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ABSTRACT  

The present paper proposes a Machine learning technique for 

defect forecasting  and handling for SQA called appendage 

log training and analysis, can be referred  as ALTA. The 

proposed defect forecasting  of  in-appendage software 

development logs   works  is to deal the forecasted defects 

accurately and spontaneously while developing the  software. 

The present proposed mechanism helps in minimizing the 

difficulty of SQA. The overall study is conducted on 

evaluating the proposed model which indicates the defect 

forecasting in-appendage software development log training 

and analysis is significant growth to lessen the complexity of 

Software Quality Assessment. 
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1. INTRODUCTION 
 Research is being prominent in all engineering and science 

disciplines. To raise the quality of soft ware research has been 

inevitable even for software development.  

According to the  hierarchical models of Boehm et al. [1], for  

the last thirty years, a different types of models  are developed 

to increase quality of software  of which a few became 

standard. At present these models are being used, to specify the 

quality need and, to test present systems or to identify the 

defect density of a system in the field. 

A number of varieties of models have been engendered during 

the last three decades and named as “quality models”. For 

instance on the spectrum of diverse models include taxonomic 

models like the ISO 9126 [2], metric-based models like the 

maintainability index (MI) [3] and stochastic models like 

reliability growth models (RGMs) [4]., These  models seems   

to have  less similarities though they  deal with software 

quality. This variation is due to the purposes the models pursue: 

The ISO 9126 defines quality, metric-based approaches, used 

for assessment of the quality of a particular system and 

reliability growth models tells quality. In order to avoid 

comparison various purposes like definition, assessment and 

prediction of quality, to classify quality models are used. 

Therefore, the ISO 9126 is defined as definition model, metric-

based approaches as assessment models and RGMs as 

prediction models. Though definition, assessment and 

prediction of quality are various purposes, they are certainly   

dependent of each other: It is very difficulty for assessing 

quality without knowing it’s  actually constitutes and at the 

same time not easy  to predict quality without knowing 

assessment process. Quality models relation is illustrated by 

the DAP classification shown in Fig. 1. 

 

Fig 1: DAP Classification [33] 

 The DAP classification[33] points  prediction models as one 

of the most advanced form of quality models because  they can 
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also be utilized to  define and  assess quality. Hence, this 

opinion only applies for ideal models.  Fig. 1displays that 

present quality models do not    include all aspects equally. If 

we observe the ISO 9126defines quality but to assess it is 

possible; the MI says assessment but can not define quality. 

RGMs also predicts without defining quality. 

Related Work 

Coming to the related works, the main forthcoming of present 

quality models is that they do not relate to an explicit meta 

model. Therefore the structure of the model elements is not 

clearly defined and the interpretation is left to the reader. 

Quality models must be central treasure for the information 

about quality. So the various tasks of quality engineering 

should depend upon one quality model. Now days, first 

problem is that quality models are used separately for 

specification of quality needs and the assessment of software 

quality. Second problem is that now a day’s quality models 

are not addressing various opinions on quality. For software 

engineering, the value-based opinion is commonly considered 

of high importance [5]. Which is mostly missing in existing 

quality models [6]. 

Software systems consists a large variety which ranges from a 

large amount of business information systems to small 

embedded controllers. These variations must be accounted for 

in quality models by defined means of customization but is 

lacking in the present quality models, [7, 8, and 9]. 

Present quality models lack clarity in defining the 

decomposition criteria which determine the difficult concepts 

of quality of decomposition. Most definition models base on a 

taxonomic, hierarchical decomposition of quality attributes. 

The decomposition model does not follow defined guidelines 

and can be arbitrary [10, 11, 12, 6]. Therefore, it is hard to 

identify similar quality attributes, like availability. In addition 

to large quality models, with unclear decomposition locating 

elements becomes difficult. Developers have to search for 

large parts of the model to assert that an element does not 

exist. This leads to redundancy because of presence of similar 

elements. 

The vague decomposition in most of the quality models will 

also be the cause of overlapping in various quality attributes. 

In addition to, these overlaps will not be considered explicitly. 

I f we observe security will be influenced by availability 

(denial of service attack), a part of reliability; code quality 

factor of maintainability is considered as an indicator for 

security [13]. 

Most quality model frameworks do not give ways for utilizing 

the quality models for constructive quality assurance. For 

instance , hoe the quality models communicated to project 

participants is not clear. Guidelines is a common method of 

communicating information. Pragmatically , guidelines which 

are meant for communicating the knowledge of a quality 

model face problems, which are directly related to 

corresponding problems of the quality models itself; e.g. the 

guidelines will not be concrete enough and the document 

structure of the guideline will not be aligned according to an 

evident schema. Rationales are often not provided for the 

rules the guidelines impose. Other problem is that the quality 

models are not define tailoring methods to use the guidelines 

to the application area. 

Unclear decomposition of quality attributes, which mentioned 

earlier, is one problem for analytical quality assurance. The 

given quality attributes are very much abstract rather than 

straightforward checkable in a concrete software system [3,5]. 

Due to the present quality models, define checkable attributes 

and refinement methods to get checkable attributes, they are 

difficult to utilize in measurement [14, 6]. 

In the realm of software quality, a huge number of metrics for 

measurement have been planned. But these metrics due to 

lack of structure in quality models faces problems. One such 

problem is that in spite of defining metrics, the quality models 

fail to provide a detailed account of the influence that specific 

metrics have on software quality [6]. Because of poor 

semantics, the total of metric values along the hierarchical 

levels will be problematic. Other problem is that the given 

metrics doesn’t possess clear motivation and validation. A 

part from this, present approaches do no value the 

fundamental rules of measurement theory and, therefore, 

forced to create duplicate results [15]. 

Because of the problems in constructive and analytical quality 

assurance, the possibility of certification on basis of quality 

models will face problems [14]. It should be stated that 

measurement is important for any control process. Hence the 

measurement quality attributes is necessary for an efficient 

quality assurance processes and for engineering 

needs.Predictive quality models don’t possess definition of the 

concepts they are depend on. Many of them depend on 

regression using a set of software metrics. This regression 

results in equations that are difficult to interpret [16]. 

Pragmatically prediction models is context-dependent, also 

complicates broad application. Most factors influence the 

typical prediction goals and especially , factors that varies 

robustly. Generally in prediction models these context 

conditions will not be made explicitly. 

Service-oriented distributed systems evolve in size and 

complexity, assures that they conform to their specifications 

throughout the software life cycle becomes hard. This origins 

the problem of serialized- phasing development [17], where 

application- level entities are devised after infrastructure- 

level entities. Serialized-phasing improvement builds it 

difficult to evaluate end-to-end functional and quality-of-

service (QoS) aspects until late in the software life cycle for 

example, at system integration time. 

Agile techniques addresses functional aspects of serialized-

phasing development by authorizing software functionality 

throughout software life cycle[18, 19]. One such example is 

test-driven development and continuous integration are agile 

techniques that endorse functional quality by assuring that 
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software work up to the mark. The advantage of utilizing agile 

techniques to develop QoS assurance of service-oriented 

distributed systems, despite, demonstration. Developers, 

hence, require new techniques to aid in exploring the 

indication of serialized-phasing development and enable 

evaluation of QoS that is considered throughout the software 

life cycle. 

Model-driven engineering (MDE) is a favorable solution for 

augmenting software development of service-oriented 

distributed systems [20]. MDE techniques like domain-

specific modeling languages (DSMLs)[21], supply developers 

with visual representations of abstractions that holds key 

domain semantics and constraints. DSMLs also supply tools 

that transform models into stable artifacts, like source code or 

configuration files that are dread and error-prone to generate 

manually utilizing third-generation languages. These artifacts 

generally are not handy in the software life cycle let a proper 

evaluation of end-to-end QoS properties. 

3.SQA BY DEFECT PREDICTION 
The mentioned In-Appendage Software Development log 

Analysis by SVM works as an intelligent system to identify 

defects to enhance the Software Quality. In nut shell we refer 

ALTA. The fig 2 defines the proposed defect prediction 

process that mingles with software development and testing. 

In ALTA the defect prediction is strategic and helps to predict 

the defect that leverages the cost and targeted result. This 

forecast can help the adepts included to reform the current 

action to reduce the severity of the risk forecasted. Fig 3 

explains the defect forecast strategy mentioned as key feature 

of the ALTA. In defect forecasting process we adapt to 

machine learning technique called least square support vector 

machines abbreviated as LSSVM. The Defect forecasting 

stage of the ALTA targets the improvement of logs handy as 

input to train the LSSVM for better forecasting. The feature 

bring out process that is part of SVM training process will be 

carried with help of mathematical model named  

Intensified worst particle based Quantum particle swarm 

optimization, details as follow. 

 

Fig 2: Defect prediction and handling using Machine 

learning 

 

Fig 3: Defect prediction Process 

4. DEFECT PREDICTION USING 

LS-SVM[25] AND IWP-QPSO[29] 

4.1 LS-SVM[25] 

For solving pattern recognition and classification problem 

using Support vector machine (SVM) tool proposed by 

Vapnik[22, 23] is  beneficent. . It even can be applied to 

regression problems by the brining up other loss function. 

Because of its benefits and excellent generalization 

performance comparing to other methods, SVM caught the 

attention of user and won mammoth application [5]. SVM 

displays extraordinary performances due to the capacity of 

leading global models which are special with the structural 

risk minimization principle [24], showing superiority over 

traditional empirical risk minimization principle. In addition 

of specific formulation, sparse solutions will be found. Linear 

and nonlinear regression can be performed with LSSVM. 

Therefore finalizing the SVM model is computationally very 

hard because it needs the solution of a set of nonlinear 

equations (quadratic programming problem). According to  

simplification, Suykens and Vandewalle[25] proposed a 

modified version of SVM called least-squares SVM (LS-

SVM[25]), that bring out  in a set of linear equations in the 

place  of a quadratic programming problem, that can be  

enlarge the applications of the SVM with  a number of superb  

introductions of SVM [25, 26] and the theory of LS-SVM[25] 

is explained explicitly  by Suykens et al[24, 25] and 

application of LS-SVM[25] in quantification and 

classification mention in a few works[27, 28]. 

Basically, LS-SVM[25] uses a linear relation (y = wx + b) 

between the regression (x) and the dependent variable (y). The 

best relation is the one that reduces the cost function (Q) 

containing a penalized regression error term:   
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In the first part of cost function, weight decay useful in 

regularizing weight sizes and penalizes large weights. 

Because of regularization, the weights converge to similar 

value. Large weights dwindles the generalization ability of the 

LS-SVM [25] because of causing more variance. The 

regression error for all training data is in the second part of 

cost function the relative weight of the present part compared 

to the first part will be symbolized as ‘g’ that should be used 

by the user. 

Likewise to other multivariate statistical models, the 

performances of LS-SVM [25]s bases on  the combination of 

several parameters. Attaining of the kernel function is 

cumbersome and it will depend on each case. Whatever,  the 

kernel function uses more  radial basis function (RBF), a 

simple Gaussian function, and polynomial functions where 

width of the Gaussian function and the polynomial degree will 

be used, which should be optimized by the user, to obtain the 

support vector. For the RBF kernel and the polynomial kernel 

it should be stressed that it is very necessary  to do a careful 

model selection of the tuning parameters, in combination with 

the regularization constant g, in order to achieve a good 

generalization model. 

4.2 IWP- QPSO (Intensifying the Worst Particle for 

QPSO)[29] 

S.Nagaraja Rao et al[12] did  to optimize the QPSO by 

intensifying worst swarm particle with new swarm particle. 

An interpolate equation will be traced out by applying a 

quadratic polynomial model on existing best fit swarm 

particles. Depending  on emerged interpellant, new particle 

will be find. If the new swarm particle found as better one in 

comparison to  least good swarm particle then substitution 

takes place.   

The computational steps of optimized QPSO algorithm as 

follows: 

Step 1: Initialize the swarm. 

Step 2: Calculate mbest  

Step 3: Update particles position  

Step 4: Evaluate the fitness value of each particle 

Step 5: If the current fitness value is better than the best 

fitness value (Pbest) in history Then Update Pbest by the 

current fitness value. 

Step 6: Update Pgbest (global best) 

Step 7: Find a new particle 

Step 8: If the new particle is better than the worst particle in 

the swarm, then replace the worst particle by the new particle. 

Step 9: Go to step 2 until maximum iterations reached. 

The swarm particle can be found using the fallowing. 
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In the mentioned math notations ‘a’ is best fit swarm particle, 

‘b’ and ‘c’ are randomly selected swarm particles ix is new 

swarm particle. 

4.3 LS-SVM [25] Regression and QPSO based hyper 

parameter selection 

Assume that a given training set of N data points  1{ , }N

t t tx y    

with input data 
d

tx R  and output  ty R . In feature 

space LS-SVM [25] regression model take the form 

Ty (x) = w  (x) + b …………… (1) 

Where the input data is mapped  (.)  

The solution of LS-SVM[25] for function estimation is given 

by the following set of linear equations: 
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And the Mercer’s condition has been applied. 

This finally results into the following LS-SVM[25] model for 

function estimation: 
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Where , b are the solution of the linear system, K(.,.) 

represents the high dimensional feature spaces that is 
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nonlinearly mapped from the input space x. The LS-SVM[25] 

approximates the function using the Eq. (3). 

In present work, the radial basis function (RBF) is used as the 

kernel function: 

2 2( , ) exp( || || / )i j tk x x x x     

In the training LS-SVM[25] problem, there are hyper-

parameters, such as kernel width parameter σ and 

regularization parameter C, which may affect LS-SVM[25] 

generalization performance. So these parameters required 

perfectly in tuning of reducing the generalization error. An 

attempt is made to tune these parameters automatically by 

using QPSO. 

4.4 Hyper-Parameters Selection Based on IWP-QPSO[29] 

To surpass the usual L2 loss results in least-square SVR, we 

attempt to optimize hype parameter selection. 

The two key factors that finalize the optimized hyper-

parameters through QPSO: First one is how to represent the 

hyper-parameters as the particle's position, namely encoding 

[13,14]. Second one is defining the fitness function, that 

evaluates the goodness of a particle..  

4.4.1 Encoding Hyper-parameters: 

The optimized hyper-parameters for LS-SVM [25] consists 

kernel parameter and regularization parameter. To solve 

hyper-parameters selection by the proposed IWP-QPSO [29], 

every particle represents a potential solution, called hyper-

parameters combination. A hyper-parameters combination of 

dimension m is represented in a vector of dimension m, such 

as ( , )ix C . The resultant Hyper-parameter optimization 

under IWP-QPSO [29] can found in fallowing fig 4. 

a. Fitness function:  

The fitness function is the generalization performance 

measure. For the generation performance measure, there are 

some other descriptions. In the present paper, the fitness 

function is: 

1

( , )
fitness

RMSE  
 …. (12) 

Where RMSE (σ, γ) is the root-mean-square error of predicted 

results, which varies with the LS-SVM [25] parameters (σ ,γ ) . 

When the termination criterion is met, the individual with the 

biggest fitness corresponds to the optimal parameters of the 

LS-SVM [25]. 

The two alternatives for stop criterion of the algorithm are: 

First method is that the algorithm stops when the objective 

function value is less than a given threshold ε; the other is that 

it is terminated after executing a pre-specified number of 

iterations. The following steps describe the IWP-QPSO [29]-

Trained LS-SVM [25] algorithm: 

(1) Initialize the population by randomly generating the 

position vector iX of each particle and set iP = iX; 

(2) Structure LS-SVM [25] by treating the position vector of 

each particle as a group of hyper-parameters; 

(3) Train LS-SVM[25] on the training set; 

(4) Evaluate the fitness value of each particle by Eq.(12), 

update the personal best position iP and obtain the global best 

position gP across the population; 

(5) If the stop criterion is met, go to step (7); or else go to step 

(6); 

(6) Update the position vector of each particle according to 

Eq.(7), Go to step (3); 

(7) Output the gP as a group of optimized parameters. 

 

Fig 4: Hyper-Parameter optimization response surface 

under IWP-QPSO[29] for LS-SVM[25] 

5. RISK PREDICTION IN ALTA 
This section explains the proposed algorithm for ALTA. The 

ALTA mainly backed by LS-SVM[25] regression that relies 

on IWP-QPSO[29] for feature extraction. 

 The Development log considered into multitude tuple. 

 Collect the resultant detailed near features of each tuple 

 Submit feature matrix as input to LS-SVM[25] 

regression under IWP-QPSO[29], which infers the data 

to be used for training by generating minimal required 

number of support vectors.  

 Estimate the absolute levels of the features. 

 Do risk prediction by evaluating the features of the 

current and subsequent dependent activities of the code 

tuple of the current development. 

 Identify the risk status 

6. EMPIRICAL STUDY AND RESULTS 

DISCUSSION 
The performance analysis of the proposed In-Appendage risk 

prediction using machine learning is done by performing 

wholesome study on different open source project 

development logs. It is opted to various logs that are of 

applications of various sizes ranging from low, mid to large 

level. 
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The performance of the ALTA verified by applying on 

development log of the Gdownloader[30], which is tiny open 

source application, JPCAP[31], which is tiny open source 

application and LUCENE[32],which is large size open source 

application. Empirical analysis is conducted to check the 

performance of ALTA is as given below. 

The development, test phases and their process logs were 

partitioned into multitude tuple set.  The extracted features 

from each process log tuple and generalized with IWP-QPSO, 

then trained with LS-SVM, then attempted to predict the risks 

in next tuple of actions. And then we analyzed performance of 

the ALTA by comparing the predicted risk ratio with actual 

risks of each tuple logged in process log. 

 The results are observed are a bit intriguing. So it is 

concluded that ALTA influences in risk forecasting at 

Development and Testing stages. 

Table 1 represents the comparison of defects observed during 

development that are logged in process logs and predicted at 

In-Appendage time of development and testing.  The table 1, 

table 2 and table 3, Fig 5, fig 6 and fig 7 represents the 

accuracy of ALTA in risk prediction during development and 

testing. From the results it is clear  that ALTA is significant 

and reliable to forecast  defects during development and 

testing phases of the software development.  

To simplify the results analysis, each application and its log 

partitioned into multitude tuple set of 4 for development and 4 

for testing. The results description fallows 

ALTA’s performance report on tiny software development: 

performance of validation  of ALTA on GDownloader[30] 

process log 

Risk prediction ratio at multitude tuple set of 

Gdownloader Development phase: 

 Block 1 Block 2 Block3 Block4 

Defects in 

Process 

Log 

3% 1% 0.30% 30% 

Defects 

Predicted 

by ALTA 

3% 0.20% 0.15% 27% 

 

Risk prediction ratio at multitude tuple set of 

Gdownloader Testing phase: 

 Block1 Block2 Block3 Block4 

Defects in 

Process 

Log 

14% 0% 0% 0% 

Defects 

Predicted 

by ALTA 

11% 0% 0% 0% 

 

Table 1: Comparison of defects logged in process log and 

defects predicted by ALTA for small size software 

development 

 

 

Fig 5: Line chart comparison of defects logged in process 

log and defects predicted by ALTA for small size software 

development 

ALTA’s performance report on medium software 

development: 

(A) Performance validation on JPCAP[31] development 

process log 

 Block 

1 

Block 

2 

Block3 Block4 

Defects in 

development 

Process Log 9% 12% 21% 39% 

Defects Predicted 

by ALTA 7.90% 7.60% 20.10% 36.78% 

 

(B) Performance validation on JPCAP[] Testing process 

log 

 Block1 Block2 Block3 Block4 

Defects in 

Process 

Log 23% 1% 2% 2% 

Defects 

Predicted 

by ALTA 20.67% 0.90% 1% 0.90% 
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Table 2: Comparison of defects logged in process log and 

defects predicted by ALTA for mid size software 

development 

 

Fig 6: Line chart comparison of defects logged in process 

log and defects predicted by ALTA for mid size software 

development 

ALTA’s Performance report on huge software 

development: 

(A) Performance validation on LUCENE[32] 

development process log 

 Block 1 Block 2 Block3 Block4 

Defects in 

development 

Process Log 22% 32% 20% 21% 

Defects 

Predicted by 

ALTA 19.40% 31.10% 19.40% 20.80% 

(B) Performance validation on LUCENE[] Testing 

process log 

 Block1 Block2 Block3 Block4 

Defects in 

Process 

Log 14% 20% 11% 16% 

Defects 

Predicted 

by ALTA 12.70% 19.04% 10.60% 13.90% 

Table 3: Comparison of defects logged in process log and 

defects predicted by ALTA for large size software 

development 

 

 

Fig 7: Line chart comparison of defects logged in process 

log and defects predicted by ALTA for large size software 

development 

The results show that the performance of risk prediction in 

ALTA is proportional to the size of log entries. Though 

maximum number of log entries are entered but provides 

accurate results in generalizing features, Therefore the defect 

prediction in ALTA is accurate. With this we can come to the 

conclusion that ALTA as in appendage risk prediction model 

can lessen the cost because of defects in development and 

testing. 

7. CONCLUSION 
Depending upon the results of the empirical analysis 

mentioned in earlier section, it is to be concluded that 

irrespective of  the size of the software to be developed the 

ALTA is best for  minimizing cost, using of resources , 

balancing  development and testing phases. It enables to work 

with any of the software development models .and leads to 

stable and scalable software development.  The methodology 

used in defect prediction is stable in all types of software 

application sizes. 
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