
International Journal of Computer Applications (0975 – 8887)

Volume 43– No.24, April 2012

15

SQA by Defect Prediction: An SVM based In-Appendage
Software Development Log Analysis

N. Rajasekhar Reddy
Department of Computer
Science and Engineering
Madanapalli Institute of

Technology and Science
AndhraPradesh, India

R.J.Ramasree
Department of Computer

Science
Raastriya Sanskrit
dyapeeta,Tirupati

AndhraPradesh, India

R.MD.Shafi
Director, SVNC

Tirupati
Andhra Pradesh, India

ABSTRACT

The present paper proposes a Machine learning technique for

defect forecasting and handling for SQA called appendage

log training and analysis, can be referred as ALTA. The

proposed defect forecasting of in-appendage software

development logs works is to deal the forecasted defects

accurately and spontaneously while developing the software.

The present proposed mechanism helps in minimizing the

difficulty of SQA. The overall study is conducted on

evaluating the proposed model which indicates the defect

forecasting in-appendage software development log training

and analysis is significant growth to lessen the complexity of

Software Quality Assessment.

Keywords

Hybrid software development method, conventional software

development methods, agile software development methods,

Software Engineering

1. INTRODUCTION
 Research is being prominent in all engineering and science

disciplines. To raise the quality of soft ware research has been

inevitable even for software development.

According to the hierarchical models of Boehm et al. [1], for

the last thirty years, a different types of models are developed

to increase quality of software of which a few became

standard. At present these models are being used, to specify the

quality need and, to test present systems or to identify the

defect density of a system in the field.

A number of varieties of models have been engendered during

the last three decades and named as “quality models”. For

instance on the spectrum of diverse models include taxonomic

models like the ISO 9126 [2], metric-based models like the

maintainability index (MI) [3] and stochastic models like

reliability growth models (RGMs) [4]., These models seems

to have less similarities though they deal with software

quality. This variation is due to the purposes the models pursue:

The ISO 9126 defines quality, metric-based approaches, used

for assessment of the quality of a particular system and

reliability growth models tells quality. In order to avoid

comparison various purposes like definition, assessment and

prediction of quality, to classify quality models are used.

Therefore, the ISO 9126 is defined as definition model, metric-

based approaches as assessment models and RGMs as

prediction models. Though definition, assessment and

prediction of quality are various purposes, they are certainly

dependent of each other: It is very difficulty for assessing

quality without knowing it’s actually constitutes and at the

same time not easy to predict quality without knowing

assessment process. Quality models relation is illustrated by

the DAP classification shown in Fig. 1.

Fig 1: DAP Classification [33]

 The DAP classification[33] points prediction models as one

of the most advanced form of quality models because they can

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.24, April 2012

16

also be utilized to define and assess quality. Hence, this

opinion only applies for ideal models. Fig. 1displays that

present quality models do not include all aspects equally. If

we observe the ISO 9126defines quality but to assess it is

possible; the MI says assessment but can not define quality.

RGMs also predicts without defining quality.

Related Work

Coming to the related works, the main forthcoming of present

quality models is that they do not relate to an explicit meta

model. Therefore the structure of the model elements is not

clearly defined and the interpretation is left to the reader.

Quality models must be central treasure for the information

about quality. So the various tasks of quality engineering

should depend upon one quality model. Now days, first

problem is that quality models are used separately for

specification of quality needs and the assessment of software

quality. Second problem is that now a day’s quality models

are not addressing various opinions on quality. For software

engineering, the value-based opinion is commonly considered

of high importance [5]. Which is mostly missing in existing

quality models [6].

Software systems consists a large variety which ranges from a

large amount of business information systems to small

embedded controllers. These variations must be accounted for

in quality models by defined means of customization but is

lacking in the present quality models, [7, 8, and 9].

Present quality models lack clarity in defining the

decomposition criteria which determine the difficult concepts

of quality of decomposition. Most definition models base on a

taxonomic, hierarchical decomposition of quality attributes.

The decomposition model does not follow defined guidelines

and can be arbitrary [10, 11, 12, 6]. Therefore, it is hard to

identify similar quality attributes, like availability. In addition

to large quality models, with unclear decomposition locating

elements becomes difficult. Developers have to search for

large parts of the model to assert that an element does not

exist. This leads to redundancy because of presence of similar

elements.

The vague decomposition in most of the quality models will

also be the cause of overlapping in various quality attributes.

In addition to, these overlaps will not be considered explicitly.

I f we observe security will be influenced by availability

(denial of service attack), a part of reliability; code quality

factor of maintainability is considered as an indicator for

security [13].

Most quality model frameworks do not give ways for utilizing

the quality models for constructive quality assurance. For

instance , hoe the quality models communicated to project

participants is not clear. Guidelines is a common method of

communicating information. Pragmatically , guidelines which

are meant for communicating the knowledge of a quality

model face problems, which are directly related to

corresponding problems of the quality models itself; e.g. the

guidelines will not be concrete enough and the document

structure of the guideline will not be aligned according to an

evident schema. Rationales are often not provided for the

rules the guidelines impose. Other problem is that the quality

models are not define tailoring methods to use the guidelines

to the application area.

Unclear decomposition of quality attributes, which mentioned

earlier, is one problem for analytical quality assurance. The

given quality attributes are very much abstract rather than

straightforward checkable in a concrete software system [3,5].

Due to the present quality models, define checkable attributes

and refinement methods to get checkable attributes, they are

difficult to utilize in measurement [14, 6].

In the realm of software quality, a huge number of metrics for

measurement have been planned. But these metrics due to

lack of structure in quality models faces problems. One such

problem is that in spite of defining metrics, the quality models

fail to provide a detailed account of the influence that specific

metrics have on software quality [6]. Because of poor

semantics, the total of metric values along the hierarchical

levels will be problematic. Other problem is that the given

metrics doesn’t possess clear motivation and validation. A

part from this, present approaches do no value the

fundamental rules of measurement theory and, therefore,

forced to create duplicate results [15].

Because of the problems in constructive and analytical quality

assurance, the possibility of certification on basis of quality

models will face problems [14]. It should be stated that

measurement is important for any control process. Hence the

measurement quality attributes is necessary for an efficient

quality assurance processes and for engineering

needs.Predictive quality models don’t possess definition of the

concepts they are depend on. Many of them depend on

regression using a set of software metrics. This regression

results in equations that are difficult to interpret [16].

Pragmatically prediction models is context-dependent, also

complicates broad application. Most factors influence the

typical prediction goals and especially , factors that varies

robustly. Generally in prediction models these context

conditions will not be made explicitly.

Service-oriented distributed systems evolve in size and

complexity, assures that they conform to their specifications

throughout the software life cycle becomes hard. This origins

the problem of serialized- phasing development [17], where

application- level entities are devised after infrastructure-

level entities. Serialized-phasing improvement builds it

difficult to evaluate end-to-end functional and quality-of-

service (QoS) aspects until late in the software life cycle for

example, at system integration time.

Agile techniques addresses functional aspects of serialized-

phasing development by authorizing software functionality

throughout software life cycle[18, 19]. One such example is

test-driven development and continuous integration are agile

techniques that endorse functional quality by assuring that

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.24, April 2012

17

software work up to the mark. The advantage of utilizing agile

techniques to develop QoS assurance of service-oriented

distributed systems, despite, demonstration. Developers,

hence, require new techniques to aid in exploring the

indication of serialized-phasing development and enable

evaluation of QoS that is considered throughout the software

life cycle.

Model-driven engineering (MDE) is a favorable solution for

augmenting software development of service-oriented

distributed systems [20]. MDE techniques like domain-

specific modeling languages (DSMLs)[21], supply developers

with visual representations of abstractions that holds key

domain semantics and constraints. DSMLs also supply tools

that transform models into stable artifacts, like source code or

configuration files that are dread and error-prone to generate

manually utilizing third-generation languages. These artifacts

generally are not handy in the software life cycle let a proper

evaluation of end-to-end QoS properties.

3.SQA BY DEFECT PREDICTION
The mentioned In-Appendage Software Development log

Analysis by SVM works as an intelligent system to identify

defects to enhance the Software Quality. In nut shell we refer

ALTA. The fig 2 defines the proposed defect prediction

process that mingles with software development and testing.

In ALTA the defect prediction is strategic and helps to predict

the defect that leverages the cost and targeted result. This

forecast can help the adepts included to reform the current

action to reduce the severity of the risk forecasted. Fig 3

explains the defect forecast strategy mentioned as key feature

of the ALTA. In defect forecasting process we adapt to

machine learning technique called least square support vector

machines abbreviated as LSSVM. The Defect forecasting

stage of the ALTA targets the improvement of logs handy as

input to train the LSSVM for better forecasting. The feature

bring out process that is part of SVM training process will be

carried with help of mathematical model named

Intensified worst particle based Quantum particle swarm

optimization, details as follow.

Fig 2: Defect prediction and handling using Machine

learning

Fig 3: Defect prediction Process

4. DEFECT PREDICTION USING

LS-SVM[25] AND IWP-QPSO[29]

4.1 LS-SVM[25]

For solving pattern recognition and classification problem

using Support vector machine (SVM) tool proposed by

Vapnik[22, 23] is beneficent. . It even can be applied to

regression problems by the brining up other loss function.

Because of its benefits and excellent generalization

performance comparing to other methods, SVM caught the

attention of user and won mammoth application [5]. SVM

displays extraordinary performances due to the capacity of

leading global models which are special with the structural

risk minimization principle [24], showing superiority over

traditional empirical risk minimization principle. In addition

of specific formulation, sparse solutions will be found. Linear

and nonlinear regression can be performed with LSSVM.

Therefore finalizing the SVM model is computationally very

hard because it needs the solution of a set of nonlinear

equations (quadratic programming problem). According to

simplification, Suykens and Vandewalle[25] proposed a

modified version of SVM called least-squares SVM (LS-

SVM[25]), that bring out in a set of linear equations in the

place of a quadratic programming problem, that can be

enlarge the applications of the SVM with a number of superb

introductions of SVM [25, 26] and the theory of LS-SVM[25]

is explained explicitly by Suykens et al[24, 25] and

application of LS-SVM[25] in quantification and

classification mention in a few works[27, 28].

Basically, LS-SVM[25] uses a linear relation (y = wx + b)

between the regression (x) and the dependent variable (y). The

best relation is the one that reduces the cost function (Q)

containing a penalized regression error term:

2

1

()

1 1
 ...(1)

2 2

 1,..., ...(2)T
i i

N
T

i

i

i w x b e

Q w w e

Subject to

y i N





  

 





International Journal of Computer Applications (0975 – 8887)

Volume 43– No.24, April 2012

18

In the first part of cost function, weight decay useful in

regularizing weight sizes and penalizes large weights.

Because of regularization, the weights converge to similar

value. Large weights dwindles the generalization ability of the

LS-SVM [25] because of causing more variance. The

regression error for all training data is in the second part of

cost function the relative weight of the present part compared

to the first part will be symbolized as ‘g’ that should be used

by the user.

Likewise to other multivariate statistical models, the

performances of LS-SVM [25]s bases on the combination of

several parameters. Attaining of the kernel function is

cumbersome and it will depend on each case. Whatever, the

kernel function uses more radial basis function (RBF), a

simple Gaussian function, and polynomial functions where

width of the Gaussian function and the polynomial degree will

be used, which should be optimized by the user, to obtain the

support vector. For the RBF kernel and the polynomial kernel

it should be stressed that it is very necessary to do a careful

model selection of the tuning parameters, in combination with

the regularization constant g, in order to achieve a good

generalization model.

4.2 IWP- QPSO (Intensifying the Worst Particle for

QPSO)[29]

S.Nagaraja Rao et al[12] did to optimize the QPSO by

intensifying worst swarm particle with new swarm particle.

An interpolate equation will be traced out by applying a

quadratic polynomial model on existing best fit swarm

particles. Depending on emerged interpellant, new particle

will be find. If the new swarm particle found as better one in

comparison to least good swarm particle then substitution

takes place.

The computational steps of optimized QPSO algorithm as

follows:

Step 1: Initialize the swarm.

Step 2: Calculate mbest

Step 3: Update particles position

Step 4: Evaluate the fitness value of each particle

Step 5: If the current fitness value is better than the best

fitness value (Pbest) in history Then Update Pbest by the

current fitness value.

Step 6: Update Pgbest (global best)

Step 7: Find a new particle

Step 8: If the new particle is better than the worst particle in

the swarm, then replace the worst particle by the new particle.

Step 9: Go to step 2 until maximum iterations reached.

The swarm particle can be found using the fallowing.

3
2 2

1

)* () i i i

k

t p q f r


 

, , 1;

, , 2;

, , 3

p a q b r c for k

p b q c r a for k

p c q a r b for k

   

   

   

3

1

1)* () i i i

k

t p q f r


 

, , 1;

, , 2;

, , 3

p a q b r c for k

p b q c r a for k

p c q a r b for k

   

   

   

0.5*()
1

i
i

i

t
x

t


In the mentioned math notations ‘a’ is best fit swarm particle,

‘b’ and ‘c’ are randomly selected swarm particles ix is new

swarm particle.

4.3 LS-SVM [25] Regression and QPSO based hyper

parameter selection

Assume that a given training set of N data points 1{ , }N

t t tx y 

with input data
d

tx R and output ty R . In feature

space LS-SVM [25] regression model take the form

Ty (x) = w (x) + b …………… (1)

Where the input data is mapped (.)

The solution of LS-SVM[25] for function estimation is given

by the following set of linear equations:

1 1 1 1

0 1 1

1 (,) 1/ (,)

. . . .

.

K x x C K x x 1 1

1 1 1 1 1 1

0

. .

1 (,) (,) 1/

b

y

K x x K x x C y





     
     
     
     
     
     
          

…… (2)

iWhere K(xi ,xj) = () () for i, j =1...LT T

jx x 

And the Mercer’s condition has been applied.

This finally results into the following LS-SVM[25] model for

function estimation:

1

() (,)
L

i i

i

f x K x x b


  …….(3)

Where , b are the solution of the linear system, K(.,.)

represents the high dimensional feature spaces that is

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.24, April 2012

19

nonlinearly mapped from the input space x. The LS-SVM[25]

approximates the function using the Eq. (3).

In present work, the radial basis function (RBF) is used as the

kernel function:

2 2(,) exp(|| || /)i j tk x x x x   

In the training LS-SVM[25] problem, there are hyper-

parameters, such as kernel width parameter σ and

regularization parameter C, which may affect LS-SVM[25]

generalization performance. So these parameters required

perfectly in tuning of reducing the generalization error. An

attempt is made to tune these parameters automatically by

using QPSO.

4.4 Hyper-Parameters Selection Based on IWP-QPSO[29]

To surpass the usual L2 loss results in least-square SVR, we

attempt to optimize hype parameter selection.

The two key factors that finalize the optimized hyper-

parameters through QPSO: First one is how to represent the

hyper-parameters as the particle's position, namely encoding

[13,14]. Second one is defining the fitness function, that

evaluates the goodness of a particle..

4.4.1 Encoding Hyper-parameters:

The optimized hyper-parameters for LS-SVM [25] consists

kernel parameter and regularization parameter. To solve

hyper-parameters selection by the proposed IWP-QPSO [29],

every particle represents a potential solution, called hyper-

parameters combination. A hyper-parameters combination of

dimension m is represented in a vector of dimension m, such

as (,)ix C . The resultant Hyper-parameter optimization

under IWP-QPSO [29] can found in fallowing fig 4.

a. Fitness function:

The fitness function is the generalization performance

measure. For the generation performance measure, there are

some other descriptions. In the present paper, the fitness

function is:

1

(,)
fitness

RMSE  
 …. (12)

Where RMSE (σ, γ) is the root-mean-square error of predicted

results, which varies with the LS-SVM [25] parameters (σ ,γ) .

When the termination criterion is met, the individual with the

biggest fitness corresponds to the optimal parameters of the

LS-SVM [25].

The two alternatives for stop criterion of the algorithm are:

First method is that the algorithm stops when the objective

function value is less than a given threshold ε; the other is that

it is terminated after executing a pre-specified number of

iterations. The following steps describe the IWP-QPSO [29]-

Trained LS-SVM [25] algorithm:

(1) Initialize the population by randomly generating the

position vector iX of each particle and set iP = iX;

(2) Structure LS-SVM [25] by treating the position vector of

each particle as a group of hyper-parameters;

(3) Train LS-SVM[25] on the training set;

(4) Evaluate the fitness value of each particle by Eq.(12),

update the personal best position iP and obtain the global best

position gP across the population;

(5) If the stop criterion is met, go to step (7); or else go to step

(6);

(6) Update the position vector of each particle according to

Eq.(7), Go to step (3);

(7) Output the gP as a group of optimized parameters.

Fig 4: Hyper-Parameter optimization response surface

under IWP-QPSO[29] for LS-SVM[25]

5. RISK PREDICTION IN ALTA
This section explains the proposed algorithm for ALTA. The

ALTA mainly backed by LS-SVM[25] regression that relies

on IWP-QPSO[29] for feature extraction.

 The Development log considered into multitude tuple.

 Collect the resultant detailed near features of each tuple

 Submit feature matrix as input to LS-SVM[25]

regression under IWP-QPSO[29], which infers the data

to be used for training by generating minimal required

number of support vectors.

 Estimate the absolute levels of the features.

 Do risk prediction by evaluating the features of the

current and subsequent dependent activities of the code

tuple of the current development.

 Identify the risk status

6. EMPIRICAL STUDY AND RESULTS

DISCUSSION
The performance analysis of the proposed In-Appendage risk

prediction using machine learning is done by performing

wholesome study on different open source project

development logs. It is opted to various logs that are of

applications of various sizes ranging from low, mid to large

level.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.24, April 2012

20

The performance of the ALTA verified by applying on

development log of the Gdownloader[30], which is tiny open

source application, JPCAP[31], which is tiny open source

application and LUCENE[32],which is large size open source

application. Empirical analysis is conducted to check the

performance of ALTA is as given below.

The development, test phases and their process logs were

partitioned into multitude tuple set. The extracted features

from each process log tuple and generalized with IWP-QPSO,

then trained with LS-SVM, then attempted to predict the risks

in next tuple of actions. And then we analyzed performance of

the ALTA by comparing the predicted risk ratio with actual

risks of each tuple logged in process log.

 The results are observed are a bit intriguing. So it is

concluded that ALTA influences in risk forecasting at

Development and Testing stages.

Table 1 represents the comparison of defects observed during

development that are logged in process logs and predicted at

In-Appendage time of development and testing. The table 1,

table 2 and table 3, Fig 5, fig 6 and fig 7 represents the

accuracy of ALTA in risk prediction during development and

testing. From the results it is clear that ALTA is significant

and reliable to forecast defects during development and

testing phases of the software development.

To simplify the results analysis, each application and its log

partitioned into multitude tuple set of 4 for development and 4

for testing. The results description fallows

ALTA’s performance report on tiny software development:

performance of validation of ALTA on GDownloader[30]

process log

Risk prediction ratio at multitude tuple set of

Gdownloader Development phase:

 Block 1 Block 2 Block3 Block4

Defects in

Process

Log

3% 1% 0.30% 30%

Defects

Predicted

by ALTA

3% 0.20% 0.15% 27%

Risk prediction ratio at multitude tuple set of

Gdownloader Testing phase:

 Block1 Block2 Block3 Block4

Defects in

Process

Log

14% 0% 0% 0%

Defects

Predicted

by ALTA

11% 0% 0% 0%

Table 1: Comparison of defects logged in process log and

defects predicted by ALTA for small size software

development

Fig 5: Line chart comparison of defects logged in process

log and defects predicted by ALTA for small size software

development

ALTA’s performance report on medium software

development:

(A) Performance validation on JPCAP[31] development

process log

 Block

1

Block

2

Block3 Block4

Defects in

development

Process Log 9% 12% 21% 39%

Defects Predicted

by ALTA 7.90% 7.60% 20.10% 36.78%

(B) Performance validation on JPCAP[] Testing process

log

 Block1 Block2 Block3 Block4

Defects in

Process

Log 23% 1% 2% 2%

Defects

Predicted

by ALTA 20.67% 0.90% 1% 0.90%

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.24, April 2012

21

Table 2: Comparison of defects logged in process log and

defects predicted by ALTA for mid size software

development

Fig 6: Line chart comparison of defects logged in process

log and defects predicted by ALTA for mid size software

development

ALTA’s Performance report on huge software

development:

(A) Performance validation on LUCENE[32]

development process log

 Block 1 Block 2 Block3 Block4

Defects in

development

Process Log 22% 32% 20% 21%

Defects

Predicted by

ALTA 19.40% 31.10% 19.40% 20.80%

(B) Performance validation on LUCENE[] Testing

process log

 Block1 Block2 Block3 Block4

Defects in

Process

Log 14% 20% 11% 16%

Defects

Predicted

by ALTA 12.70% 19.04% 10.60% 13.90%

Table 3: Comparison of defects logged in process log and

defects predicted by ALTA for large size software

development

Fig 7: Line chart comparison of defects logged in process

log and defects predicted by ALTA for large size software

development

The results show that the performance of risk prediction in

ALTA is proportional to the size of log entries. Though

maximum number of log entries are entered but provides

accurate results in generalizing features, Therefore the defect

prediction in ALTA is accurate. With this we can come to the

conclusion that ALTA as in appendage risk prediction model

can lessen the cost because of defects in development and

testing.

7. CONCLUSION
Depending upon the results of the empirical analysis

mentioned in earlier section, it is to be concluded that

irrespective of the size of the software to be developed the

ALTA is best for minimizing cost, using of resources ,

balancing development and testing phases. It enables to work

with any of the software development models .and leads to

stable and scalable software development. The methodology

used in defect prediction is stable in all types of software

application sizes.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.24, April 2012

22

8. REFERENCES

[1]B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J.

Macleod, and M. J. Merrit. Characteristics of Software

Quality. North-Holland, 1978

[2]ISO. Software engineering – product quality – part 1:

Quality model, 2001.

[3]D. Coleman, B. Lowther, and P. Oman. The application of

software maintainability models in industrial software

systems. J. Syst. Softw., 29(1):3–16, 1995.

[4]M. R. Lyu, editor. Handbook of Software Reliability

Engineering. IEEE Computer Society Press and

McGraw-Hill, 1996.

[5]S. Wagner. Using economics as basis for modelling and

evaluating software quality. In Proc. First International

Workshop on the Economics of Software and

Computation (ESC-1), 2007

[6]B. Kitchenham and S. L. Pfleeger. Software quality: The

elusive target. IEEE Software, 13(1):12–21, 1996.

[7]E. Georgiadou. GEQUAMO—a generic, multilayered,

cusomisable, software quality model. Software Quality

Journal, 11:313–323, 2003.

[8]S. Khaddaj and G. Horgan. A proposed adaptable quality

model for software quality assurance. Journal of

Computer Sciences, 1(4):482–487, 2005.

[9]J.M¨unch and M. Kl¨as. Balancing upfront definition and

customization of quality models. In Workshop-Band

Software- Qualit¨atsmodellierung und -bewertung

(SQMB 2008). Technische Universit¨at M¨unchen, 2008.

[10]M. Broy, F. Deissenboeck, and M. Pizka. Demystifying

maintainability. In Proc. 4th Workshop on Software

Quality (4-WoSQ), pages 21–26. ACM Press, 2006.

[11]F. Deißenb¨ock, S. Wagner, M. Pizka, S. Teuchert, and J.-

F. Girard. An activity-based quality model for

maintainability. In Proc. 23rd International Conference

on Software Maintenance (ICSM ’07). IEEE Computer

Society Press, 2007.

[12]B. Kitchenham, S. Linkman, A. Pasquini, and V. Nanni.

The SQUID approach to defining a quality model.

Software Quality Journal, 6:211–233, 1997.

[13]V. Basili, P. Donzelli, and S. Asgari. A unified model of

dependability: Capturing dependability in context. IEEE

Software, 21(6):19–25, 2004.

[14]C. Frye. CMM founder: Focus on the product to improve

quality, June 2008.

[15]N. Fenton. Software measurement: A necessary scientific

basis. IEEE Trans. Softw. Eng., 20(3):199–206, 1994.

[16]N. E. Fenton and M. Neil. A critique of software defect

prediction models. IEEE Trans. Softw. Eng., 25(5):675–

689, 1999

[17]H.W.J. Rittel and M.M. Webber, “Dilemmas in a General

Theory of Planning,” Policy Sciences, vol. 4, no. 2, 1973,

pp. 155–169.

[18]P. Abrahamsson et al., “New Directions on Agile

Methods: A Comparative Analysis,” Proc. 25th Int’l

Conf. Software Eng. (ICSE 03), IEEE CS Press, 2003, pp.

244–254.

[19]D. Saff and M.D. Ernst, “An Experimental Evaluation of

Continuous Testing during Development,” Proc. ACM

SIGSOFT Int’l Symp. Software Testing and Analysis,

ACM Press, 2004, pp. 76–85. [20]D.C. Schmidt, “Guest

Editor’s Introduction: Model- Driven Engineering,”

Computer, vol. 39, no. 2, 2006, pp. 25–31.

[21]G. Karsai et al., “Model-Integrated Development of

Embedded Software,” Proc. IEEE, vol. 91, no. 1, 2003,

pp. 145–164.

 [22] Cortes, C.; Vapnik, V.; Mach. Learn. 1995, 20, 273.

[23] Sun J, Xu W, Feng B, A Global Search Strategy of

Quantum- Behaved Particle Swarm Optimization. In

Proc. of the 2004 IEEE Conf. on Cybernetics and

Intelligent Systems, Singapore: 291 – 294, 2004.

[24] Suykens, J. A. K.; Vandewalle, J.; Neural Process. Lett.

1999, 9, 293.

[25] Suykens, J. A. K.; van Gestel, T.; de Brabanter, J.; de

Moor, B.; Vandewalle, J.; Least-Squares Support Vector

Machines, World Scientifics: Singapore, 2002.

[26] Zou, T.; Dou, Y.; Mi, H.; Zou, J.; Ren, Y.; Anal.

Biochem. 2006, 355, 1.

[27] Ke, Y.; Yiyu, C.; Chinese J. Anal. Chem. 2006, 34, 561.

[28] Niazi, A.; Ghasemi, J.; Yazdanipour, A.; Spectrochim.

Acta Part A 2007, 68, 523.

[29] Dr S.Nagaraja Rao, Dr.M.N.Giri Prasad "A New Image

Compression framework :DWTOptimization using LS-

SVM[25] regression under IWP-QPSO[29] based hyper

parameter optimization", (IJCSIS) International Journal

of Computer Science and Information Security,Vol. 9,

No. 7, July 2011

[30] http://sourceforge.net/projects/gdownloader/

[31] http://netresearch.ics.uci.edu/kfujii/Jpcap/doc/

[32] http://lucene.apache.org/

[33] Florian Deissenboeck, Elmar Juergens, Klaus Lochmann,

and Stefan Wagner "Software Quality Models: Purposes,

Usage Scenarios and Requirements", Workshop on

Software Quality 2009, Technische Universität München,

Germany

9. AUTHORS PROFILE
N.Rajasekhar reddy was born in Madanapalli, February

28.He was received Bachelor’s degree in Computer Science

in S.V University and M.Tech degree from Satyabama

University respectively. After working as a research

assistant and an assistant professor in the Dept. of

ComputerScience and Engineering, Madanapalli Institute of

Technology and Science, Andhra Pradesh, India. His research

interest includes Software Engineering, Software Quality

Assurance and Testing. He was published 4 international

journal papers and 5 National journal papers in Software

Engineering. He is a member of SCIE, ISTE, and IEEE.

R.J.Ramasree was born in Tirupati and received M.S

degree in Bits Pilani and Doctoral degree in Computer

Science, S.V University respectively. Then she was working

as assistant professor in the Dept. of Computer Science in

Rastriya Sanskrit Vidya peeta University. After professor in

the Faculty of Computer Science, Raastriya Sanskrit

VidyaPeeta, Tirupati. . Her research interest includes Data

Mining.

