
International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

14

Semantic based Efficient Cache Mechanism for

Database Query Optimization

P.Mohan Kumar J.Vaideeswaran
Assistant Professor(Sr) Senior Professor.

School Of Information Technology School Of Computing Sciences
Vit Vellore,India Vit Vellore India

ABSTRACT

The primary goal of the database system is to provide the user

a convenient and efficient access to the query related data.

With this concern this paper provides semantic based cache

mechanism techniques for optimizing the user queries. Here

the frame work for optimization is analyzed which supports

data and computation reuse, query scheduling and cache

efficient utilization algorithm is presented in order to improve

the evaluation process and minimize the overall response

time. Further the case study is analyzed to test the

performance and extended the same for multi-queries to

achieve parallelism.

Key words

 semantic, cache efficiency, optimization.

1. INTRODUCTION

Query optimization in database as received lot of attention. As

the data set sizes continues to grow its increasingly important

and challenging to execute. However the basic principle of

database is to provide the user a convenient and efficient

access to the specified query irrespective of database types,

with this concern we concentrate user convince by providing

the user a semantic base information relevant to their query

with that they can be able to get the exact as well as nearby

information’s and cache efficiency mechanism to reduce the

latency time for data access as system side thus the

optimization overall. The main objective is to describe the

query processing system that handles the semantic cache i.e.

the concept of cache is introduced to retrieve the data

efficiently, reusing the already retrieved data and using it

against the similar user specified queries. Semantic cache

mechanism is widely studied for both SQL and XML queries

however we concentrate on SQL on at present for our aspect.

As specified in [1] the methodology for storing the semantic

and handling the cache for updating and reusing it as well the

managing the space by replacement based on query is

deployed. But in some cases as specified in [2] page

replacement plays optimism here the cache page is segmented

with respect the query segmentation and then the replacement

policy is employed. For processing the semantic query the

methodology specified in [2] is followed. The processing

architecture for preprocessing and storing the resultant queries

as per [3] is analyzed and for the partial query matching the

approach specified in [3] is considered. The processing

algorithm limits to selection and projection only we extend for

join and nested queries. The existing system as a case study is

analyzed and the algorithm is modified in order to achieve the

problem statement by covering the basic database semantic

query problems as specified in [4] is considered and future

extension as multi-queries processing to achieve parallelism

and conclusion we presented in rest of the paper.

2. SEMANTIC CACHE SYSTEM.

The issues related to cache system as detailed in [5] is

analyzed firstly as where to install the semantic cache either to

install in a separate proxy server through which all clients

connects to server or to implement cache on server side the

reduces the load of middle ware (web server).as shown in

Figure: 1 and Figure: 2 .Secondly for what semantic should be

defined and how to define it based on what constraints thirdly

how to map it to the user based incoming query in a

convenient manner as stated in [6]. With respect to cache

management similar in [7] is to determine which data item

must be retained in cache which one should be replaced to

make free space for new data with given limited space for

cache. The proposed work gives solutions for all these issues.

Fig 1: Cache with proxy server

Internet

D
A

T
A

S

E
R

V

E
R

Client

Client

Proxy

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

15

Fig 2: Cache with web server.

3. PROPOSED WORK.

 3.1 Based on the architecture specified

below the query is processed.

The semantics for all the possibilities related to the database

can be defined if necessary for each semantic a predicate

notation can be mentioned as specified in [2].In case of

homogeneous schema set of all possible queries can also be

defined and stored as a semantic reference. Set of rules were

defined with respect to the operators available in suitable

database language preferred. These can be used for mapping

purpose during query execution. Predicates are matched based

on the predicate values.

 Fig 3: Proposed work architecture.

4. GENERALISED ALGORITHM

Input -user incoming query.

Output- result.

{

 For (each query perform the following steps)

 1. Check the table (user query relation) is available

 2. If available in data-cache then do

 Lexical analysis (); Syntax analysis ();

 Get metadata value and apply one of the below

operation

 Exact match ();

 Partial match ();

 Mismatch ();

 Projection ();

 Go to step 5;

 3. If not available in data-cache then

 Invoke database server table();

 Query the corresponding database;

 Return the result;

 4. Update the data to the data-cache // check for redundancy

and null values.

 5. Return ();//return result to user. }

Middleware architecture as shown in Figure 3 is designed

based on the algorithm design. As specified in [1] the query is

processed by splitting the user query into segments as

selection, relation and conditional case and processed with

query matching technique and then the query is rewritten if

the query is partially related and rejected if doesn’t match. But

the process is limited to only selection and projection. In case

of Join queries the query is decomposed in to sub query and

then processed individually. For this the dynamic hashing

technique is used to get the final result. Here the fact table is

employed in order to store the details of sub-query

referencing. The process architecture is shown in Figure 4 and

detailed explanation in [3].both the approach is considered for

our proposed technique since it extends for multi query

processing. the user perceivable response time is summed up

as (Ttotal = Tqueryshipping + Tqueryexecution +

Tresultshipping)

Fig 4: Detailed processing model.

5. CASE STUDY.

In this section the proposed approach is analyzed with the

Fully Flexible Credit System model. This is a university based

database which provides students to register their subjects

related to their required credits by choosing the timeslot,

subject, and faculty on their preference. The information can

be accessed in distributed manner. The updating is done only

at server side and the database access is streamlined by

providing a middle ware and database listeners with secured

manner. the user authentication is performed by load

balancing by limiting the resource to certain level. In order to

improve the optimism among user as well system the

semantic cache mechanism is proposed to this system. In case

if student wish to register for particular subject with particular

time under particular faculty if valid status exist immediately

his information is provided. In case in requirement is not

available immediately it’s rejected. for this purpose the query

D

A

T

A

B

A

S

E

D

B

L

I

S

T

N

E

R

S

M

I

D

D

L

E

W

A

R

E

C

L

I

E

N

T

S

Web Server

Caching

System

Query

Engine

Cache

System

XML

mapping

Database

C

L

I

E

N

T

S

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

16

no need to get executed by server this can be done by

referencing the cache itself since the processed result is stored

in it. In case if the student specifies a query with partial then

the information matches part in cache then its similar details

were processed and issued to the user so that he can do his

application correctly. Since the student registration limits to

semester wise all possible query can be analyzed and stored in

semantic cache with predicate notations so the it will be more

useful for user level as well system response time.

5.1 Example to highlight the problem

Here we assume that user and semantic predicates are given as

below:

PAS = age>40 /\ Sal>50k and

PAU = age<50 /\ Sal<60k

In this example algorithm will return yes. Meanwhile if users

pose queries with different attributes like:

PAU = eName = "Komal"

Then algorithm will return no because PAS '# P AU. Even

some of the data may exist in cache with following predicate:

(age>40 /\ Sal>50k) /\ (eName = Komal)

Thus the query processing performed by matching, partial

matching, mismatching .These can be extended for multiple

queries and parallelism can be achieved.

5.1.1. Work flow representation

Fig 5: Work flow diagram.

 The detail how case study works is shown in Figure: 5 and it

maps the proposed algorithm implementation. The setup is as

follows, here we use three methods as sequence choice to

improve the performance one matching the stored results, two

query matching as per [8] and thirdly normal query processing

and storing the processed valid result for future use. Here we

used the standard flow notations. Step 1. is the user login, as

e.g. register no: 09bit120 if its valid then it will be processed

(step 2) i.e. parsing the value as year, course and the required

data from the semantic cache corresponding course details is

filtered (step 3).Based on these the user can write a query .if

the query related to preprocessed one then the required data is

displayed (step 4) and (step 5.)If not it process (step 6)checks

for semantic query stored in (7) possible queries are analyzed

and stores as semantic cache (for limited application in our

case)as stated in[9] and processed based on the query

matching methodology then (8) extract the required data from

stored database(9) as sample shown in table 1 and displays the

output(11) else (step 10).If the query is new the it will be

processed by the query evaluation engine with normal

process(SQL server based)and displays the output (step 12)

and update the processed query in (4)as shown in table 2 by

details in[10]. Here the major issue is how to shift from one

choice to other, how to manage if more than one user request

arise and how to manage the cache coherence and in-memory

process during execution and displaying the processed result.

Thus the query processing phases are minimized depending

upon the user input information by providing semantic cache

as well managing the cache coherence for multi users thus

overall the processing is optimized and performance is

improved both system side as well as application point of

view. The difficulty depends upon the user query so the

utmost important is given to query processing and if query

consists multi operators such has join in such case the process

management as shown in detail processing model and the

methodology as discussed in [3] similarity is used. In case of

multi queries to distribute and group the result among the

processor is done by the methodology below shown is figure

6.

Table 1. Sample semantics.

Table 2: Sample Query Semantics

Sno Semantics Meaning

1. BIT Bachelor of Information Technology

2. BIO Bachelor of Bioinformatics

3. BME Bachelor of Mechatronics

4. OS Operating System

5 DBMS Data Base Management System

Sno Sample Query Semantic Query

1. Select eage from

employee

where eage> =30

Select eage from employee

where eage between 30 and

45.

2. Select Fname from emp

where subject =’OS’

Select Fname from emp

where fname =’ram’and

subject =’OS’

3. Select cust_no from

loan,account

where

account.cno=loan.cno

and bankname=’SBH’

Select cust_co from

customer and

bname=’SBH’.//list holds

those who holds account as

well as loan.

u

s

e

r

l

o

g

i

n

Valid

End

1
2

3

5

Display

4

 No

6
7

8

9

10

12

11
1

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

17

Execution

Engine

Optimizer and

cache manager

Database

Result cache

Base relations

Query Query Result

Relations to be cached

Cached

relations

Query and

cache plan

Update

Txn

Table 3.Sample Stored Outputs

6. MULTIQUERY MECHANISM.

 In case if the user specifies multi query then its processed as

shown in Figure 6 .Here a monitor routine set up is made at

server admin level to manage resource utilization in

conjunction with parallel execution environments. The

algorithms specified for single query can be used in routine to

achieve parallelism. The user query will be decomposed into

sublevels and each query is processed as individual query and

their results are cached, a monitor program takes care for

checking the final result updating.

.

Fig: 6-Query result caching representation

7. CONCLUSION

In this paper we concentrated with an approach for primary

goal of database that is to provide user a convenient and

efficient way to access the required data. This can be achieved

by proper and best processing of query. Our paper provide a

way to process a user query by providing user a semantic

information related to query ,so that the processing time can

be minimsed, more over it allows to process partial

information also. The analysis of mapping semantics to exact

and partial query is discussed and to speed up the processing

time we use cache efficiency mechanism (for prefetching and

replicating the required data) that is details of database prior

process and to store the processed result, for this an efficient

query matching algorithm is designed, and implemented .The

case study is made to test the presented algorithm as well as

an approach is analyzed for multi query processing to

encapsulates parallelism. This can be extended for distributed

applications by using the dynamics cache managing technique

at server and client level .Further this can be used for

real time applications in an optimistic way by using various

semantic web tool such as RDF, OWL, SWRL, SPARQL as

specified in [11].Thus over all as conclusion the paper

provides a way for security, easy access, optimistic query

processing with help of semantic cache mechanism to achieve

the goal.

8. ACKNOWLEDGEMENTS.
I thank my Guide Dr.J Vaideeswaran for his invaluable

guidance who keeps patience while explaining and gives a

boon ideas and motivation and I thank our university which

made us interest in research as well providing no time

concerned laboratory and library facilities and my kid face

and talk which is the grace to me.

9. REFERENCES

[1] S.Prabha, A.Kannan Anna University 2006 “An

optimizing query processor with an efficient caching

mechanism for distributed databases”. International Arab

journal of Information Technology Vol 3 July.

[2]. Munir Ahmad, Abdul quadar MD Ali Jinna university

Pakistan 2005 “ A efficient query matching algorithm for

relational data cache “Intelligence cache management for

grid Australia.

[3] Sumalatha A.Vaidhei 2007 “XML query processing-

semantic cache mechanism “IJCSNS International

Journal of Computer Science and Network Security,

VOL.7 No.4, April.

[4] Min Wang, Haixun Wang University of Hawaii China

2009 Semantic queries in database problems and

challenges. CIKM’09, November 2–6, Hong Kong,

China.

Sno Subjects Slot Faculty Register no

1 DBMS B1 RAM 111200

2 OS B2 SAM 111201

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

18

[5]. Brian D. Davison Department of Computer Science

Rutgers, the State University of New Jersey (USA) A

Web Caching Primer c IEEE. Reprinted from IEEE

Internet mputing, Volume 5, Number 4, July/August

2001, pages 38-45.

[6]. Research challenges and perspectives of the Semantic

Web Report of the EU-NSF strategic workshop held at

Sophia-Antipolis, France, October 3rd.

[7]. Q. Yang, H. H. Zhang, and T. Li. Mining web logs for

prediction models in WWW caching and perfecting.

[8]. Qiongluo, Naughton, Sekar “Active Query Caching for

Database Web Servers”

[9]. Abdullah Balamash and Marwan Krunz Performance

Analysis of a Client-Side Caching/ Prefetching System

for Web Traffic National Science Foundation through

grant ANI-0095626.

[10]. M. Rabinovich and O. Spats check. Web Caching and

Replication. Addison Wesley, 1st edition, December

2001.

[11]. John Hebeler,Ryan Blace Semantic Web Programming

Wiley India Edition ISBN 978-81-265-2110-4 pp-519-

555.

