of this rule mining is finding frequent itemsets. 

Apriori algorithm is the popular algorithm for finding the 

frequent itemsets. 

4.1 The Apriori algorithm 

It is based on the apriori property that all nonempty subsets of a 

frequent itemset must also be frequent (4). It is a two step 

process. 

Step 1: The Prune Step: The entire database is scanned to find 

the count of each candidate in Ck. Ck represents candidate k-

itemset. The count each itemset in Ck is compared with a 

predefined minimum support count to find whether that itemset 

can be placed in frequent k-itemset Lk.  

Step 2: The join step: Lk is natural joined with itself to get the 

next candidate k+1- itemset  Ck+1.  

The major step here is the prune step which requires scanning 

the entire database for finding the count of each itemset  in every 

candidate k-itemset. So to find all the frequent itemsets in the 

database, it requires more time if the database size is more

4.2 Parallelizing apriori on dual- core using 

openmp  
In parallelizing apriori on dual-core, we use the fork–join 

concept of OpenMP for finding frequent k- itemset. 

Pseudocode  for  apriori on dualcore 

//All the items in the database will be in candidate 1-itemset , 

C1.For each item in C1, the following procedure will be 

followed. 

1. divide  the database into 2 partitions. 

2. select  a minimum support count ,min_sup. 

3. SET_ OMP_NUM_THREADS =2 

4. /* start of parallel code 

#pragma omp parallel  

#pragma omp sections 

{ 

omp section 

{ 

//partition1 

find_count1(i)  

} 

omp section 

{ 

//partition2 

find_ count2(i)  

} 

} /* implicit barrier */ 

//The first section calculate the count of items in partition1 and 

second section calculate the count of items in partition 2 . 

5. sum up the counts of each partition  separately  

for each item[i] in C1 and if  count[i]>min_sup ,place item[i] in 

frequent 1-itemset,L1. 

6. Join L1 with itself to get C2 where the items are of the type 

(i,j). 

7.Go to  step 4 for  finding count of items in C2. 

8.Repeat this process until L k=


. 

5. EXPERIMENTAL WORK 
For our experimentation, we have used Intel Pentium Dual-Core 

1.60 GHz processors with 3GB RAM. We have used Fedora 9 

Linux (Kernel 2.6.25-14, Red Hat nash version 6.0.52) equipped 

with GNU C++ (gcc version 4.3) in our study. We have used 

OpenMP threads to study their performance on dual-Core 

processors. In our experiments randomly generated data sets are 

used. Random data sets are generated separately to have 1 to 10 

lakh records with 10 different items,I1 to I10.Our algorithm is  

tested with different support counts  5%,10%,15%, 20%,30%, 
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35% 40%,45% and 50%  for each  dataset. First the program is 

implemented sequentially and then it is   implemented  on dual 

core processors using openMP  threads. Perfect load balancing 

will be done as each thread will take only 50% of the data. To 

know the time consumed by the program in different 

environments, we have used time command of Linux .This 

command gives the real time, user time and system time. These 

timings are noted by varying   datasets and for each dataset by  

varying  different support counts for single core and dual core 

implementations. 

5.1 Comparison with related Work 
We have parallelized apriori in our work using the concept 

similar to count distribution (CD) algorithm discussed in (13). In 

count distribution also database is partitioned and each processor 

is responsible for only locally stored transactions. But in count 

distribution algorithm a hash-tree corresponds to all the 

candidates is built and it is partitioned among processors but our 

implementation does not build any hash tree. Because of the 

overhead in constructing the hash tree, CD algorithm does not 

perform well with respect to increasing the number of 

candidates that is by lowering minimum support count(23) But 

our implementation perform well at lower minimum support 

counts. In Data distribution (DD) algorithm the candidate 

itemsets are partitioned among the processors. And both CD and 

DD algorithms are implemented on individual parallel 

processors. But our implementation is done on dual core 

processor. Shirish Tatikonda et al. (17) discussed parallelizing 

on multi core but they have worked with mining subtrees from a 

tree structured data and our implementation deals with frequent 

itemset mining. Li Liu et al.(18) proposed  frequent itemset 

mining on multi core using FP-tree based mining and our 

implementation uses apriori algorithm. 

5.2 Experimental Results 
Our experiments gave the following observations: 

1. There is a run time performance improvement by parallelizing 

the apriori algorithm on dual core compared to sequential 

implementation.  

2. For any dataset with different support counts, real time 

consumed by the algorithm on dual core is less than that of the 

time consumed for sequential execution (Figure 3 to Figure 12). 

The benefit of dual core in real times can be observed more at 

lower support counts than at higher support counts that means 

when the frequent itemsets generated are more. (Figure 13 to 

Figure 22). 

 3. But we can observe only a slight reduction in the user time 

on dual core compared to sequential execution at lower support 

counts and user time on dual core is slightly more than 

sequential execution  at higher support counts.(Figure 25 to 

Figure 28) 

4. For any dataset , when the support count is increasing, the real 

time and user time  consumed will be decreasing on both 

sequential and parallel implementations if the frequent itemsets 

generated are different for those support counts. (Figure 3 to 

Figure 12,Figure 23,Figure 24). 

5.For any support count , when the dataset size is increasing, the 

real and user time consumed will be increasing on both 

sequential and parallel implementations.(Figire 13 to Figure 

22,Figure 25 to Figure 28) 

 

 

 

 

 

 

 

5.3 Real time Observations for different 

support counts with fixed data sizes 

 

 

Figure 3 : One  lakh data with varying support counts 

 

Figure 4: Two lakh data with varying support counts 

 
Figure 5: Three lakh data with varying support counts 

 

Figure 6: Four lakh data with varying support counts 
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Figure 7: Five lakh data with varying support counts 

 

 

Figure 8: Six lakh data with varying support counts 

 

Figure 9: Seven lakh data with varying support counts 

 

 

Figure 10: Eight lakh data with varying support counts 

 

 

Figure 11: Nine lakh data with varying support counts 

 

Figure 12: Ten lakh data with varying support counts 

5.4 Real time observations for different data 

sizes with fixed support counts 

 

Figure 13: Sup_count 5% with varying datasizes 

 

Figure 14: Sup_count 10% with varying datasizes 

 

Figure 15: Sup_count 15% with varying datasizes 

 

Figure 16: Sup_count 20% with varying datasizes 
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Figure 17: Sup_count 25% with varying datasizes 

 

 

Figure 18: Sup_count 30% with varying datasizes

 

Figure 19: Sup_count 35% with varying datasizes 

 

Figure 20: Sup_count 40% with varying datasizes 

 

 

Figure 21: Sup_count 45% with varying datasizes 

 

Figure 22: Sup_count 50% with varying datasizes 

 

5.6 User time Observations for different 

support counts with fixed data sizes 

 
 

Figure 23: One lakh data with varying support counts 

 

Figure 24: Ten lakh data with varying support counts 

 

5.7 User time observations for different 

datasizes with fixed support counts 

 

Figure 25: sup_count 5% with varying datasizes 
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Figure 26: sup_count 20% with varying datasizes 

 

Figure 27: sup_count 35% with varying datasizes 

 

Figure 28: sup_count 50% with varying datasizes 

 

7. CONCLUSIONS 
Apriori algorithm is parallelized on dual core using a simple 

and efficient technique with perfect load balancing between the 

cores. The run time performance of parallelization of  apriori on 

dual core  is compared to sequential execution  with different 

support counts for different databases. There is a clear run time 

performance improvement of parallelizing the algorithm on 

dual core in terms of real time compared to sequential 

implementation  on single core. In our future work we study the 

performance of apriori on dual core by changing the number of 

threads. 
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