
International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

11

High performance Computing Algorithm Applied in
Floyd Steinberg Dithering

Anuja Dagar
Asst. Professor

Gurgaon Institute of
Technology and Managment

Archana
Asst. Professor

Gurgaon Institute of
Technology and Managment

 Deepak Nandal
Asst. Professor

PDM P.D.M College Of Engg,
Bahadurgarh

ABSTRACT

In this paper, we are going to implement parallel Floyd

Steinberg Dithering algorithm for multi core architecture. The

algorithm is based on error dispersion. This algorithm is

commonly used by image manipulation software, for example

when an image is converted into GIF format. This technique

generates the best results of any classical method, but it is the

slowest because of its sequential computation. This paper

brings out FSD algorithm for distributed (multi core)

architecture. PFSD (parallel Floyd Steinberg Dithering)

algorithm based on master slave architecture. Master collects

data information and distributes data to multiple sections

whereas slave works on sections which are monitored by

master. The proposed algorithm can be extended to different

data intensive and complex computing applications for multi

core architecture. We expect this research will be very helpful

in the field of mobile communication devices as multi core

architecture has been introduced in mobile communication

devices.

Keywords

Floyd Steinberg Dithering (FSD), PFSD, HPC, Multi core

architecture, Bluetooth, Error Diffusion, Image Halftoning

Technique

1. INTRODUCTION
The human eyes can perceive a large range of

continuous tones, while most of the current print devices

are limited to a few tones. To produce images with

continuous tones, half toning technology is widely used in the

field of printing. The most commonly-used half-toning

methods include Ordered Dithering and Error Diffusion [1].

Grayscale images contain at the most 256 shades of gray. The

human eye can discern about two dozen or so shades of gray

[3]. Dithering is a means of reducing the gray level range of

images from 256 to a minimum of two shades. This technique

arranges black and white pixels in differing quantities and

spatial orientation to approximate intensity images [2]. By

Juxtaposing pixels of two shades create an illusion of third

shade. There are many different type of Dithering algorithm is

present and most are based on error diffusion. Error Diffusion

deals with the pixels line by line, quantizing each one to the

nearest available dot tone and spreading the resulting error to

unvisited neighbor pixels. Less visual artifacts as it generates,

it has to deal with large amount of data, also it is hard to be

parallelized and pipelining [1]. The best known example of

error diffusion dither is the Floyd-Steinberg dither. This was

originally introduced in 1970. The Floyd-Steinberg algorithm

schematic has been shown in Figure 1.

Fig.1. FSDA schematic
The algorithm scans the image from left to right, top to
bottom, quantizing pixel values one by one. Each time the
quantization error is transferred to the neighboring pixels,
while not affecting the pixels that already have been
quantized. Hence, if a number of pixels have been rounded
downwards, it becomes more likely that the next pixel is
rounded upwards, such that on average, the quantization error
is close to zero.

Fig.2. quant error coefficient matrix
Where F represents the current pixel being scanned the
weights represent the proportion of the error being distributed
to the pixel in that position. The pixels to the right of F get
7/48 of the error, the pixel right of it gets 5/48 and so on. Like
the human ear, the human eye is less sensitive to high
frequencies [5] and since calculated error is concentrated in
the high frequencies, the changes in the high frequency
content of the image is readily visible. There are several
different methods of dispersing such as ordered dithering. The
Floyd-Steinberg dither usually generates the best results.

FSD is a very time consuming process. In fact, for a single
pixel of image it needs 13 floating point operations and 13
memory access operations. Hence for a n.m image size it
needs 26n.m operations which make it computationally costly
process.

2. RELATED WORK
Ping Wah worked on Error diffusion is a procedure for

generating high quality bilevel images from continuous-tone

images so that both the continuous and halftone images

appear similar when observed from a distance[11]. It is well

known that certain objectionable patterning artifacts can occur

in error-diffused images adjusting the error-diffusion filter

concurrently with the error-diffusion process so that an error

0 0 0 0 0

0 0 F 7 5

3 5 7 5 3

1 3 5 3 1

 1

 48

Threshold + J[n] I[n]

+

E[n] error filter

“error”

http://en.wikipedia.org/wiki/GIF

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

12

criterion is minimized. The minimization is performed using

the least mean squares (LMS) algorithm in adaptive signal

processing. Floyd and Steinberg's worked on error diffusion

technique is a well-known approach to digital halftoning. The

main drawback of this technique is that it is inherently serial.

This paper presents a new parallelizable error-diffusion

algorithm, calledline diffusion. In this method, the pixels of

the original image are divided into classes line by line, and all

the pixels on a line are halftoned simultaneously.

Yuefeng Zhang worked on error diffusion scheme for digital

halftoning is proposed. The scheme is an iterative and

isotropic error feedback process. Also, to compensate for the

nonlinear tone reproduction by laser printers due to ink drop

overlaps, we incorporate Pappas-Neuhoff's simplified printer

model into the new error diffusion scheme. It appears that the

proposed halftoning technique enhances the perceived tone

continuity of halftone hard copies, and it alleviates the

objectionable structured halftone textures of some existing

methods.

3. PARALLEL ALGORITHM

 PFSD algorithm is based on master slave and data parallelism
(SIMD). Fig.3 depicts the design for Parallel FSD algorithm.
FSD algorithm is a computational and data intensive
algorithm. We observed that lot of time is consumed in
reading and writing the file. PFSDA has been designed by
considering all aspects including file writing and reading.
PFSDA has been divided into three main blocks, which are
processing block, File reading block and File writing block.
PFSDA major components:

A. Controller Thread.
B. Processing Block.
C. File Reading Block.
D. File writing Block.

Fig.3. PFSDA for Sequential File System

3.1 Controller Thread

Controller/Master thread collects information about file to be
processed and take decision to divide work among different
blocks. Decision depends on file size and available processing
units (Core). Controller maintains N buffers for processing. At
a given time all block will be active, if file reading block is
working on Nth chunk then processing block will be working
on the (N-1)th chunk and writing block will be active on the
(N-2)th chunk.

Code snippet:

#pragma omp parallel

default(shared) #pragma

omp sections
loadImage(File*,matrix[n])
; //end section

#pragma omp
section
processBMP(matrix[
n-1]); //end section

//end omp parallel

3.2 Processing Block
It is the core block where PFSD algorithm has been
implemented and processed. Input for processing block is
taken from file reading block. One chunk is read by file
reading block and given to process block. Process block can
itself spawn multiple treads to perform task faster.

#pragma omp parallel

oldpixel := pixel[x][y]
newpixel :=
find_closest_palette_color(oldpixel)
pixel[x][y] := newpixel
quant_error := oldpixel - newpixel
pixel[x+1][y] := pixel[x+1][y] + 7/16 * quant_error
pixel[x-1][y+1] := pixel[x-1][y+1] + 3/16 * quant_error
pixel[x][y+1] := pixel[x][y+1] + 5/16 * quant_error
pixel[x+1][y+1] := pixel[x+1][y+1] + 1/16 *
quant_error
done

3.3 File Reading Block
We have considered file system as sequential file system so

one thread has been dedicated to read the file in multiple

chunks. We achieved parallel execution in file reading by

dividing file in chunks (chunk= total file size /number of

threads (chunk>50MB)). These multiple chunks are passed to

processing block one by one.

3.4 File Writing Block
File writing block takes inputs from processing block. One
separate thread is dedicated for writing processed data into

file. Execution takes place in parallel to other blocks.

4. RESULTS AND SIMULATION

Fig.4. Original image Fig.5. Dithered Image

Controller Thread

n

-

1

Processing block

n

Readin

g block

N

+

1

writing

block

File Block read and processed

http://www.springerlink.com/content/?Author=Yuefeng+Zhang

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

13

Serial computation vs. parallel computation

Fig.6. comparison graph of simulation time of serial and

parallel computation
Data

(MB)

Serial

Computation(sec)

Parallel

Computation(sec)

50 7 2

100 12 5

150 18 9

200 24 11

250 30 13

Fig.7. comparison table of simulation time of serial and

parallel computation

Fig 8. Error diffusion matrix

5. CONCLUSION
In this paper, we have implemented FSD algorithm by serial

and parallel techniques. Our practical data is based on 24 bit

image on 64 bit architecture. For parallelization open MP

directives has been used. We achieved a significant

enhancement in the performance of FSD computation. For

further research SSE, IPP can be used to increase the

performance. It help in speedup the parallel processing.

6. REFERENCES
[1] R. W. Floyd, and L. Steinberg, “An adaptive algorithm for

spatial grayscale,” in Proceedings for the Society for

Information Display, Vol. 17, pp. 75-77, 1976.

[2] J. F. Jarvis, C. N. Judice, and W. H. Ninke, “A survey of

techniques for the display of continuous tone pictures on

bilevel displays,” Comput. Graphics and Image

Processing, pp. 13–40, 1976.

[3] J. W. Ahn, and W. Sung, "Multimedia processor-based

implementation of an error-diffusion halftoning

algorithm exploiting subword parallelism," IEEE

Transactions on Circuits and Systems for Video

Technology, Vol. 16, pp. 129-138, 2001.

[4] William K. Pratt, Digital image processing, John Wiley &

Sons, Inc., New York, NY, 1978

[5] G. O. Young, “Synthetic structure of industrial plastics

(Book style with paper title and editor),” inPlastics,

2nd ed. vol. 3, J. Peters, Ed. New York: McGraw-

Hill, 1964, pp. 15–64.

[6] Y. Zhang, "Line diffusion: a parallel error diffusion

algorithm for digital halftoning," The Visual Computer,

Vol. 12, pp. 40-46, 1996.

 [7]M. St¨urmer, G. Wellein, G. Hager, H. K¨ostler, U. R¨ude:

Challenges and potentials of emerging multicore

architectures.

[8] In: S. Wagner et al. (Eds.), High Performance Computing

in Science and Engineering, Garching/Munich 2007,

551– 566, Springer (2009).

[9] B. M. Chapman, L. Huang, H. Jin, G. Jost, B. R.

deSupinski: Toward Enhancing OpenMP’s Work-

Sharing Directives. In W. E. Nagel et al. (Eds.):

Proceedings of Euro-Par 2006, LNCS 4128, 645–654.

Springer (2006).

[10] OpenMP ARB, “OpenMP APP’, www.openmp.org

[11] Ping Wah Wong in Image Processing, IEEE Transactions

1996 page 1184 - 1196 Volume: 5, Issue: 7

[12] Xiaolin Wu in Digital halftoning by iterative isotropic

error feedback The Visual Computer Volume 11,

Number 2 (1994), 69-81, DOI: 10.1007/BF01889977

[13] Yuefeng Zhang in Line diffusion: a parallel error

diffusion algorithm for digital halftoning in journal The

Visual Computer Pages 40-46(1996)

[14] Ulichney, R.,Dithering with blue noise," Proceedings of

the IEEE 76(1), 56{79 (1998).

[15] “General-purpose computation using graphics hardware."

http://www.gpgpu.org.

http://portal.acm.org/citation.cfm?id=108781&CFID=24899482&CFTOKEN=66041292
http://portal.acm.org/citation.cfm?id=108781&CFID=24899482&CFTOKEN=66041292
http://portal.acm.org/citation.cfm?id=108781&CFID=24899482&CFTOKEN=66041292
http://portal.acm.org/citation.cfm?id=108781&CFID=24899482&CFTOKEN=66041292
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ping%20Wah%20Wong.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=83
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=10981
http://www.springerlink.com/content/?Author=Xiaolin+Wu
http://www.springerlink.com/content/n4261lhg80754j4q/
http://www.springerlink.com/content/n4261lhg80754j4q/
http://www.springerlink.com/content/n4261lhg80754j4q/
http://www.springerlink.com/content/0178-2789/
http://www.springerlink.com/content/0178-2789/11/2/
http://www.springerlink.com/content/0178-2789/11/2/
http://www.springerlink.com/content/0178-2789/11/2/
http://www.springerlink.com/content/?Author=Yuefeng+Zhang
http://www.springerlink.com/content/p206702740611340/
http://www.springerlink.com/content/p206702740611340/
http://www.springerlink.com/content/p206702740611340/
http://www.springerlink.com/content/0178-2789/
http://www.springerlink.com/content/0178-2789/
http://www.springerlink.com/content/0178-2789/

