
International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

41

 A Critical Study of Efficient Multi-core EM Clustering

D. J. Nagendra Kumar

BVRICE
Bhimavaram

AP, India

J. V. R. Murthy
JNTUK

Kakinada
AP, India

N. B. Venkateswarlu
AITAM
Tekkali

AP, India

ABSTRACT

The state-of-the-art computer hardware is coming with multi-
core processors. Even mobile phones are coming with dual-
core processors. OpenMP is one technology supporting
parallel programming on multi-core shared memory systems
with the help of threads. In this paper, we observed the
execution times Serial EM Clustering running on single-core
and Parallel EM Clustering methods using OpenMP on I3

system. Observations are made varying number of threads,
samples, dimensions and clusters. The results show that
OpenMP Lower Triangular Canonical Form with Forward
Substitution and Winograd’s approach (OLFW) EM gives a
considerable speed-up of 2.7 over serial standard EM.

General Terms

Performance, Experimentation and Verification.

Keywords

OpenMP, Multi-core, Parallel programming, Expectation
Maximization, and EM.

1. INTRODUCTION
Manasi N. Joshi [1] describes clustering large datasets as time
consuming and processor intensive. S. N. Tirumala Rao et al.
[2] experimented with parallel k-means using OpenMP and
Posix threads on shared-memory multi-core systems, and

found that OpenMP k-means clustering works faster than both
single-core k-means and multi-core Posix threads k-means
clustering. Similarly [3][4][5] are some OpenMP studies from
Data Mining community. EM clustering algorithm is the
second dominantly used clustering algorithm, next to k-means
[6]. In continuation to our search of devising faster EM
algorithms [7][8][9], here we experimented with OpenMP
implementation of various EM approaches from [8][9].

2. OPENMP
OpenMP is a shared memory application programming
interface (API). It is not a new programming language. It is
just a notation that can be added to a program in C, or C++, or
Fortran, describing how the work is to be shared among the
threads executing on multi-core processors sharing data in

shared memory. Posix is another approach for the same
purpose, but Posix thread programming is a little bit tougher.

In majority of our programs, there will be implicit parallelism,
in the form of loops or tasks. Loop parallelism in OpenMP is
easy to code with just one line of OpenMP directive. Of
course in the parallel loop directive one can specify the data to
be shared, the data to be kept private to the thread, the
maximum number of threads to be used, and etc.

3. PARALLEL EM CLUSTERING

3.1 EM Clustering
Expectation maximization (EM) is a widely used mixture
model-based clustering algorithm proposed by Dempster et. al
[10]. EM clustering groups the given data samples into k

Gaussian-distributions probabilistically. The outline of EM is
as follows:

1. Select the number of clusters, k.

2. Initialize cluster parameters (cluster weights, cluster means,
and covariance matrices).
3. Perform Expectation step.
 Using probability density function of normal distribution,
find probability of each sample belonging to each of the k
clusters.
4. Perform Maximization step.
 Compute the new cluster weights, cluster means and

covariance matrices of all clusters.
5. Go to step 3 until either the log-likelihood value is
considerably small or the maximum number of iterations are
exhausted.

3.2 Parallel OpenMP implementation of

EM
The steps 3 and 4 above involve complete scans of data. Here
is where we can parallelize the loops. The pseudo code for
parallel EM can be given as:

1. Select the number of clusters, k.

2. Initialize cluster parameters (cluster weights, cluster means,
and covariance matrices) and set number of threads.
3. Perform Expectation step.
 #pragma omp parallel for
 Using probability density function of normal distribution,
find probability of each sample belonging to each of the k
clusters.
4. Perform Maximization step.

 #pragma omp parallel for
 Compute the new cluster weights, cluster means and
covariance matrices of all clusters.
5. Go to step 3 until either the log-likelihood value is
considerably small or the maximum number of iterations are
exhausted.

3.3 Parallel OpenMP-EM approaches
There are 9 approaches possible to fast-up the quadratic term
computation in Expectation step of EM algorithm (step 3 of
pseudo code in section 3.2) from [5][6]:

Method 1. OpenMP Parallel implementation of Standard EM
(OSEM)
Method 2. OpenMP Parallel implementation of Lower
Triangular Canonical Form with Matrix Inversion (OLTI)

Method 3. OpenMP Parallel implementation of Lower
Triangular Form with Forward Substitution (OLTF)
Method 4. OpenMP Parallel implementation of Cascaded
approach (OCAS)
Method 5. OpenMP Parallel implementation of EM with
Winograd’s method for vector-matrix multiplication (OEMW)
Method 6. OpenMP Parallel implementation of Lower
Triangular Canonical Form with Matrix Inversion and

Winograd’s approach (OLIW)

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

42

Method 7. OpenMP Parallel implementation of Lower
Triangular Canonical Form with Forward Substitution and
Winograd’s approach (OLFW)
Method 8. OpenMP Parallel implementation of Cascaded
approach with Winograd’s approach (OCAW)

Method 9. OpenMP Parallel implementation of Unitary
Canonical Form with Winograd’s approach (OUFW)

4. EXPERIMENTATION AND RESULTS
A system with Core i3 processor, 4GB RAM, Fedora 64-bit
Linux 12.04 Operating System is used for experimentation.
GNU GCC compiler for C language is used. The following
Experimentation is taken up on synthetic data:

1. Parallel OpenMP implementations of EM with 4-threads on

synthetic data of 1 Million rows, 50 dimensions and clusters
varying from 5 to 10.
2. Parallel OpenMP EM implementations with 4-threads on
synthetic data of 1 Million rows, 5 clusters and dimensions
varying from 50 to 90.
3. Parallel OpenMP EM with 4-threads on synthetic data of 50
dimensions and 5 clusters and number of samples varying
from 0.5 Million to 2.5 Millions.

4. Parallel OpenMP EM on synthetic data of 1 Million
samples, 50 dimensions and 5 clusters, where the number of
threads are from 2 to 10.

In all the above cases, the timings of serial single-core EM are
also observed and used for comparative purposes. The speed-
ups of Parallel EM versions compared to that of serial single-
core EM are noted down.

4.1 Varying Number of Clusters
The observations of parallel EM on a synthetic dataset of 1
Million samples, 50 dimensions with 4-threads and clusters
from 5 to 10 are analyzed here. Table 1 and Fig. 1 gives the
timing observations and the speed-ups.

Fig. 1: Speed-up of Parallel EM compared to single-core

serial EM, SEM. The average speed-up of OLFW, the best

of all the proposed methods, is 2.61.

4.2 Varying Number of Dimensions
The observations of parallel EM on synthetic dataset of 1
Million samples and 5 clusters with 4-threads and number of
dimensions changing from 50 to 90 are analyzed here. Table 2
and Fig. 2 give the timing observations and their speed-ups.

Fig. 2: Speed-up of Parallel EM compared to single-core

SEM. Number of dimensions varies from 50 to 90. The

best of all average speed-ups achieved is, that of OLFW

EM, 2.75.

4.3 Varying Number of Samples
The observations of parallel EM on synthetic dataset of 50

dimensions and 5 clusters with 4-threads and number of
samples ranging from 0.5 Million rows to 2.5 Million rows
are analyzed here. Table 3 and Fig. 3 give the timing
observations and their speed-ups.

Fig. 3: Speed-up of Parallel EM compared to single-core

EM. Number of Samples ranges from 0.5 Million to 2.5

Million rows. The average speed-up of OLFW EM is 2.65.

4.4 Varying Number of Threads
The observations of parallel EM on synthetic data with 1
Million rows, 50 dimensions, 5 clusters and number of threads

from 2 to 10 are analyzed here. Table 4, Table 5 and Fig. 4
give the timing observations and their speed-ups.

Here we observed real time and system time taken by each
experiment. The real time (elapsed time) is the time gap
between the invocation of the program and termination of the
program. This is time the user generally observes. The system
time is the amount of time the CPU spends in kernel mode.
System time is calculated over all the multiple cores available.

Since the CPU utilizes all its cores for processing parallel EM,
system time is more than real time in parallel EM. However in
case of Standard EM, system is less than real time, as it uses a
only one core.

Fig. 4: Speed-up of Parallel EM compared to single-core

serial EM (SEM). Number of Threads ranges from 2 to 10.

The average speed-up of OLFW EM is 2.76.

Observing Table 4 and Table 5, one can deduct that from 3
threads onwards there is no much improvement in speed-up.
There are only two cores in our system. Hence in a system
with n-cores in processor, there won’t be much improvement
beyond n-threads of OpenMP.

5. CONCLUSION
OpenMP based multi-core EM clustering is running much
faster compared to single-core EM. In this work, we observed
the execution times of all the above EM clustering methods
using OpenMP running on Intel Core I3 system (with 2-cores
and 4-hyper threads), varying number of threads (Th),
samples (n), dimensions (d), and clusters (k). The

performance of the proposed openMP EM approaches
(methods 1 to 9) is compared to that of the standard EM, and
found that OLFW EM is the best of all the proposed

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

43

approaches. The results show that OLFW gives a
considerable speed-up of 2.7 over standard (serial) EM.

6. REFERENCES
[1] Manasi N. Joshi, "Parallel K-means Algorithm on

Distributed Memory Multiprocessors", Project Report,
Computer Science Department, University of Minnesota,
Twin Cities, Spring 2003.

[2] S. N. Tirumala Rao, E. V. Prasad, and N. B.
Venkateswrlu, “A Critical Performance Study of
Memory Mapping on Multi-core Processors: An

Experiment with K-means Algorithm with Large Data
Mining Data Sets”, IJCA (0975-8887) 2010 Volume 1-
No. 9.

[3] M.D. Jones, R. Yao, and C.P. Bhole, “Hybrid MPI-
OpenMP Programming for Parallel OSEM PET
Reconstruction”, IEEE Trans. On Nuclear Science, Vol.
53, No. 5, October 2006, pp. 2752-2758.

[4] Jones M.D. and Yao R., “Parallel Programming for

OSEM reconstruction with MPI, OpenMP, and hybrid
MPI-OpenMP”, IEEE Nuclear Science Symposium
Conferecience Record, 2004, Vol. 5, pp. 3036-3042.

[5] Waghmare, Vivek N. and Kulkarni, Dinesh B., “Convex
Hull Using K-means Clustering in Hybrid
(MPI/OpenMP) Environment”, Int. Conf. on

Computational Intelligence and Communication
Networks 2010, pp. 150-153.

[6] Ian H. Witten, Eibe Frank, and Mark A. Hall. Data
Mining. Third Edition. Morgan Kaufmann.

[7] D. J. Nagendra Kumar and J. V. R. Murthy, “Some

Studies of Expectation Maximization Clustering
Algorithm to Enhance Performance”, Research Cell: An
International Journal of Engineering Sciences, ISSN:
2229-6913, Vol. 2, July 2011, pp. 254-269.

[8] D. J. Nagendra Kumar, J. V. R. Murthy and N. B.
Venkateswarlu, “Fast Expectation Maximization
Clustering Algorithm”, International Journal of
Computational Intelligence Research (IJCIR) ISSN:

0973-1873, Vol. 8, No. 2 (2012), pp. 71-94.

[9] D. J. Nagendra Kumar, J. V. R. Murthy and N. B.
Venkateswarlu, “Computation Reduction of Expectation
Maximization Clustering Using Winograd's Method”,
Proceedings of IEEE International Conference on
Electronics Computer Technology ICECT-2012, pp.
255-259.

[10] A. P. Dempster and N. M. Laird and D. B. Rubin.

Maximum likelihood from incomplete data via the EM
algorithm. Journal of The Royal Statistical Society,
Series B, 39(1):1--38, 1977.

Table 1. Timing observations (in sec) of Standard EM and OpenMP EM approaches with 4 threads on Synthetic dataset of 1

Million rows (n), 50 dimensions (d), and varying number of clusters (k) 5 to 10

 Execution Time Speed-up

k SEM OSEM OLTI OLTF OCAS OEMW OLIW OLFW OCAW OUFW OSEM OLTI OLTF OCAS OEMW OLIW OLFW OCAW OUFW

5 120 74 52 55 51 65 47 46 48 64 1.62 2.31 2.18 2.35 1.85 2.55 2.61 2.50 1.88

6 170 78 53 56 51 69 50 48 52 74 1.83 2.70 2.55 2.80 2.07 2.86 2.98 2.75 1.93

7 232 103 70 76 63 90 65 65 67 89 1.62 2.39 2.20 2.65 1.86 2.57 2.57 2.49 1.88

8 297 114 81 89 81 108 76 76 77 107 1.68 2.36 2.15 2.36 1.77 2.51 2.51 2.48 1.79

9 376 138 93 103 94 121 88 86 90 121 1.56 2.31 2.09 2.29 1.78 2.44 2.50 2.39 1.78

10 466 155 105 114 88 133 92 95 100 124 1.54 2.28 2.10 2.72 1.80 2.60 2.52 2.39 1.93

Avg. 1.64 2.39 2.21 2.53 1.85 2.59 2.61 2.50 1.86

Table 2. Timing observations (in sec) of Standard EM and OpenMP EM approaches with 4 threads on Synthetic dataset of 1

Million rows (n), 5 clusters (k), and varying number of dimensions (d) from 50 to 90

 Execution Time Speed-up

k SEM OSEM OLTI OLTF OCAS OEMW OLIW OLFW OCAW OUFW OSEM OLTI OLTF OCAS OEMW OLIW OLFW OCAW OUFW

50 120 74 52 55 51 65 47 46 48 64 1.62 2.31 2.18 2.35 1.85 2.55 2.61 2.50 1.88

60 170 101 69 74 69 83 65 62 65 90 1.68 2.46 2.30 2.46 2.05 2.62 2.74 2.62 1.89

70 232 117 95 104 82 128 81 86 88 127 1.98 2.44 2.23 2.83 1.81 2.86 2.70 2.64 1.83

80 297 191 130 140 120 229 122 115 125 226 1.55 2.28 2.12 2.48 1.30 2.43 2.58 2.38 1.31

90 376 222 152 164 151 290 142 134 143 283 1.69 2.47 2.29 2.49 1.30 2.65 2.81 2.63 1.33

100 466 251 174 187 171 232 162 153 161 227 1.86 2.68 2.49 2.73 2.01 2.88 3.05 2.89 2.05

Avg. 1.73 2.44 2.27 2.56 1.72 2.67 2.75 2.61 1.71

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

44

Table 3. Timing observations (in sec) of Standard EM and OpenMP EM approaches with 4 threads on Synthetic dataset with

50 dimensions (d), 5 clusters (k), and varying number of rows (n) from 0.5 Million to 2.5 Million

 Execution Time Speed-up

k SEM OSEM OLTI OLTF OCAS OEMW OLIW OLFW OCAW OUFW OSEM OLTI OLTF OCAS OEMW OLIW OLFW OCAW OUFW

1 36 36 25 27 24 33 24 23 24 33 1.67 2.40 2.22 2.50 1.82 2.50 2.61 2.50 1.82

1 74 74 52 55 51 65 47 46 48 64 1.62 2.31 2.18 2.35 1.85 2.55 2.61 2.50 1.88

2 116 116 79 85 78 101 73 71 74 101 1.54 2.27 2.11 2.29 1.77 2.45 2.52 2.42 1.77

2 145 145 99 107 99 128 93 89 94 118 1.63 2.39 2.21 2.39 1.85 2.55 2.66 2.52 2.01

3 169 169 112 120 112 149 106 104 101 149 1.75 2.64 2.47 2.64 1.99 2.79 2.85 2.93 1.99

Avg. 1.64 2.40 2.24 2.44 1.85 2.57 2.65 2.57 1.89

Table 4. Execution Times (in sec) of Standard EM and OpenMP EM approaches varying number of threads from 2 to 10 on

Synthetic dataset of 1 Million rows (n), 50 dimensions (d), and 5 clusters (k)

 Execution Time

Th

SEM OSEM OLTI OLTF OCAS OEMW OLIW OLFW OCAW OUFW

Real

Time

User

Time

Real

Time

User

Time

Real

Time

User

Time

Real

Time

User

Time

Real

Time

User

Time

Real

Time

User

Time

Real

Time

User

Time

Real

Time

User

Time

Real

Time

User

Time

Real

Time

User

Time

1 120 120

2 59 117 40 80 45 89 41 80 55 109 38 75 39 76 39 76 55 109

3 71 188 50 131 53 145 47 124 62 165 44 123 46 124 45 121 64 170

4 74 292 52 201 55 215 51 196 65 256 47 186 46 181 48 190 64 254

5 70 273 46 176 49 190 46 177 62 243 44 167 42 163 41 159 62 242

6 70 277 43 168 50 195 48 185 62 243 45 174 43 166 45 174 62 244

7 69 269 47 185 53 207 47 184 64 251 45 177 44 174 45 178 64 251

8 68 269 46 180 54 216 46 185 67 265 45 180 46 183 45 178 66 262

9 74 294 50 200 55 214 50 199 66 259 47 187 41 163 48 199 66 261

1
0 73 289 49 196 53 210 49 194 64 251 46 183 45 177 47 184 64 254

Table 5. Speed-up of OpenMP EM approaches compared to SEM, varying number of threads from 2 to 10 on Synthetic

dataset of 1 Million rows (n), 50 dimensions (d), and 5 clusters (k)

 Speed-up

Th OSEM OLTI OLTF OCAS OEMW OLIW OLFW OCAW OUFW

2 2.03 3.00 2.67 2.93 2.18 3.16 3.08 3.08 2.18

3 1.69 2.40 2.26 2.55 1.94 2.73 2.61 2.67 1.88

4 1.62 2.31 2.18 2.35 1.85 2.55 2.61 2.50 1.88

5 1.71 2.61 2.45 2.61 1.94 2.73 2.86 2.93 1.94

6 1.71 2.79 2.40 2.50 1.94 2.67 2.79 2.67 1.94

7 1.74 2.55 2.26 2.55 1.88 2.67 2.73 2.67 1.88

8 1.76 2.61 2.22 2.61 1.79 2.67 2.61 2.67 1.82

9 1.62 2.40 2.18 2.40 1.82 2.55 2.93 2.50 1.82

10 1.64 2.45 2.26 2.45 1.88 2.61 2.67 2.55 1.88

Avg. 1.73 2.57 2.32 2.55 1.91 2.70 2.76 2.69 1.91

