
International Journal of Computer Applications (0975− 8887)
Volume 43- No.23, April 2012

Conditional Resolving Parameters on Enhanced Hypercube Networks

∗Bharati Rajan Albert William Indra Rajasingh

Department of Mathematics Department of Mathematics Department of Mathematics

Loyola College Loyola College Loyola College

Chennai, India Chennai, India Chennai, India

S. Prabhu

Department of Mathematics

Loyola College

Chennai, India

Abstract

Given a graph G = (V,E), a set W ⊂ V is a resolving set

if for each pair of distinct vertices u, v ∈ V (G) there is

a vertex w ∈ W such that d(u,w) 6= d(v, w). A resolv-

ing set containing a minimum number of vertices is called a

minimum resolving set or a basis for G. The cardinality of

a minimum resolving set is called the dimension of G and

is denoted by dim(G). A resolving set W is said to be a

one size resolving set if the size of the subgraph induced by

W is one, and a one-factor resolving set if W induces iso-

lated edges (one regular graph). The minimum cardinality

of these sets denoted or(G) and onef(G) are called one size

and one factor resolving numbers respectively. In this pa-

per we investigate these resolving parameters for enhanced

hypercube networks.

Keywords: Resolving set, basis, one size resolving set,

one factor resolving set, and enhanced hypercube networks

1 INTRODUCTION

A query at a vertex v discovers or verifies all edges and
non-edges whose endpoints have different distance from
v. In the network verification problem [1], the graph is
known in advance and the goal is to compute a mini-
mum number of queries that verify all edges and non-
edges. This problem has previously been studied as the
problem of placing landmarks in graphs or determining
the metric dimension of a graph [8]. Thus, a graph-
theoretic interpretation of this problem is to provide
representations for the vertices of a graph in such a
way that distinct vertices have distinct representations.
This is the subject of the papers [5, 21, 22].

For an ordered set W = {w1, w2...wk} of vertices and
a vertex v in a connected graph G, the code or repre-
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sentation of v with respect to W is the k-vector

CW (v) = (d(v, w1), d(v, w2)...d(v, wk))

where d(x, y) is the distance between the vertices x and
y. The set W is a resolving set for G if distinct ver-
tices of G have distinct codes with respect to W . The
minimum cardinality of a resolving set for G is called
the resolving number or dimension and is denoted by
dim(G).

2 AN OVERVIEW OF THE PA-

PER

The concept of resolvability in graphs has previously
appeared in literature. Slater [21, 22] introduced this
concept, under the name locating sets, motivated by its
application to the placement of a minimum number of
sonar detecting devices in a network so that the position
of every vertex in the network can be uniquely deter-
mined in terms of its distance from the set of devices.
He referred to a minimum resolving set as a reference
set and called the cardinality of a minimum resolving
set as the location number. Independently, Harary and
Melter [5] discovered this concept, but used the term
metric dimension, rather than location number. Later,
Khuller et al. [8] also discovered these concepts inde-
pendently and used the term metric dimension. These
concepts were rediscovered by Chartrand et al. [2] and
also by Johnson [7] while attempting to develop a ca-
pability of large data sets of chemical graphs.
It was noted in [4] that determining the metric di-

mension of a graph is NP -complete. It has been proved
that the metric dimension problem is NP -hard [8] for
general graphs. Manuel et al. [12] have shown that
the problem remains NP-complete for bipartite graphs.
There are many applications of resolving sets to prob-
lems of network discovery and verification [1], pattern
recognition, image processing and robot navigation [8],
geometrical routing protocols [10], connected joins in
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Figure 1: An enhanced hypercube Q4,2 with binary rep-
resentation

graphs [20], coin weighing problems [23]. This problem
has been studied for trees multi-dimensional grids [8],
Petersen graphs [14], torus networks [11], Benes net-
works [12], honeycomb networks [13], enhanced hyper-
cubes [15] and Illiac networks [18].

Many resolving parameters are formed by combin-
ing resolving property with another common graph-
theoretic property such as being connected, indepen-
dent, or acyclic. The generic nature of conditional re-
solvability in graphs provides various ways of defining
new resolving parameters by considering different con-
ditions. A resolving set W of G is connected if the
subgraph induced by W is a nontrivial connected sub-
graph of G. The minimum cardinality of a connected
resolving set is called connected resolving number and
it is denoted by cr(G) [19]. A resolving set W is said to
be a one size resolving set [9] if the size of W is one, a
one factor resolving set [17] if W induces isolated edges,
and a path resolving set [17] if W induces a path. In
this paper we show the existence of a one size and a one

factor resolving set in an enhanced hypercube network.

3 TOPOLOGICAL PROPER-

TIES OF ENHANCED HY-

PERCUBE NETWORKS

The hypercube has received considerable attention
mainly due to its regular structure, small diameter, and
good connection with a relatively small node degree
[25]. The hypercube is a very popular, versatile and
vertex-transitive interconnection network [3]. When the
dimension of hypercube increases, the cardinality of its
vertex set increases exponentially. Many variations of
the hypercube have been suggested to improve the per-
formance. One of the variations is the enhancement [24]
of the hypercube with same number of vertices. The en-
hanced hypercubes are much more attractive than the
normal hypercubes due to their potentially nice topo-
logical properties.

Let Qr denote the graph of the r-dimensional hy-
percube, r ≥ 1. The vertex set is given by V (Qr) =
{(x0x1...xr−1) : xi = 0 or 1}. Two vertices
(x0x1...xr−1) and (y0y1...yr−1) of Qr are adjacent if
and only if they differ exactly in one position. Qr is

x

x’

x’

Figure 2: Four copies of Q3,2 in Q5,2

r-regular, bipartite, has 2r vertices and r2r−1edges and
diameter r. It is hamiltonian if r ≥ 2 and Eulerian if r
is even [25].
The enhanced hypercube Qr,k, 0 ≤ k ≤ r − 1,

is a graph with vertex set V (Qr,k) = V (Qr) and
edge set E(Qr,k) = E(Qr)∪{x0x1...xk−2xk−1xk...xr−1,

x0x1...xk−2xk−1xk...xr−1)}. The edges of Qr in Qr,k

are called the hypercube edges and the remaining edges
are called complementary edges or skips [24]. See Fig-
ure 1. The enhanced hypercube, Qr,k, 0 ≤ k ≤ r − 1 is
(r+1)-regular with 2r vertices and (r+1)2r−1edges. It
is bipartite if and only if r and k have the same parity
[6, 24].

4 ONE SIZE RESOLVING

NUMBER

In this section we determine a bound for the one size
resolving number of enhanced hypercube networks.

Definition 4.1. A set W of G is a one size resolving set

if the size of subgraph induced by W is one and distinct

vertices of G have distinct codes with respect to W . The

minimum cardinality of a one size resolving set in G is

the one size resolving number and is denoted by or(G).

A one size resolving set of cardinality or(G) is called
an or-set of G. If G is a connected graph of order n

containing an or-set, then it is clear that 2 ≤ or(G) ≤
n− 1.
We now proceed to identify a one size resolving set in

an enhanced hypercube network Qr,2. It is clear that
there are four copies of Qr−2,2 in Qr,2. We denote them
as Qr−2,2

0 , Qr−2,2
1,1 , Qr−2,2

1,2 and Q
r−2,2
2 . Figure 2 exhibits

the four copies of Q3,2 in Q5,2. Let x ∈ V (Qr−2,2
0 ). A

vertex x′ ∈ V (Qr−2,2
1,1 ) or V (Qr−2,2

1,2 ) is called an image

of x if d(x, x′) = 1. Note that vertices in Q
r−2,2
0 , at
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Figure 3: Image of a path P

distance 1 from x are not considered as images of x. If
x′ is the image of x in Q

r−2,2
1,1 then x is called the pre-

image of x′. Let P = u0u1...un be a path in Q
r−2,2
0 .

Then the path P ′ = u′

0u
′

1...u
′

n where u′

i is the image
of ui in Q

r−2,2
1,1 (Qr−2,2

1,2 ) is called the image of P in

Q
r−2,2
1,1 (Qr−2,2

1,2 ) and P is called the pre-image of P ′. See
Figure 3. We use the following result of B. Rajan et al.
[15].

Lemma 4.1. [15] Let x ∈ V (Qr−2,2
0 ) and let x′ ∈

V (Qr−2,2
1,1 ) be the image of x. Let w be any vertex in

Q
r−2,2
0 . Then d(x′, w) = 1 + d(x,w).

Lemma 4.2. Let x ∈ V (Qr−2,2
0 ). Let x′

1 ∈ V (Qr−2,2
1,1 )

and x′

2 ∈ V (Qr−2,2
1,2 ) be the images of x. Then x′

1 and

x′

2 are equidistant from every vertex of Q
r−2,2
0 .

Proof. Since the shortest paths from x′

1 and x′

2 to any
vertex of Qr−2,2

0 pass through x, the conclusion follows.

Theorem 4.1. Let G = Qr,2, then or(G) ≤ r − 1,
r > 3.

Proof. We prove the theorem by induction on r.

Base Case:

Let G = Q4,2 and W1 = {w0, w1, w2}, where w0 =
0001, w1 = 0011 and w2 = 0110. It follows from the
definition of hypercube edges that w0 is adjacent to w1

and that w2 is non-adjacent to w0 and w1. It is easy
to check that W1 is a resolving set for Q4,2. Figure 4
shows the distinct codes of vertices in Q4,2, with respect
to W1 = {w0, w1, w2}. Thus W1 is a one size resolving
set for G. Now assume that the result is true for the
enhanced hypercube Qr−1,2. Let W1 = {w0, w1...wr−3}
where w0 = 0000...01

︸ ︷︷ ︸

(r−1)−bit

and wi = x0x1...xr−i−2xr−i−1

...xr−2, 1 ≤ i ≤ r − 3, xs = 0, 0 ≤ s ≤ r − 2 be
a one size resolving set for Qr−1,2. Here w0w1 ∈ E.

Since and wk+1 and wj , 0 ≤ j ≤ k, 1 ≤ k ≤ r − 4 dif-
fer in two bits they are not adjacent in Qr−1,2. This
justifies the fact that the size of W1 is one. More-
over W1 ⊂ V (Qr−2,2

0 ). Divide Qr,2 into four copies of
Q

r−2,2
0 , Q

r−2,2
1,1 , Q

r−2,2
1,2 and Q

r−2,2
2 . There exist vertices

x ∈ Q
r−2,2
1,1 and y ∈ Q

r−2,2
1,2 having the same code with

respect to every vertex of Qr−2,2
0 and in particular with

322232211121

213123102012

222223111112

331332220221

Figure 4: One size resolving set in Q4,2

respect to every vertex of W1. Hence W1 cannot resolve
x and y. We exhibit a resolving set for Qr,2. We claim
that W is a resolving set for Qr,2. Define W = {u0, ui :
1 ≤ i ≤ r − 3} ∪ {x0x1x2x3...00

︸ ︷︷ ︸

r−bit

} where u0 = 0w0

and ui = 0wi, 1 ≤ i ≤ r − 3. Now define W = {ui : 0 ≤
i ≤ r− 2} where u0 = 0w0 = x0x1...xr−2xr−1

︸ ︷︷ ︸

r−bit

and ui =

0wi, 1 ≤ i ≤ r − 3 and ur−2 = x0x1x2x3...xr−1
︸ ︷︷ ︸

r−bit

set is

obtained by appending a 0 to each element of W1 and
including the additional vertex x0x1x2x3...00

︸ ︷︷ ︸

r−bit

. Hence

W = {w0, w1...wr−2} where w0 = x0x1...xr−2xr−1
︸ ︷︷ ︸

r−bit

and

wi = x0x1...xr−i−1xr−i...xr−1, where 1 ≤ i ≤ r − 2,
xs = 0, 0 ≤ s ≤ r− 1. Clearly the size of W is one. We
claim that W is a resolving set of Qr,2.

Case 1: x, y ∈ V (Qr−2,2
0 ) or V (Qr−2,2

1,1 ) or V (Qr−2,2
1,2 )

Since W1 ⊂ V (Qr−2,2
0 ) and since Qr−2,2

0 ∪Q
r−2,2
1,1 and

Q
r−2,2
0 ∪Q

r−2,2
1,2 are isomorphic to Qr−1,2, by induction

hypothesis W1 resolves x and y. The same argument
applies to the following cases.

a) x ∈ V (Qr−2,2
0 ) and y ∈ V (Qr−2,2

1,1 )

b) x ∈ V (Qr−2,2
0 ) and y ∈ V (Qr−2,2

1,2 )

Case 2: x ∈ V (Qr−2,2
1,1 ) and y ∈ V (Qr−2,2

1,2 )

We need to prove that d(x,w) 6= d(y, w) for some
w in W = {w0, w1, w2...wr−3} ∪{wr−2}. Let x′, y′ ∈
V (Qr−2,2

0 ) be the images of x and y respectively.

Case 2.1: x′ = y′

In this case d(y, wr−2) = d(y, y′) + d(y′, wr−2) = 1 +
d(x′, wr−2) = 1 + 1 + d(x,wr−2) 6= d(x,wr−2).

Case 2.2: x′ 6= y′ and x′, y′ ∈ V (Qr−2,2
0 )

Now x′ and y′ are resolved by some w in W1. Hence
d(x′, w) 6= d(y′, w) and consequently d(x,w) 6= d(y, w).

Case 3: x ∈ V (Qr−2,2
0 ) and y ∈ V (Qr−2,2

2 )

The proof is similar to Case 2.
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Case 4: x, y ∈ V (Qr−2,2
2 )

As before let x′ and y′ be the images of x and
y respectively. There are two possibilities x′, y′ ∈
V (Qr−2,2

1,1 ) or V (Qr−2,2
1,2 ). Then d(x′, w) 6= d(y′, w) for

some w ∈ W1 by Case 1.

Case 5: x ∈ V (Qr−2,2
1,1 ) and y ∈ V (Qr−2,2

2 )

Let x′ ∈ V (Qr−2,2
0 ) and y′ ∈ V (Qr−2,2

1,2 ) be the images

of x and y respectively. Since Q
r−2,2
0 ∪Q1, 2

r−2,2 is re-
solved by W1, there exist a w ∈ W1 such that d(x′, w) 6=
d(y′, w). This implies that d(x,w) 6= d(y, w).

5 ONE FACTOR RESOLVING

NUMBER

In this section we determine a bound for the one factor
resolving number of enhanced hypercube networks.

Definition 5.1. A set W of G is a one factor resolving

set for G if G[W ] ≅ tK2, for some integer t. The min-

imum t for which G[W ] ≅ tK2 is called the one factor

resolving number of G and it is denoted by onef(G).
This parameter onef(G) reduces to the one size resolv-

ing number, or(G) when the size of G[W ]is one.

Theorem 5.1. Let G = Qr,2,then onef(G) ≤
(
r−1
2

)
,

where r odd and r > 3.

Proof. We prove the theorem by induc-
tion on r. Now assume that the result is
true for the hypercube Qr−2,2. Let W1 =
{{(x0x1...xr−2i−3...xr−3), (x0x1...xr−2i−4xr−2i−3...xr−3)},
0 ≤ i ≤ r−5

2 } be a one factor resolv-
ing set where wj and wj+1 are adjacent,

0 ≤ j ≤ r − 5, j even. Clearly W1 ⊂ V (Qr−2,2
0 )

Divide Qr,2 into eight copies of Qr−3,2, namely
Q

r−3,2
0 , Q

r−3,2
1,1 , Q

r−3,2
1,2 , Q

r−3,2
1,3 , Q

r−3,2
2,1 , Q

r−3,2
2,2 , Q

r−3,2
2,3

and Q
r−3,2
3 .

Now each of Q
r−3,2
0 ∪ Q

r−3,2
1,1 , Q

r−3,2
0 ∪ Q

r−3,2
1,2

and Q
r−3,2
0 ∪ Q

r−3,2
1,3 is isomorphic to Qr−2,2. Since

W1 ⊂ V (Qr−3,2
0 ), W1 resolves the above sub-

cubes by assumption. Now there exist vertices
x ∈ Q

r−3,2
1,1 , y ∈ Q

r−3,2
1,2 and z ∈ Q

r−3,2
1,3 having the

same code with respect to every vertex of Q
r−3,2
0

and in particular with respect to every vertex of W1.
Similarly there exist vertices one each in Q

r−3,2
2,1 , Q

r−3,2
2,2

and Q
r−3,2
2,3 having the same code with respect to

W1. So we need to augment W1. If a cube is re-
solved by some W1 ⊂ V (Qr−3,2

0 ) then the s-neighbor
cube is also resolved by the same resolving set W1

where 1 ≤ s ≤ 3. Therefore it is enough to resolve
Q

r−3,2
1,1 , Q

r−3,2
1,2 , Q

r−3,2
1,3 . Let wr−3 ∈ V (Qr−3,2

1,1 ).

Now W1 ∪ {wr−3} ⊂ V (Qr−3,2
0 ∪ Q

r−3,2
1,1 ). This

means that there are vertices one in each of
Q

r−3,2
1,2 ∪ Q

r−3,2
2,1 and Q

r−3,2
1,3 ∪ Q

r−3,2
2,2 having same

code as they are at distance 1 from Q
r−3,2
0 ∪ Q

r−3,2
1,1 .

Now choose wr−2 ∈ V (Qr−3,2
1,2 ∪ Q

r−3,2
2,1 ) prefer-

ably wr−2 ∈ V (Qr−3,2
2,1 ) so that wr−2 and

wr−3 are adjacent. Therefore the augmented
W = {w0, w1...wr−2}, more precisely W =
{{(x0x1...xr−2i−1...xr−1), (x0x1...xr−2i−2xr−2i−1...xr−1)},
0 ≤ i ≤ r−3

2 } is a one factor resolving set.

6 CONCLUSION

In this paper we have discussed two different resolv-
ing parameters namely the one size resolving number
and one factor resolving number for enhanced hyper-
cube networks. These resolving parameters for Benes
and Butterflies are under investigation.
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