
International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

1

Learning Capable Focused Crawler for Information

Technology Domain

Mukesh Kumar

UIET, Panjab University
Chandigarh (INDIA)

Renu Vig
UIET, Panjab University

Chandigarh (INDIA)

ABSTRACT

The Web provides us with a huge and endless resource for

information. But, the rapidly growing size of the Web poses

great challenge for general purpose crawlers and search

engines. It is impossible for any search engine to index the

whole Web. Focused crawler collects domain relevant pages

from the Web by avoiding the irrelevant portion of the Web.

Focused crawler can help the search engine to index all

documents present on the Web related to a specific domain

which in turn provides the search engine‟s users complete and

up-to-date contents. In this paper we present a focused crawler

capable of learning from the previous crawl results to collect

the relevant documents. Crawling results for three consecutive

learning phases are shown. Results indicate significant

improvement in terms of relevancy to the focused domain.

Keywords

Web, Internet, Retrieval, Focused Web Crawler, Search

Engine etc.

1. INTRODUCTION
With the ongoing growth of web, finding the right information

becomes an increasingly difficult task which often leads to

undesired results. This made it important to develop document

discovery mechanism. A crawler is a program used by search

engine that retrieves Web pages by wandering around the

Internet following one link to another. Web search engines

such as Goggle, AtlaVista provides access to the Web

documents. A search engine‟s crawler collects Web

documents and periodically revisits the pages to update the

index of the search engine. Due to the Web‟s huge size and

dynamic nature, Ari Pirkola (2007), no crawler is able to

cover the entire Web and to keep up all the changes. This fact

has motivated the development of focused crawlers such as

Martin Ester et al (2001), Bergmark, Lagoze and

Sbityakov(2002), Ehrig, and Maedche (2003) etc. Focused

crawlers are designed to download Web documents that are

relevant to a predefined domain, and to avoid irrelevant areas

of the Web. The benefit of the focused crawling approach is

that it is able to find a large proportion of relevant documents

on that particular domain and is able to effectively discard

irrelevant documents and hence leading to significant savings

in both computation and communication resources, and high

quality retrieval results.

Related Work
Web crawling was simulated by a group of fish migrating on

the Web, Bra and Post (1994),. In the so called fish search,

each URL corresponds to a fish whose survivability is

dependent on visited page relevance and remote server speed.

Page relevance is estimated using a binary classification by

using a simple keyword or regular expression match. Only

when fish traverse a specified amount of irrelevant pages they

die off. The fish consequently migrate in the general direction

of relevant pages which are then presented as results. Cho,

Molina and Page (1998) proposed calculating the PageRank

given by Page et al. (1998) score on the graph induced by

pages downloaded so far and then using this score as a

priority of URLs extracted from a page. They show some

improvement over the standard breadth-first algorithm. The

improvement however is not large. This may be due to the

fact that the PageRank score is calculated on a very small,

non-random subset of the web and also that the PageRank

algorithm is too general for use in topic-driven tasks. Ehrig

and Meadche (2003) considered an ontology-based algorithm

for page relevance computation. After pre-processing, entities

(words occurring in the ontology) are extracted from the page

and counted. Relevance of the page with regard to user

selected entities of interest is then computed by using several

measures on ontology graph (e.g. direct match, taxonomic and

more complex relationships). Most of the existing focused

crawlers (Boldi 2004; Brin and Page 1998;

Chakrabarti, Berg; Cho and Molina 2000, 2002; Domc 1999;

Page et al 1998) are based on simple keyword matching or

some very complex machine learning techniques for guiding

the future crawls.

2. PROPOSED CRAWLER
Tf-Idf (Term frequency–Inverse document frequency) weight

is a statistical measure used to evaluate how important a word

is to a document in a collection or corpus. The importance

increases proportionally to the number of times a word

appears in the document but is offset by the frequency of the

word in the corpus or in turn to the domain. If we are having a

corpus of documents which are all highly related with a

specific domain then the Tf-Idf score of a term in a document

gives the importance of that term for that document with

respect to the whole corpus. Now if we add Tf-Idf score

obtained by a term for all documents in the corpus, then the

resulting score can be seen as a meaningful, semantic, score

for that term with respect to the whole corpus. Based upon

this thought a TIDS (Term frequency–Inverse document

frequency Definition Semantic) Score Table is constructed,

whose entries are supposed to help the crawler for deciding

the future crawls. The TIDS Score Table generation algorithm

is given in Algorithm 1. The initial collection of Web pages

(Seed pages) is generated from the hierarchical categories of

ODP (Open Directory Project) from http://dmoz.org. ODP

provides the categorical collection of URLs that are manually

edited and not biased by any commercial user. From here we

can find individual categories link. The categories ending with

“Information”, “computers”, “internet”, “information

technology” and “computer science” were retrieved from the

ODP, total 86 such categories were found, then links

contained by these 86 categories were retrieved from ODP,

total 927 such links were found from ODP or we can say that

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

2

927 pages related to the Information Technology domain were

found, out of these 927 links. All these URLs were put in the

Relevant_Page_Set.

Algorithm 1: TIDS Score Table Generation

1. Initialize Relevant_Page_Set.

2. Remove Stop Words from each page in the

Relevant_Page_Set

3. Apply Stemmer to each page in the Relevant_Page_Set

4. Generate Tf-Idf Score Inverted Index Table for all the

documents in the Relevant_Page_Set.

5. For each term t in the Tf-Idf Score Inverted Index

Table Do

5.1. Calculate sum of the Tf-Idf score

obtained by t in all documents from Tf-

Idf Score Inverted Index Table, let it be

TIDS_Score.

5.2. Insert entry <t, TIDS_Score> into TIDS

Score Table.

5.3. Normalize the TIDS_Score values in

TIDS Score Table.

According to the TIDS Score Table Generation Algorithm

stemming, which is the process for reducing inflected (or

sometimes derived) words to their stem, base or root form

[14], generally a written word form, and stop words removal

is performed upon the Relevant_Page_Set. Tf-Idf score of the

collection is calculated. The term frequency tft,d of term t in

document d is defined as the number of times that t occurs in

d, dft is the document frequency of t, means the number of

documents that contain t. The dft is an inverse measure of the

informativeness of t also dft  N where N is the total number

of documents in the Relevant Page Set. Then the idf (inverse

document frequency) of t is given by

)/df(log idf tt N (1)

The Tf-Idf weight of a term t in the document d (
dt ,

w) is

the product of its tf weight and its idf weight and will be given

by

)df/(log)tf1log(w ,, tdt N
dt

 (2)

The TIDS_Score of a term t is given by

 


SetPagelevantd dtt
__Re ,tf.idf)(TIDS_Score

 (3)

Algorithm 2: First Crawl

1. Create TIDS Score Table using Algorithm 1, for all

the pages present in Relevant_Page_Set.

2. Initialize SeedUrls by selecting 600 random links

from Relevant_Page_Set.

3. While SeedURls is not empty

3.1 URL=SeedUrls.Next();

3.2 URL_Score= Similarity score of

URL.discription terms from TIDS Score

Table.

3.3 Enqueue(CrawlQueue,URL, URL_Score);

4. While CrawlQueue is not empty

4.1URL=Dequeue(URL_with_maximum_score,

CrawlQueue);

4.2 Doc= Download(URL)

4.3 If Doc is not present in the Crawler

Repository then add Doc to the Crawler

Repository else GOTO 4.

4.4 Doc_Score= Similarity score of URL.text

terms from TIDS Score Table.

4.5 If Doc_Score is greater than or equal to

the text Similarity score of Relevant Page

Set pages and the Doc is not present in the

Relevant Page Set

4.5.1 Add Doc to Relevant Page Set and

regenerate TIDS Score Table.

4.6 For all Link in Doc.links

4.6.1 Linkscore= Similarity score of

Link.anchor terms from TIDS Score

Table.

4.6.2 Score= Doc_Score + Linkscore;

4.6.3 If Score > Relevancy_Threshold

4.6.3.1 Enqueue(CrawlQueue, Link, Score);

According to the Algorithm 2, SeedUrls is initialized by 600

random links chosen from the Relevant_Page_Set. SeedUrls

were inserted one by one in the crawler queue, which is a

priority queue, as according to their similarity score from

TIDS Score table. The crawler picks the URL with maximum

score from the queue and downloads the corresponding

document. The content similarity score of the page is

calculated, and a value for each link present in the document

is obtained by merging the parent‟s content similarity score

with the link‟s own anchor text similarity score, and the link is

inserted into the crawler queue. The complete process is

repeated until the crawl queue is empty or the maximum

crawled page limit is not reached. We executed the First

Crawl for collecting 20000 pages, which will act as the

relevant page set, R, for the future crawls as they came by

crawling seed pages which were related to the focused

domain.Hub URL is the one which is pointing to many other

URLs and authority URL is the one which is pointed to by

many URLs. Best hub is the one which is pointing to many

relevant pages and the best authority is the one which is

pointed to by many relevant pages. Hubs and authorities

exhibit mutually reinforcing relationship. We used the hub

score as a learning parameter for the crawler to select best

seed pages for the next crawling phase. Let R be the set of

pages which are related to the domain and the page P in R

bears the interlinked behavior shown in Fig.:1

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

3

Fig 1: Interlinked behavior of Web page P in R where {A,B,C,D,E,F,P} Є R

Then the hub score for the page P in R is given by

𝐻𝑈𝐵𝑝 = 𝐴𝑈𝑇𝐻𝑂𝑅𝐼𝑇𝑌𝑄
∀𝑄 𝑖𝑛 𝑅 ∃ 𝐿𝑖𝑛𝑘 𝑃→𝑄 𝑖𝑛 𝑅

 (4)

And authority score of P is given by

𝐴𝑈𝑇𝐻𝑂𝑅𝐼𝑇𝑌𝑝 = 𝐻𝑈𝐵𝑄

∀𝑄 𝑖𝑛 𝑅 ∃ 𝐿𝑖𝑛𝑘 𝑄→𝑃 𝑖𝑛 𝑅

 (5)

After finding the hub and authority scores we normalize those

using mean square root method.

Algorithm 3: Consecutive Crawl

1. Calculate Hub score and Authority score for all the

pages present in the set of relevant pages, R, came

as a result from the previous crawl.

2. Choose top 600 pages with highest Hub score from

R, and initialize them to the SeedUrls.

3. While SeedUrls is not empty

3.1 URL=SeedUrls.Next().

3.2 URL_Score=Hub score of the URL

3.3 Enqueue(CrawlQueue,URL,URL_Score).

4. While CrawlQueue is not Empty

4.1 URL=Dequeue(URL with maximum

URL_Score, CrawlQueue).

4.2 Doc=Download (URL).

4.3 Doc_Score=Similarity score of the Doc

text and URL anchor text from the TIDS

Score Table.

4.4 For all links in Doc.Links

4.4.1 LinkScore=Similarity Score of

Link.Anchor terms from the TIDS

Score Table.

4.4.2 Score=Merge(Doc_Score,LinkScore)

4.4.3 Enqueue(CrawlQueue, Link, Score)

Consecutive Crawl algorithm works by finding the best hub

and best authority pages among the pages which came as

result of the previous crawl attempt, top 600 best hubs were

chosen to act as the seed pages. All the seed pages are inserted

one by one into the crawl queue, which is a priority queue, as

according to their hub score. The URL with maximum score

is chosen and the document corresponding to it is

downloaded. The content similarity score of the page is

calculated, and a value for each link present in the document

is obtained by merging the parent‟s content similarity score

with the link‟s own anchor text similarity score, and the link is

inserted into the crawler queue. The complete process is

repeated until the crawl queue is empty or the maximum

crawled page limit is not reached.

-20

0

20

40

60

80

100

120

0 20 40 60 80 100

First Crawl

Second Crawl

Third Crawl

%

of

the

tota

l

pag

es

retr

i-

eve

d

 TIDS relevancy

score

Fig 2: Graph between the percentage of the total pages retrieved by the crawler (vertical axis) and TIDS relevancy score

(horizontal axis).

P

A

B

C

D

E

F

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.23, April 2012

4

4. EXPERIMENTAL RESULTS
The learning capability of the proposed focused crawler is

studied for retrieving documents related to information

technology domain. The initial collection of Web pages (Seed

pages) is generated from the hierarchical categories of ODP

(Open Directory Project) from http://dmoz.org as suggested

by .Rungsawang, N.Angkawattanawit (2005). ODP provides

the categorical collection of URLs that are manually edited

and not biased by any commercial user. From here we can

find individual categories link. The categories ending with

“Information”, “computers”, “internet”, “information

technology” and “computer science” were retrieved from the

ODP, total 86 such categories were found, then links

contained by these 86 categories were retrieved from ODP,

total 927 such links were found from ODP or we can say that

927 pages related to the Information Technology domain were

found, out of these 927 links 100 links at random were chosen

to act as starting URLs for the crawler. The learning effect for

three consecutive crawls is observed by finding the number of

documents retrieved by the crawler within the different

relevancy scores with the TIDS Table. The results are plotted

as graph, Fig: 2, between the percentage of the total pages

retrieved by the crawler (vertical axis) and TIDS relevancy

score (horizontal axis).

The results shows that the second crawling phase retrieves

much better results for pages having similarity ranging from

20 to 70. The third crawling attempt improves the pages being

retrieved between similarity range 30 to 65, and the number of

pages retrieved with relevancy score more than 65 remains

nearly same as that of the second crawl. The proposed crawler

tends to increase the number of pages retrieved with more

relevancy and hence justifying effect of learning upon the

crawler performance.

5. CONCLUSION
Focused crawler capable to learn is proposed. Three

consecutive runs of the proposed crawler were made to study

the effect of learning. The results are plotted as graph between

the percentages of the total number of pages retrieved versus

the relevancy score of the pages. Results show great

improvement in the number of pages having relevancy score

between 20 and 70 by the second crawling attempt. A

significant improvement is observed in number of pages

having relevancy score between 30 and 65 by the third

crawling attempt, hence justifying the learning effect of the

crawler. The quality of the pages retrieved is increasing with

the increase in number of learning phases, and hence

providing the pages which are most relevant to the domain.

6. REFERENCES
[1] Brin, S. and Page, L. (1998), „The anatomy of a large

scale hypertextual web search engine‟,Computer

Networks and ISDN Systems, 30, pp. 107-117.

[2] C. Aggarwal, F. Al-Garawi and P. Yu.(2001),

„Intelligent Crawling on the World Wide Web with

Arbitrary Predicates‟ ,Proceedings of the 10th

international conference on World Wide Web, Hong

Kong, pp. 96-105.

[3] D. Bergmark, Carl Lagoze and Alex

Sbityakov(2002),‟Focused Crawls, Tunneling, and

Digital Libraries‟,Proceedings of the 6th European

Conference on Research and Advanced Technology for

Digital Libraries, Rome, Italy, pp. 91-106.

[4] Ehrig, M. & Maedche, A.(2003),‟ Ontology-Focused

Crawling of Web Documents‟, Proceedings of the

Symposium on Applied Computing 2003 (SAC 2003).

Melbourne, FL, USA, S. Pp. 1174-1178.

[5] J. Cho and Hector Garcia-Molina(2002), „Parallel

Crawlers‟, Proceedings of the World Wide Web

conference (WWW), Honolulu, Hawaii.

[6] J. Cho and H. Garcia-Molina(2000),‟The evolution of the

web and implications for an incremental crawler‟,

Proceeding of 26th International Conference on Very

Large Database, Cairo, Egypt, , pp. 200-209.

[7] J. Cho, H. Garcia-Molina, L. Page (1998),‟Efficient

Crawling Through URL Ordering‟: Proceedings of the

Seventh International World Wide Web

Conference, Brisbane, Australia, pp. 379-388.

[8] L. Page, S. Brin, R. Motwani, T. Winograd (1998), „The

PageRank Citation Ranking: Bringing Order to the Web‟,

Technical report, Stanford Digital Library Technologies

Project, pp. 1-17.

[9] Martin Ester, Matthias Groß, Hans-Peter Kriegel(2001),

„Focused Web Crawling: A Generic Framework for

Specifying the User Interest and for Adaptive Crawling

Strategies‟,Proceedings of the 27th International

Conference on Very Large

Database,VLDB2001,Roma,Italy,pp.633-637.

[10] P. Boldi, B. Codenotti, M. Santini, and S. Vigna

(2004),‟Ubicrawler: a scalable fully distributed web

crawler‟, Software Practice & Experience, 34(8), pp.

711–726.

[11] P.M.E. De Bra and R.D.J.Post (1994),‟ Information

retrieval in the World-Wide Web: Making client-based

searching feasible‟, Computer Networks and ISDN

Systems. vol. 27, no. 2, pp. 183-192.

[12] S. Chakrabarti, M. van den Berg, B. Domc(1999),

„Focused crawling: a new approach to topic-specific

Web resource discovery‟, Proceedings of the 8th

international World Wild Web

Conference, Toronto, Canada, pp. 1623-1640.

[13] Ari Pirkola (2007),’ Focused Crawling: A Means to

Acquire Biological Data from the Web’, VLDB ‟07,

Vienna, Austria.

[15] http://en.wikipedia.org/wiki/Stemming, (visited on 10-

02-2012).

[16] A.Rungsawang, N.Angkawattanawit (2005),’ Learnable

topic-specific web crawler’,Journal of Networks and

Computer Applications’,pp. 97-114.

